EE315 Autumn 2016

B. Murmann Page 1 of 3

STANFORD UNIVERSITY Department of Electrical Engineering

EE315: Analog-Digital Interface Circuits

https://canvas.stanford.edu/courses/47524

<u>TIME:</u> Class: Tue & Thu, 10:30 - 11:50 pm, Huang 18

Review Session: Fri, 3:30 - 4:20 pm, Huang 18

INSTRUCTORS: Boris Murmann

Email: murmann@stanford.edu
Office hours: See course website.

<u>TAs:</u> Stephen Weinreich

Email: <u>ee315_help@lists.stanford.edu</u>

Office Hours: See course website.

ADMIN: Ann Guerra

Email: guerra@par.stanford.edu

Phone: (650) 725-3725 Office: Allen 207

GRADING: Homework 30% (lowest HW score will be dropped)

Midterm Project 30% Final Exam 40%

COURSE READER B. Murmann, *EE315 – Analog-Digital Interfaces*. (Hardcopies available at Stanford Bookstore, Softcopies available online)

REFERENCE BOOKS Chan Carusone, Johns, Martin, Analog Integrated Circuit Design, 2nd edition, Wiley, 2011.

(not required)

- Schauman, Xiao and Van Valkenburg, Design of Analog Filters, 2nd edition, Oxford University Press, 2009.
- Pelgrom, Analog-to-Digital Conversion, 2nd edition, Springer, 2013.

BULLETIN BOARD: Please use the "Discussions" feature on Canvas for group discussions or to post questions.

PREREQUISITES EE214B

It is assumed you have prior exposure to analog circuit design and device modeling as covered in EE214B. The course also requires familiarity with Spice; prior exposure to MATLAB is a plus, but not absolutely necessary. In addition, you should be familiar with basic signals and systems theory (Laplace- and z-transform).

COURSE CALENDAR (Tentative)

Date	Lecture	Assignments	
Tue 09/27	1: Introduction		
Thu 09/29	2: Sampling and quantization	HW1 out	
Mon 10/03	3: Sampling circuits (Pre-taping, 10-11:20, Huang 18)		
Tue 10/04	No Lecture		
Thu 10/06	4: Sampling circuits	HW1 due, HW2 out	
Tue 10/11	No Lecture		
Wed 10/12	5: Sampling circuits (Post-taping, 10-11:20, Thornton 102)		
Thu 10/13	6: Successive approximation ADCs	HW2 due, HW3 out	
Tue 10/18	7: Successive approximation ADCs		
Thu 10/20	8: Voltage comparators	HW3 due, HW4 out	
Tue 10/25	9: Offset and flicker noise suppression		
Thu 10/27	10: Offset and flicker noise suppression	HW4 due, Project out	
Tue 11/01	11: High-speed Nyquist ADCs		
Thu 11/03	12: High-speed Nyquist ADCs		
Tue 11/08	13: High-speed Nyquist ADCs		
Thu 11/10	14: Delta-Sigma ADCs		
Tue 11/15	15: Filters		
Thu 11/17	16: Filters		
Fri 11/18	-	Project due, HW5 out	
Tue 11/22	Thanksgiving Recess		
Thu 11/24	Thanksgiving Recess		
Tue 11/29	17: Filters		
Thu 12/01	18: D/A Interfaces	HW5 due, HW6 out	
Fri 12/02	Project Presentations, 3:30-5:00 pm, Huang 18		
Tue 12/06	19: D/A Interfaces		
Thu 12/08	20: D/A Interfaces, Summary	HW 6 due	
Wed 12/14	Final Exam, 12:15-3:15 pm, Tho	Final Exam, 12:15-3:15 pm, Thornton 102	

FAO

When/how should I submit my homework?

All students, SCPD and local, should submit their homework by uploading a PDF file to Canvas under the Assignments tab. Homework must be uploaded by the specific due date and time.

May we work on the project in groups?

Yes, you are encouraged to work on the project in groups of two. Each group will submit one write-up. In case you can't find a partner, it is OK to work alone. It is NOT acceptable to work in groups of three.

Which program will we use for circuit simulation?

We will use Cadence Virtuoso Schematic Editor, Analog Design Environment, and SpectreRF as our main tools. Simulation examples and setup information will be covered in the first review session and homework1. You may use other tools "at your own risk."

Do I have to be a Matlab wizard to make it through this class?

No, we'll be using only a fairly basic subset of the Matlab functionality. Even though prior exposure to Matlab will help, you should also be able to pick up the skills you need during the course. In case you haven't worked with Matlab at all, we recommend that you work through the tutorial at: http://www.mathworks.com/academia/student center/tutorials/launchpad.html.

I cannot attend your scheduled office hours. Are you available at other times?

Feel free to email me to set up a meeting on an as-needed basis.

I am an SCPD student, and I must get a grade of B or higher, otherwise I have to pay. Can you guarantee that I won't have to pay?

No, of course not. You earn your grade; we don't randomly generate it. But, this is a $\sim B+$ -centered course, as are most 300-level graduate courses here. To minimize the likelihood of having to pay, stay current on the homework and, especially, allot plenty of time to do a good job on the midterm project. Many SCPD students find themselves in trouble time-wise, because of customer visits, unexpected tape-out problems, etc., at their place of employment. My advice is to expect the unexpected, and budget enough extra time for EE315.

I need to take the final exam at other than the scheduled time. May I?

Such arrangements are made on a case-by-case basis, and we cannot guarantee flexibility in this matter. The most common acceptable reason is a *demonstrable* scheduling conflict with another course (which would imply that you are taking two courses that are scheduled at the same time). Please alert us as soon as possible.

I am a remote student; how can I gain access to Stanford's e-libraries (such as IEEE Xplore)?

You can setup proxy access using your SUNet ID. See http://library.stanford.edu/apcproxy/.