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Chapter 1

Introduction

Boris Murmann

Stanford University
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Circuits are Everywhere!
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The Beginning

Transistor Integrated Circuit
Bardeen, Brattain, Shockley, 1948 Kilby, 1958
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Moore’s Law

* |In 1965, Gordon Moore predicted exponential growth in the number of
transistors per integrated circuit
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... And He was Right
Microprocessor Transistor Counts 1971-2011 & Mocre’s Law
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A Gigantic (Economic) Feedback Loop

Science

Engineering/
Design Mill

Time

Leverage
Mechanism

$$%
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State-of-the-Art Semiconductor Fab

Intel's “Fab 32” (Chandler, Arizona) ~ $3 Billion
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45nm Technology (Intel)

More than 2 million 45nm transistors
can fit on the period at the end of this
sentence,

A slice from a chip

copper must be thicker than the layer below untl the top.
If that period were enlarged to about Sy oy noich o comnact 0 lhwr pvincf the
6 feet in diameter, as shown at .
left, a one-inch section would
bear 500 transistors,
shown in the cut-away
below.

/f “ Steve Cowden
/ THE OREGONIAN
July 2007
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Transistors Have Become Cheap

102
104
2013:
10° $0.1 / 100 gram of rice
- $0.1 / 5M transistor
g 108
@

107

10

10°¢
1980 1985 1990 1995 2000 2005 2010 2015 2020

$0.1/meal of 100g rice = 100 xtors (1980) = 5M xtors (2013)

[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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Can Afford to Have Lots of Transistors

1 020
Observation:

10" xtors growth
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[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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Result: Increasingly Sophisticated Applications

Packaged IC

Military &
Aerospace

Microprocessor

Multiprocessin
GFi'ga bit, 4

SoC, VLS|, DSP non-volatile

Converged
Applianc&s
Consumer / Cmq:uler

Communications

stem of
ystems

Auto, aeros,
medical,

ce,

1970
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1980

1990 2000 2010

[Walden Rhines, Mentor]

EE101B - Spring 2017 - Chapter 1

2020

1"

Devices / Users (Million)

108
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102

1960

Drivers

Computing Growth Drivers Over Time, 1960 — 2030

Internet

of Thjng,s_

Mobile
Internet

Desktop

Tens of
Billion

Internet
7Y

Billions

of units

of units

1Billion+

Units/Users

Minicomputer , oMillion-+

Mainframe 10Million+  UNitS
Units

—1‘Milli0n+

Units

1970 1980

Morgan Stanley Research, 2013

1990 2000 2010 2020 2030
Reproduced from

Major Technology Cycles = 10x More Users & Devices

Driven by:

1) Lower Price, 2) Improved Functionality & Services

[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]

B. Murmann
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loT Trend

TODAY: o 2030: L ]

10 Radios/Person ' 100 Radios/Person '
70 Billion Radios 800 Billion Radios

$100B+ Silicon opportunity

[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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More Connected Things Than People

Human driven world Paradigm shift

® Connected Things
® Human Population

2014

(Reference : UN, “World Population Prospects” , CISCO “The Internet of Things”, CCS 2013)

[Kim, 2015 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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State-of-the-Art Microprocessor

e R N e
G v Intel “lvytown” Processor
K e 15 Cores (64-bit)
22nm Technology
4.31 Billion Transistors
Clock Rate 1.4-3.8 GHz

Power Dissipation 40-150W

[Rusu, 2014 International Solid-State Circuits Conference (ISSCC)]
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High-Speed Interconnect

600 Gb/s optical
chip-chip interface

Think about it:

4! 600 Gb/s ~ 20 DVDs

Mother EO |\ OJE per second!
board
Interposer CMOS chip

Input  Pre Output

Buffer Driver PD\L LA Buffer
o V%

i; g )}\VCSEL

[Morita (Sony), 2014 International Solid-State Circuits Conference (ISSCC)]
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High Speed Wireless Interconnect

£

<4cm
'\‘_-»!»_

S B 26bis link

;)))
mobile

In-package antenna

mobile T
Scalable
throughput

clock
spurs

60GHz CMOS Wireless Transceiver

B. Murmann
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[Saigusa (Toshiba), 2014 International Solid-State Circuits Conference (ISSCC)]
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Hearing aid

Audio “shoe” or “boot”m

Wireless receiver —

Hearing Aid with Wireless Receiver

. Wireless
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[El-Hoiydi, 2014 International Solid-State Circuits Conference (ISSCC)]
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PIPELINE MULTIPLEX
Uy MEMORY DRIVER

120x [ . ]
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[Heijne (CERN), 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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muon chambers ‘
aicAl, HEAL | I
it 8 lH n 7
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MAD muon det
: 181 000 chips
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1 m? Si sensor of which 700 000 ASICs

A huge sea of amplifiers and A/D converters!

[Heijne (CERN), 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]

B. Murmann EE101B - Spring 2017 - Chapter 1 20




Frame
~

MEMS Gyroscope

|_Proof
Mass

uw@w
= \

Clockwise rotation

B. Murmann

http://www.analog.com/library/analogDialogue/archives/37-03/gyro.html

» Proof mass oscillates ~10um

= Rotation causes sub picometer displacement in
sense direction

= Chip resolves a AC of 10-2°F in a BW of 1 Hz

= Corresponding displacement is 10-* m, which is the
classical radius of an electron (!)
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System application =————Circuit designe

B. Murmann

Circuit Designers must be Broad!

Device physics

Controls / Process manufacturing

NS

Circuit theory

7 | N

Mathematics Optimization
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Learning All of This Takes Time!
The Evolution of a Circuit Designer

EE101A,B EE114/214A EE214B EE314A,B
EE315
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Managing Complexity: Hierarchical Abstraction

WWplh e

Analog

Digital

Mixed-Signal Systems

Filters, Data Converters Microprocessors

EE101B

Operational Amplifiers
Playground P P

Arithmetic Blocks

Elementary Transistor Stages Logic Gates

Device Modeling

Device Physics
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Managing Complexity: Block Abstraction

Frequency -
Amplification translation Filtering D'ggécgggil()g
(optional)
® H\ <o
Physical
signals:
RF, electrcial, Transducers Transmit (or Actuation) Path o
ultrasonic, Cables Digital
mggﬁlacrﬁlém, Receive (or Sense) Path oSG
chemical, ...
® H T\
Frequency Analog-to-digital
Amplification translation Filtering nalog-to-digi
p (optional) conversion
= Almost any meaningful electronic mixed-signal system can be
represented by this generic block diagram
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EE101B Lab
Transmitter ST N
| |
|
I | | Digital |
%S Audi [ \ DIA Processing | |
udio |
jack | :
' Y
. Photo our phone |
Optlcal diodes \ ~ e o o e s/

Zk Speaker

Receiver

» Key aspect: “Signal conditioning” - manipulate the analog signal in
such a way that it meets the requirements of the next stage or the
connected transducer
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Final Lab Output

)

“Experience is what you get when you don't get what you wanted.”

B. Murmann

(Aaron Buchwald)
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Integrated Circuit Design vs. Discrete Circuit Design

. |

Scheduler

Avoid using resistors and inductors, use as = Limit the component count below say 100 elements
many MOSFET transistors as needed (within to achieve a small board area

reasonable limits)

10 fF-100 pF

The critical parameters in transistors can be
made to match to within 1%, but vary by more

= Auvailable resistors can be chosen in the range of
Available capacitors are in the range of 10-10 MQ

= Available capacitors are in the range of 1 pF—10 mF

= All resistor are within 1-10% of their nominal values

than 30% for different fabrication runs. = The utility of discrete transistors is limited. Use

Capacitors of similar size can match to within
0.1%, but vary by more than 10% for different

fabrication runs.

B. Murmann

MOSFETSs primarily as switches (power

transistors. Sometimes use bipolar junction
transistors if Opamps can’t do the job.

Apples vs. Oranges

EE101B - Spring 2017 - Chapter 1

management). Usually prefer Opamps over discrete

28




Positioning of EE101B

= EE101B is not an IC design class

— Continue with EE114 to learn circuit design techniques specific to
integrated circuits

» EE101B is focused on the “common denominator” concepts for general
circuit design

— Most of the material forms the prerequisite for IC design but is also
more broadly applicable
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Many Possible Flows for Circuits-Oriented Students

Autumn Winter Spring
Sophomore EE 101A EE 101B
Circuits | Circuits Il _|
EE 114 | EE 214B
Analog IC | 1 AnalogiC i Integrated (IC) Analog
EE 122A > EE 133 Board-Level Analog
Analog Lab Analog Comm. Lab
Junior
Senior EE 124 EE 122B Neuro-Bio Electronics
Co-term Neuro-Bio Bio-Instruments
EE 153 . > EE 254 Power Electronics
Power Electronics Adv. Power Electr.
EE 118_ Eng. 105 Mechatronics
Mechatronics Feedback Controls
EE 271 EE 313 Digital Circuits
Digital IC Digital Memory

B. Murmann

EE101B - Spring 2017 - Chapter 1
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Course Topics

* Modeling and analysis of analog gain stages A
— Two-port models
— MOSFET operation

— Biasing

Lab preparation

— Small-signal analysis

» Laplace transform for circuit designers
— Frequency response v
— Step response

» Opamp-based feedback circuits
— Stability and frequency compensation
— Oscillators
— Analog filters

= Circuit simulation

» Analog-to-digital conversion
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Textbook/Reference Material

= No required textbook!

Use E40/EE101A-type textbooks when in doubt about fundamentals (on
reserve in engineering library)

— Ulaby and Maharbiz, “Circuits,” 2" ed.
— Hambley, “Electrical Engineering: Principles and Applications,” 6 ed.
— Custom textbook from EE101A/Winter 2017

Use EE114 textbook for introduction to gain stages

— Murmann, “Analysis and Design of Elementary MOS Amplifier
Stages”

— Selected sections/chapters will be provided online

Use various online resources and lecture notes for the more advanced
topics
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Prerequisites

= EE101A (required)

— Kirchhoff’s laws, superposition, Norton and Thevenin, PN junction,
MOSFET I-V law, small-signal modeling, MOSFET single-stage
amplifiers, energy storage elements

= EE102A (required)

— LTI systems, sinusoids and complex exponentials, impulse response,
convolution, frequency response, Fourier series, Fourier transform

» CME102 (recommended)

— First- and second-order linear ODEs and their application to RLC
circuits, transient and steady-state response, Laplace transform and
its properties
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Assignments

= Homework (20%)
— Lowest homework score will be dropped
— Handed out on Wednesdays, due following Wednesday at 5pm
— We will collect the submitted homeworks from the gray collection box
near Allen 208 at ~9am on Thursdays
» Lab (20%)
— 8% pre-lab
- 12% lab
» Midterm Exam (20%)

» Final Exam (40%)
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Honor Code

» Please remember that you are bound by the honor code
— We will trust you not to cheat
— We will try not to tempt you

= But if you are found cheating it is very serious
— There is a formal hearing
— You can be thrown out of Stanford

= Save yourself a huge hassle and be honest

= For more info
— http://www.stanford.edu/dept/vpsaljudicialaffairs/guiding/pdf/honorcode.pdf

B. Murmann EE101B - Spring 2017 - Chapter 1

Logistics

= |nstructor
— Boris Murmann, Allen 208

= Administrative Assistant
— Ann Guerra, Allen 207

» Teaching assistants
- TBD

= Web pages:
— https://canvas.stanford.edu/courses/62873
» Check regularly for office hours, etc.
— https://piazza.com/stanford/spring2017/ee101b/home
» For discussions

= This is a “paperless” course
— All required materials provided on coursework page

= Discussion session
— TBD

B. Murmann EE101B - Spring 2017 - Chapter 1




Lab Organization

» Lab meetings

— Lab 1: Transistor characterization

— Lab 2: Amplifier

— Lab 3: Multistage amplifier

— Lab 4: LED Driver

— Lab 5: Opamp stability

— Lab 6: Receiver & complete optical link
= Lab location

- TBD

* You must sign up for a lab section during week 1, by Friday, April 7
— Details to be announced

B. Murmann EE101B - Spring 2017 - Chapter 1
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Chapter 2

Two-Ports

Boris Murmann

Stanford University

Reading: Murmann, Section 1-3
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Motivation: EE101B Lab Project

Transmitter

45 —\<D/A || Digtal
Processing
Audio

[
Photo '\ Your phone

Optical

Zk Speaker

Receiver

» Key aspect: “Signal conditioning” - manipulate the analog signal in
such a way that it meets the requirements of the next stage or the
connected transducer
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Model of Audio Jack

~300 Q

VWA o

~10 mV peak r\)
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Transmit Photodiode

1000 7

=4 /
E [
£ 100
B
-
o t, = 100 ps
:é-, t/T = 0.001
S 10
w
o

1

0 1 2 3 4
18873 Ve - Forward Voltage (V)

Fig. 4 - Forward Current vs. Forward Voltage
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TSFF5210

Vishay Semiconductors
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Model of Transmit Photodiode

—— V,~15V

Emitted IR light proportional to I
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Small-Signal Model of Transmit Photodiode

Want i; ~1 mA peak for light modulation
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How to Drive the Photodiode?

~300 Q p~0Q

VWA——0— —o—W\

—_—

\% @ ’? ~ 1m,‘it peak

S
~10 mV peak

Solution

Transconductance amplifier

It
\Z @ Py <> i ~1mA peak
~10 mV peak Vo G Y

2
2

] I Im
lf = _vain = _vas Gm = _U_S = _W = —-100mS




How We Will Realize This Circuit in The Lab

VDD . Cpp

[~

Vv utl

e
=

% K

/ LED

Biasing Voltage Gain ~20  Voltage Gain ~1 G, ~5mS
“Level Shift”
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Small-Signal Model of Lab Circuit
o Common Source Common Drain .
Audio jack Voltage Ampilifier Voltage Buffer LED Driver LED
Rs Rout‘l Rout2
—Mho—  W—o—  W——o— o

@ Vs Vin1 <+> A 1Vint

Vin2 <+> Av2Vin2

Vin3 <+> GmaVina

$r

(o]
(o]

(o]

(o]

Voltage Amplifier

Voltage Amplifier

B. Murmann EE101B - Spring 2017 - Chapter 2

Transconductance Amplifier




How a Circuit Designer Thinks About this Problem

Overall Objective R

Ry 3

LED

T—I_K}_

= Viur 22
. Vo Cop[_ R Vouz |
Chosen Implementation © T %E M, 5 ™
Gise M
3 Ry
VS
Rs Routt Roue
—O0——— —0——— ——0—
+ + +
Model of Implementation
P Vs Vint Av1Ving Vin2 AvzVin2 Vins GmaVinz

B. Murmann EE101B - Spring 2017 - Chapter 2

What we Need to Master

= Know the four types of two-port amplifiers
— Voltage, current, transconductance, transresistance

= Know how to model arbitrary amplifier stages using two-port models
— How to find the model parameters?

= Know how to work out cascade transfer functions
— What is the overall transfer function of a chain of two-ports?

B. Murmann EE101B - Spring 2017 - Chapter 2




General Amplifier Two-Port

iin iout
—_— -
o —e
+ +
Vi Amplifier Vout
o— —0

Currents defined to flow into the respective port
(somewhat arbitrary)

B. Murmann EE101B - Spring 2017 - Chapter 2 13

Ry outt
— e —A—e  e——
% Vi ZR, AV RS Voltage Amplifier Model
@ VCVS
Jn 2
W) ;Rs ggm Af, =R, RL£ | Current Amplifier Model

Transconductance Amplifier Model

ii, Bt
e e
4 R R R B v; Transresistance Amplifier Model
@ ccecvs
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Overall Transfer Function of a Voltage Amplifier

B. Murmann EE101B - Spring 2017 - Chapter 2 15

Why Not Model this as a Transconductance Amplifier?

= We can definitely do this!

= The two circuits below are equivalent
— Thevenin - Norton

-—\ —fm—n
+ A,v;
Ve =R, %\>A‘,vm isc —_rvmn
- T i Rout
Avvin = —G.v G. = Av
= “UmVin m = =
Rout Rout

—_
+ L (for equivalency)

B. Murmann EE101B - Spring 2017 - Chapter 2 16




» Furthermore, using appropriate Norton/Thevenin transformations at the
input, we could just as well describe this circuit using a current amplifier
or transresistance amplifier two-port

— The four models can be parameterized to be exactly equivalent
= So then, why bother with four different models?

= The model we choose depends on the design intent
— Is the input signal represented by a current or a voltage?
— Is the output signal represented by a current or a voltage?

Amplifier Type Input Output
Quantity Quantity
Voltage Amplifier Voltage Voltage
Current Amplifier Current Current
Transconductance Amplifier Voltage Current
Transresistance Amplifier Current Voltage
B. Murmann EE101B - Spring 2017 - Chapter 2 17

How can We Tell?

= Obviously, both the input and output port may carry both a voltage and
current, so what do you mean?

lin
—

Rg

o
=
o

Wy

=

=

If R, << R, then the input voltage gets “destroyed” - the input is really the current
If R, << R, then the output voltage gets “destroyed” - the output is really the current

Al = Vout _ Rin A RL
v Us Rin + Rs v RL + Rout

B. Murmann EE101B - Spring 2017 - Chapter 2 18




Another Example

out

G! Lout _9
m = =
Vs
B. Murmann EE101B - Spring 2017 - Chapter 2
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How to Calculate the Model Parameters of Arbitrary Circuits?

@ A, J_L‘:j
() A; J"l
1 -
Step 1: Compute gain value © G,
+ @ R, :

RL
it

o (e R;, ////-'-

o o Y

<. Z

\’\

P

& te
-(‘\
® Ry

B. Murmann EE101B - Spring 2017 - Chapter 2
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How to Calculate the Model Parameters of Arbitrary Circuits?

© Ry,

Step 2: Compute input and output
resistances (or impedances)

b,

* R, and Rg must be connected while applying the test source at the
opposite port when the circuit is “bilateral” - beyond the scope of what
we will discuss here (if you are interested, read Murmann, Example 1-3)
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Example (Unilateral Circuit)

R .
s lout

R4

Vs R;3 R,

9m’Vx

What are G, R, and R;?
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Cascading Stages — A Simple Example

fin R
Vin2 Vin3 out3

= ' ' AN~
+
Rinl Rou t1 Rou t2 Vout

Air’iin Gm2"Vin2 AvzVins

Vout _ Vinz Vin3 Vout

lin lin Vin2z Vin3

= Simply the product of individual transfer functions

= Solve using divide and conquer

B. Murmann EE101B - Spring 2017 - Chapter 2 23

What We Haven’t Covered

= |ntricacies of bilateral two-ports
— We won'’t deal with these (much) in EE101B

* How to get to the small-signal model of a circuit
— That’s what we’ll review next

= How to incorporate capacitors, inductors
— We'll deal with this later in the quarter
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B. Murmann

Chapter 3
MOSFET Modeling

Boris Murmann

Stanford University

Reading: Murmann, Section 2-1

EE101B - Spring 2017 - Chapter 3

Overall Objective |

Chosen Implementation

Motivation: Lab Transmitter Circuit

Model of Implementation

Rs
A O
y
GmVin
Vs Vin R
Ruins Ry 2 Re 2 LED,
[ Vew M
Voo, & Conl_ - Voo
M, %E M, =
Cuig M
2 Rs
Vs
£
Rs Rouﬂ Rout2
—O0—— —O—— —— O
+ + +
Vs Vit A1Vin1 Vina Av2Vin2 Vina GmaVing

= How to model MOSFETSs for our needs?

B. Murmann
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Field Effect Transistors Come in Many Shapes and Sizes

Power
MOSFET

LT
_:{

Ch 4007

Gate

n+ (DRAIN)

B. Murmann EE101B - Spring 2017 - Chapter 3 3

Field Effect Transistors Come in Many Shapes and Sizes

» |n integrated circuits, the FETs are built as planar structures

= CMOS (Complementary Metal-Oxide-Semiconductor) technology
features both n- and p-channel transistors

NMOS PMOS

e

S G D D G S
Q

p-type body

B. Murmann EE101B - Spring 2017 - Chapter 3 4




State of the Art

MOSFET with a gate length of 28nm

Current development: Shift from planar
technology to 3D “FinFet” (or “TriGate”)
transistors

High-k
Dielectric

Chipworks

B. Murmann EE101B - Spring 2017 - Chapter 3 5

MOSFET Modeling in EE101B

= Focus on the “bare minimum” fundamentals

= Will neglect many effects that can play a significant role in IC design
— But have no bearing at all on the type of circuits we build in the lab

» Effects we will not take into account
— Channel length modulation, backgate effect
+ See EE114

— Drain induced barrier lowering, velocity saturation, mobility
degradation, short channel effect, reverse short channel effect,
subthreshold conduction, ...

+ See EE216, EE214B
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Structure of an Integrated (Planar) MOSFET

Gate (G)
/l D
w +
Source (S) / Drain (D) lo l -
// // | // \\"
/ 4 / G -—| BV,
Vs 7 DS
s Tox 4 / 4 " /."
| + * e —— | N J V V 4
n ) \ n os as
AN . I L _ - o
S

p-substrate

Bulk (B)
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Basic MOS Operation (1)

Poly gate

oV oy Vo (0V)

Source w/‘ Drain

Tox

.

L #’ﬁ | %

L

p substrate

Bk QV

= With zero voltage at the gate, device is "off*
— Back-to-back reverse biased pn junctions
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Basic MOS Operation (2)

Vos Induced n-type

>0 L inversion layer

$i0,

nt

nt

L
Depletion region o 1 "

p substrate

w III—

= With a positive gate bias applied, electrons are pulled toward the
positive gate electrode

» Given a large enough bias, the electrons start to "invert" the surface
(p—n); a conductive channel forms

— Threshold voltage, V+,

B. Murmann EE101B - Spring 2017 - Chapter 3

Basic Operation (3)

Vas Induced n-t
-lype —

>0 .I inversion layer ID_?

= -

Si0,
= s D
A
nt

p substrate

@ i

» |f we now apply a positive drain voltage, current will flow

= How can we calculate this current as a function of Vg, Vpg?

B. Murmann EE101B - Spring 2017 - Chapter 3

n* VDS>0
| & =
Depletion region )’—]_4




Assumptions

Vos Induced #-type
inversion layer

L
Depletion region " >

P substrate

w i—

1) The current is controlled by the mobile charge in the channel

2)Gradual channel approximation - the vertical field sets channel charge, so
we can approximate the mobile charge through the voltage difference

between the gate and the channel

3) The carrier velocity is proportional to the lateral field (v = uE). This is
equivalent to Ohm's law: velocity (current) is proportional to E-field

(voltage)

EE101B - Spring 2017 - Chapter 3

B. Murmann
First Order IV Characteristics (1)
e 8 tl = What we know:
layer = G .
__L-‘ ‘ Lvn.i
. ~ - = - i Qn(y):Cox [VGS _V(y)_VTn]
— 7 272 O |
L B lL=Q,-v-W
p-type substrate

Bi—vw V=],ln~E

~p :COX[VGS _V(y)_VTn]'Mn E-W
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First Order IV Characteristics (2)

dv
ID:COX[VGS_V(y)_VTn]'un'E'W EZM

lh,dy =Wp,C,, [VGS -V(y)- VTn] -dVv

VDS

L
IDJ.dy =Wn,C,, J. [VGS -V(y)- VTn]'dV
0 0

W V
ID = HnCox T|:(VGS - VT )_ %} ) VDS

» For Vpg/2 << Vgg-Vq,, this looks a lot like a linear resistor: I=1/R x V
» Lets plot this IV relationship...

B. Murmann EE101B - Spring 2017 - Chapter 3

Plot of First Order IV Curves

\

VGS'VTn

VDS »

= Something is wrong here...
— Current should never decrease with increasing Vpg

* What happens when Vpg>Vge-Vi,?
— Vgp = Vgs-Vps becomes less than V,,, i.e. no more channel or "pinch off"
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Progression of Channel Profile
G

!

VDS=0

—e O

D
I
n+
D
T+ 0<Vps<Ves-Vm
n

S
n+
S
!
)
G
! QL) =0
S D
“Pinch-off” T+ T+ Vs = Ves - V1
n n
D
T Qn(L-AL)=0
S D
Pinch-off point ! !
/ Vps> Vs - Vi
moves to L-AL " J o pem Tes A
AL
B. Murmann EE101B - Spring 2017 - Chapter 3 15
Modified Plot and Equations
I5 [MA]
// Ip= Vos/Ron
_ /
1 - //
;
/
Triode Saturation
Region Region VDsat = VGS - VTn
1 2 3 4 Vis [V]
VDSsaf
w V
Triode: lb =1,Coy I_{(VGS -V )—2“} Vg
Saturation: _ w vy Vs = Vi) RV W vy
(neglecting AL) ID _“nCox L |:(VGS VT ) 2 (VGS VTn)_ ZunCox L (VGS VTn)
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“Drain Characteristic” “Transfer Characteristic”

Plot of I versus Vpg with Vg as a parameter Plot of I versus Vg in saturation (fixed Vpg)
Ip [mA]
Io [MA] 3T
] Viogs— Vi =3V
2
2 4
Vosz— V=2V
1 4
1
Viesi— Vi =1V
: ! i - —— Ves[V]
N -9 \Y Ve 12 3 4
VDSsaﬂ VDSsaQ VDSsa!S
B. Murmann EE101B - Spring 2017 - Chapter 3 17

Channel Length Modulation (AL = f[Vs])

I [MmA]

Vos [V]

| o 1y =G W (Vg Vi P (1440 ,
n saturation: D :Eu" OXT( cs — Tn) ( +, DS) Webwotnt:]yvc_)rry
about this in

EE101B
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Backgate Effect

pu 1,
Vos T - ¢

L
'
v i
[
V_ss _-"'_, /‘/\ '\
Depletion layer Depletion layer
for Vsg =0 for Vgz > 0

= [f the bulk is not connected to the same potential as the source (as
assumed previously), the threshold voltage becomes a function of VSB

= But, in EE101B, we will always connect the source to the bulk > Vg5 =0

- - — 1 . € B = We wontt worry
Vrn(Vsg) = Vo + YilN20sF Vg = N207)  “apoutinisin

EE101B

B. Murmann EE101B - Spring 2017 - Chapter 3 19

First-Order MOS Model Summary

112

“ON” “OFF”
Vaos2 Vi Vaos<Vrn
/

“Triode region”

. LW, Vbs),
ps < Vpssat | [ = p”(m-f(rcs_lﬂl_%q)l[’s

I, =0
“Saturation region”
Vosp 1 W, o2
Ds = ¥ Dssat I = Sun(o.vf(lcs_rrn)
~ "VCCS* with

quadratic control law

* For notational convenience, we define Vg, = Vgg — V1,
— “Gate overdrive voltage”
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EE101B Model Shortcomings to be Aware of

» We are neglecting channel length modulation, backgate effect

» For Vgg < Vi, the transistor is not 100% off, but carries a small current
that scales exponentially with Vg

= For short channels (say L < 0.5um), various correction terms due to high
electric fields must be included in the model

» For small values of V,, the physics are much more complicated than
advertised. For the square law to hold, we require Vg, > 150mV.

* None of these issues will impair the kinds of circuits/experiments that we
consider in EE101B

— Take EE116, EE216, EE214B if you are interested...

B. Murmann EE101B - Spring 2017 - Chapter 3 21

Which Parameters Can We Control?

IC Design Board level design
(For a given, fixed fabrication process) | (For a given component, e.g. CD4007)

u No No
Cox No No
W,L |Yes No
Vi, No (small changes possible via No (small changes possible via

back-gate effect, or choice of L) back-gate effect)

= Since we deal only with board level design in EE101B, it makes sense to
lump together all the parameters that we cannot change, anyway. Define:

W

K=unC, —
MCox
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P-Channel MOSFET

n-well

p-substrate

* Ip, Vgs: Vps, @and Vo, are all negative - confusing algebra

= Solution: “Think positive,” i.e. run right hand side of the IV equations
will all positive numbers and know that the end result for | is negative

v V.
I = _Kp(VGS - VTp _%)VDS :D = Kp(VSG _‘VT ‘_%)'VSD
I =K, [ (-3V)—=(-1V)=(=1V) ](-1V) ~lp =K, [3V -1V -1V]- 1V
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Chapter 4

The Common-Source Stage

Boris Murmann

Stanford University

Reading: Murmann, Section 2-2; Pre-lab 2

B. Murmann EE101B - Spring 2017 - Chapter 4 1

Common-Source Stage

Vour [V]

g A \ View Vo
Ro Saturation \/

r— l’” Vour T
Vin Triode
- * 4 L e
- . . D . - , Vin V]
Vi 1 3 5
Vour = Vpp — IpRp
In saturation: Vour = Vpp — EK(VIN — Vrn)*Rp
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Load Line Perspective

Ip [mA]
Viy=2.2V
VDD/RD 1.0 _\\
~ Viy= 1.8V
i N Viy=1.728V
SN Load line
~
0.6+ \\/ Io = (Vop-Vour)/Rp
.
S V=14V
4 ‘\
B>
\\
0.2 S V=1V
Ty Vos = V.
T T T T T DS = OUT
1 3 5 V]
Voo
B. Murmann EE101B - Spring 2017 - Chapter 4
Example
VDD
VDD = 5 V
Rp
+ UA
; _||# iv’” Vour K =500 >, Vry = 15V
IN -
B J_ Want VOUT = 25 V

* What is the required V?

» Does the transistor operate in saturation or in the triode region?
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Biasing and Small-Signal Analysis

Vour

gRD 1 Bias Point (Q)  Vout

VOU T

, Vour = Vout + Vout
Signal v,

Bias Vi

T

Vin

* The input is decomposed into a DC bias component (V) and a small-
signal AC component (v;,); same for drain current and output voltage

viv = Vin + Vi ip=1Ip+ig Vour = Vour + Vout

B. Murmann EE101B - Spring 2017 - Chapter 4 5

— 2 . .
Vour = Vpp — EK(VIN —Vra)*Rp This equation must hold for the DC quantities
(in saturation)

Vour = VDD — EK(UIN - VTn)ZRD It must also hold for the total quantities

1
Vour + Vour = Vpp — EK(VIN + Vin — Vrn)?Rp

I

What we want to know
1 2 1 2
Vout = Vib _EK(VIN + Vin — Vrn)*Rp — V4p + §K(V1N —Vrn)*Rp
(a+b)? —a? = 2ab + b? a=Viy—Vm b=y,

1
Vour = =5 KRp[2(Vin = Vrn)vin + vy

B. Murmann EE101B - Spring 2017 - Chapter 4 6




Vout = —KRp (VIN - VTn)vin 1

Vin
+ e —
2(Viy — VTn)]

_ .
Vout = —KRpVoyvin (1 + ]
| ov

Small-signal approximation:  v;, < 2Vyy

Linear amplifier model:

1%
AU = out = _KVOVRD
Vin

Valid if: (1) device operates in saturation, (2) v;, << 2Vpy

B. Murmann EE101B - Spring 2017 - Chapter 4 7

Lab Transmitter Circuit

Rpies g R % Rsz% SZ LER

Voy = 500mV Vi

Voo iy Conk " jﬁ:w —L “: " E;'E M;
$ Ch M,

~10mV

v, % Rs3

- The small signal approximation is valid for the CS stage realized by M1

B. Murmann EE101B - Spring 2017 - Chapter 4 8




Alternative Approach

Taylor expansion of a , '
differentiable function f(x) = f(a) + fﬂ (x —a) + f_@ —a)? + -
around point a: 1 2

dvoyr
For our circuit: vour = Vour + T wiv = Vin)
IN _
vIN=VIN
dvoyr
Vour vour — Vour = o Wiv —Vin)
IN Ay y=viy
_ dvoyr
Vout = v Vin
IN Ay y=viy
VOUT
A = Vour _ dVoyr
, = — _our
Vin Vin vIN=VIN
Vin
VlN
B. Murmann EE101B - Spring 2017 - Chapter 4 9
2 _ Vour _ dvoyr _d v 11( Vo V2R
v<;, T T =—1|Vop =5 KWy — Vrn)“Rp
Vin VIN dvy 2
vIN=VIN VIN=VIN
Vout
Ay = = [-K(v;y — VTn)RD]v1N=V1N
Vin
Vout
Ay = = —KViy —Vrn)Rp = —KVyyRp

in

= Exactly the same result as before

= However, the issue with both approaches we’ve used so far is that we
first have to write out the large signal transfer function

— This can get tedious for larger circuits

= Much more elegant: Instead of differentiating the large signal transfer
function, “differentiate” (linearize) each component in the circuit
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Why Should This Work?

» No matter how nonlinear or complex a circuit is, it has to obey KCL and
KVL. For each node, all of the DC bias currents and all incremental
currents have to sum to zero:

0=11+12+I3+ 0=ll+lz+l3+

» |n general, the incremental currents can be arbitrary (nonlinear)
functions of the incremental node voltages (around the operating point)

l] = f-j(vl, 172,1]3, )
= |f all excursions are small, we can approximate them via the total
differential, where all derivatives are evaluated at the operating point (Q)
and KCL will still hold in the limit sense

af; .\,
d'l72+_ dv3+"' Zdl]:Zl]=O
0 6V3 0

- 0f
dlj:a_vl

0fj
dvy + E

Q

B. Murmann EE101B - Spring 2017 - Chapter 4 1

» We can argue exactly the same way for KCL and express small voltage
excursions around the operating point via a total differential

9g,; 9g,; dg,;
dv; =2 aiy + 22 qiy + 292 gy 4 Zdvjzzvj:o
611Q ale 6l3Q

= The bottom line is that we can differentiate all i-v and v-i relationships to
predict the circuit behavior for small excursions around the operating
point

* No worries — this will be much easier than it looks, since f() and g() are
typically just one dimensional or two-dimensional functions

— We just wrote the full-blown equations above to get a feel for why the
approach must work in general
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VDD

Let’s look at the components one by one...

Small-signal model:

H .
Vpbp Ipp lgg
dvpp .
dd = - “ldd pp—
— di . =
- DD lipp=Ipp
VDD A 0 Vdd A
0
* Ipp — % lgg
B. Murmann EE101B - Spring 2017 - Chapter 4 13

Small-signal model:

v | vir R
VR RD V¢ RD

dv
. R
lrzd—, 'UrZRD"Ur

lp

ir=Ig

VR Vr

/| Lt iR /| Lt if'
The resistor is already assumed to be linear...
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Small-signal model:

g
-—
i dlD +
lg = " Vgs ImV,
dvGS ves=Ves + m-rgs Yds
Vgs
diD e
= Om
dves vGs=Vgs
d |1
Im = dv [EK(vGS - VTn)Z]
GS vGs=Ves
g
Im = K(VGS - VTn) = KVyy g
A ’
B. Murmann EE101B - Spring 2017 - Chapter 4 15
Complete Model
Voltage amplifier representation:
= Rp
R,
o—
_— + + +
y <¢> Im Vs Vout Vin AVin Vo

B. Murmann

Rout = Rp

EE101B - Spring 2017 - Chapter 4 16




Other Ways to Compute g,

Im = K(Vgs — Vrn) = KVpy

= Using the drain current equation, we can express g,, in terms of other

variables

1 21
IDZEKVOZV Vov = =2

gm =+ 2KIp

B. Murmann EE101B - Spring 2017 - Chapter 4

Example 1

Transistor is biased such that

Vin = Vip =Voy =1V

and the resistor is sized to have the
voltage drop indicated on the left

21, 2Vg
Ay = —gmRp :_m D :_m: —6

* Once the gate overdrive and the voltage drop across Ry are known, the
voltage gain is fully defined
— The “K” of the transistor does not matter at all in this situation

B. Murmann EE101B - Spring 2017 - Chapter 4




Does the Voltage Gain go to Infinity for V,,~> 0 ?

H
35 1
‘- i == 2/VOV
30 .} — Actual MOSFET
\ :
A :
< . i
Q \\ \‘ | .
o 20 .i| Model valid for Vg, > 150 mV_ |1
= \ H
£ W i
715 \‘\i
N
N
10 sl
.N...
5 %- - e
—%.2 0.1 0 0.1 0.2 0.3 0.4 0.5
Vov V]
B. Murmann EE101B - Spring 2017 - Chapter 4 19
Example 2
Vbp
Ry Given:
mA
+ K = 0.8W Ve = 1V Rp = 20kQ
+ —' ‘iD Vourt
Vin

- VDD = SV VOUT = 3V

» What is the required V,, what is Vg?

» What is the small-signal voltage gain?

B. Murmann
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PMOS CS Stage

Vour [V]
Voo 5 D
S AN
+ TlD 3+ Vint [Vl
Vin +
- Ro Vour B
1 1
— A
, Y
1 1 3 5
=, ==K (V. V. |)?
D p( SG ‘ TP‘) Vop- |VTp|
B. Murmann EE101B - Spring 2017 - Chapter 4 21
Small-Signal Equivalence to NMOS Circuit
(a) (b) (c)
+ _ .
lg
Vsg ¢ gmVsg -~
- iy + - +
Vin  Vsg Ro Vout Vin Vgs Ro Vout
+ + - + gm‘ng - gm Vgs
Vin % Rp Vout

- I 1

Conclusion: Think NMOS when it comes to the small-signal model!
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Small-Signal Model Gotchas: Signal Clipping

Vin

Vour

N

out

-

N

in

Vin

= Always be aware that the small-signal model does not tell us anything
about the actual signal swings that the circuit can handle. When in
doubt, go back to the large-signal model and check.

B. Murmann EE101B - Spring 2017 - Chapter 4
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Biasing

+

, II Vour = Vout + Vout
Signal v,

Bias Vin

Vour

VOU T

Bias Point (Q)

Vout

VIN

Vin

= V,y must be set accurately, so that the amplifier operates at the proper bias point

B. Murmann EE101B - Spring 2017 - Chapter 4
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What Do We Want? — Example Re-Visited

VDD

VDD = 5 %
ip=Ip+iy * RD =10 k.Q.,
= UA
Signal v, Vour=Vour * Vout K =500 vz Vin = 1.5V
Bias Vin -

Want VOUT =25V

B. Murmann EE101B - Spring 2017 - Chapter 4

25

Possible Solution?

VDD =5V

Ro

Vin= 2.5V

Vourt

“Garage Electronics”

B. Murmann EE101B - Spring 2017 - Chapter 4
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The Issue

http://www.isi.edu/~vernier/EE327/cd4007_intersil_datasheet.pdf

_intersil CD4007UBMS

November 1994 CMOS Dual Complementary Pair Plus Inverter

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

GROUP A s
PARAMETER SYMBOL CONDITIONS (NOTE 1) SUBGROUPS| TEMPERATURE MIN I MAX |UNITS
N Threshold Voitage VNTH |VDD =10V, ISS =-10pA 1 +25°C 28 07 v
<: P Threshold Voltage VPTH |VSS=0V,IDD = 10pA 1 +25°C 07 28 \%

= The threshold of a MOSFET is never well defined
— CD4007: V, = 0.7...2.8V (somewhat extreme)

— In modern IC processes, the threshold varies by about +200mV
around its nominal value — still a very large range

B. Murmann EE101B - Spring 2017 - Chapter 4 27

Replica Biasing Approach

VDD =5V

IB RD

r—

Vin +

Vin
Mo |——(D— l: M, Voo

215 1 2
Vin=Vrn2 + K, = 2.5V Vour = Vpp — ERDKl(VIN = Vrn1)
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2

1 21,
Vour = Vpp — ERDKI Vine + K_z —Vrna

= IfK, =K, and Vq,q = Vi

Vour = Vpp — Rplp

» Independent of the transistor parameters!

* |n a different context (IC design), this circuit is also called a “current
mirror,” since I, = Ig = I,
— Note that the transistors must carry the same current, since they both
operate in saturation and have the same Vg

B. Murmann EE101B - Spring 2017 - Chapter 4 29

Key Assumption

= For the replica bias approach to work well, the transistor parameters
must match

= Luckily, this is the case for transistors in the same package

— Since they were produced on the same wafer, at the same time,
using the same manufacturing steps

» The close matching of similar components on the same chip is a
property that is frequency exploited in IC design

12 11 19 9 B

£ o | N | Foe | Fo |
v
L Z7

ey
“

1]

=w

i _ sl

CD 4007

T
i
o l—

w [
W
L
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Residual Mismatch Between Devices in the Same Package

VDD =5V

Vin AVTn

M, l_‘l: M, Vour

» The threshold mismatch (within a given package) for the MOSFETs we

are using in the lab should be on the order of 10mV

= The difference between the thresholds can be modeled as shown above

and essentially shifts the output bias point by —A AV,
— Often not a problem

B. Murmann EE101B - Spring 2017 - Chapter 4
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Simplified Circuit Without Current Source

VDD =5V

RB RD

* |t's cumbersome to implement a current source in the lab (within the
scope of what we want to do) - use a resistor instead

B. Murmann EE101B - Spring 2017 - Chapter 4
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= Using this circuit, we have (see pre-lab 1)

1
Vin =V + KRy [‘/1 + 2KRg(Vpp — Vrp) — 1]

undesired

= |deally, what we wanted is

Vins = Vi + 2Ip
IN* — VTn K

» Suppose we pick Rg such that V = V |\ assuming nominal transistor
parameters. Now, by how much does V  deviate from V. as V, is
varied?

= Using the numbers from the previous example:
Vi, =15V, K=0.5mAN?, V- =25V > Rz = 10kQ
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Ideal (V,\+)
’ N
2.8 R\

g Vy (replica with Rg)

Vin [V] ~

“

22 Garage electronics

1 1.2 1.4 1.6 1.8

VTn [V]

= Even though we replaced the current source with a resistor, the circuit is
still quite robust

— For a £0.5V change in V,,, V,\ deviates only by about 80mV from its
ideal value

B. Murmann EE101B - Spring 2017 - Chapter 4

34




Lab Transmitter Circuit

Rios 2 B 3 Re 2 \/ LED

7
V outl

\’7DD CDR_ R Vou{!
O T o I —g ™
Mh | —‘_ | 1
Cbtg E Mz
VS
-

» The transmitter circuit we’'ll use in the lab uses the same biasing approach

&

e

2

* The main difference to the circuit shown previously is that we’ll couple in
the signal via a capacitor “Cy,"
— This is called “AC coupling” — more analysis to follow later

— The main advantage is that this allows us to apply a ground referenced
signal (bottom terminal of v, connected to ground)
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Small-Signal Resistance of a Diode Connected Device

VDD =5V

Small-signal model with test voltage source

B. Murmann EE101B - Spring 2017 - Chapter 4 36




Circuit with Rg

VDD =5V
Rs
V rx - ||RB
IN r,="=2 m
M. ——
B. Murmann EE101B - Spring 2017 - Chapter 4 37

Circuit with Ry,

VDD =5V
Rs Usually R, >> than this term
1
Vin = Ty = <g_ |RB> + Rpig

Rbig J

B. Murmann EE101B - Spring 2017 - Chapter 4 38




Chapter 5

The Common Drain Stage

Boris Murmann

Stanford University

B. Murmann EE101B - Spring 2017 - Chapter 5

Motivation — Lab Transmitter Circuit

/ LED

Rhias 2 RL 1 z

Vop Cop R

©F L, G4

=

&

3\
y:

&

|
1!
Chie
=

Common Drain Degenerated
Stage Common
Source Stage

B. Murmann EE101B - Spring 2017 - Chapter 5




Transistor Configurations

Common ommon Common
Source Gate Drain

Not covered in EE101B

B. Murmann EE101B - Spring 2017 - Chapter 5 3

NMOS CD Stage with Ideal Current Bias

In the CD stages that we will
consider, the bulk is always

IE / connected to the source.

VIN
Vin This is not always possible (or
Vour even desirable) in IC technology
Vin (see EE114), but we can
Is certainly do this with our 4007
parts in the lab.
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B. Murmann

DC Analysis

VDD

I
Vos = Ve + TD = constant

Vour = Vin — Vgs

Vps = Vpp = Vour

Vps = Vpp — (Vin—Ves)

Vbs = Vop — Vin—Vrn — Vov)

Vps = Vov + Vpp + Vi = Vin
Transistor operates in saturation unless

Vin > Vpp + Vi > Vpp

EE101B - Spring 2017 - Chapter 5

DC Transfer Characteristic

N

Viy
IN ¢
4

» As seen from this graph,

Vin V]

the circuit performs a “DC level shift”

— Exactly what we will use it for in the lab

= Since the source of the transistor directly “follows” the input, a CD stage
is commonly called “source follower”

B. Murmann
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DC Level Shifting

Input with large DC component

Ves=Vm+ Vo,

VDD

——

I RERWARY VOUT

(V IB Same signal amplitude, but
reduced DC component

= With the PMOS version of this circuit we can do the opposite, i.e. shift

the DC level “up” instead of “down”

B. Murmann EE101B - Spring 2017 - Chapter 5 7

DC Analysis With Resistor (Instead of Current Source)

VOUT

20,
Vin = Vour + Vpn + v

2VOUT
KR

\_'_I

Keep this term small, by
making Ry sufficiently large

Vin = Vour + Vrn +

Example: = 200mV
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DC Transfer Characteristic with Resistor

2Vour
KR

Vin =Vour + Ve +

Vin [V]

Straight line approximation with unity slope

Vour [V]

= Bottom line: If properly designed, the circuit still operates quite similar to
the version with the current source

B. Murmann EE101B - Spring 2017 - Chapter 5 9

Small-Signal Analysis

VDD

——

VGS = VTn + Vov

VouTt
"""""""""""""""" - X-f%1 Vour
I
- L . Vout
= Trivial for the circuit with current source bias: Vout = Vin = 4, = > =1
in
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Small-Signal Analysis with Resistor

VDD

——

VGS = VTn + Vov VOUT
""""""""""""""""" r— v VOUT

Rs

AYAYAY

= Derive the small-signal voltage gain using the circuit’s small-signal model

B. Murmann EE101B - Spring 2017 - Chapter 5 1

Small-Signal Analysis with Resistor

Vin <¢ nggs:gm(Vin'Vout)

Vout

Rs

* From here, we could simply grind through KCL to get the result, but we
can gain better intuition by “massaging” the circuit a little bit...

B. Murmann EE101B - Spring 2017 - Chapter 5 12







o Vout

Drawn A Bit More Nicely...

Vout
gmvm$ 1Vgn 3 Re

= The output resistance of the CD stage is low (since 1/g,, is typically just
a few hundred ohms or less in our circuits)




Vin

NN % Vout
1- Vin ? 1/gm RB

= Without Ry the voltage gain would be exactly unity
— As we already know
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Final Model
Vin I\/V\I Vout
R
AvVin out
R R
Ay=—B __ _ImTB_ 1 forg Ry>1 Example: 2mS - 10kQ = 20
Rn + i 1 + ngB
B
Im
1 R
1 g_ B 1 ImRp 1
R =—||Rg="" — = — —— 7~ or R > 1
oue = g 1R R, +-L Iml+9gmRe  gm for gmRs

9m
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CD Stage > Source Degenerated CS Stage

V

DD
Vop
——

% Ro

VIN v

= [ J out

Vin VIN ‘ ‘ iD

‘ VouTt

ViN §

§ R Vin R

B

S

Vin

= Very similar, except that we take the output at the drain
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Small-Signal Analysis

Voo Provided that the transistor
operates in saturation, we know
Rp from our CD stage analysis:
‘ Vout o= ImBs
¢. S 1 +ng5 mn
VIN ' Vp
|_
Vs Us Im 1
Vin § la R_S - 1 +ngS Vin = R Vin
Rs
\
A ImRp _ Ry
Vo = —igRp = — in = Vin
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Using the Degenerated CS Stage as a Transconductance Amplifier

VDD

T

LED G = L

Vio

VIN ‘
E O——+ O
GmVin
Vin |:> Vin ¥
% R _ <&
Vin :I: ° °

EE101B - Spring 2017 - Chapter 5
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Putting It All Together...

R,

R

Vs Vin

< 4 4 LED
Ryias = Ry = Rs2 =
Voun
ouz
M;
]

Ch i Vo e Ree =
osen Implementation i %{: M |
Cue E’ M ]

Overall Objective

2 Ry

Rs Routt Roue

Model of Implementation
Av1Vin1 Vin2 Av2Vinz Vina GmaVin

B. Murmann EE101B - Spring 2017 - Chapter 5
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Chapter 6
RLC & LTI review

Boris Murmann

Stanford University

References: E40 or EE101A textbooks (any), EE102A lecture notes

B. Murmann EE101B - Spring 2017 - Chapter 6

Capacitor

Passive element that stores energy in electric field

i
{ Parallel plate capacitor
. oy =C
C==v i=C—- q9=°0Lv iy
c==
. d
1
U:E.lef—i- olt,) o /AmA

1 _
T+ 7+ T
o For DC, capacitor looks
like open circuit + + + o+ d
T E ‘ l
1
o Voltage on capacitor ,,,f+\ I EI/ ey -
must be continuous (no o/ o iy \ _
abrupt change) “1 1 1 1 Dielectric ¢
q
|

[Ulaby & Maharbiz]
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Inductor

Passive element that stores energy in magnetic
V field

= . :
=N _ g, di Solenoid Wound Inductor
V= dt Area S
- Lo . da 2N
i=— v(t) dz‘+1(to) R A L IR -I-
L - . Y R
. . ' o= g,
o At dc, inductor looks like : "W Ira !y
a short circuit o e N et _l_
. WO S
o Current through inductor f \
must be continuous (no Core ~ Magnetic-field
abrupt change) lines
2
[ 2 = L = N ’LM
EE ), [Ulaby & Maharbiz] ]
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[Ulaby & Maharbiz] Table 5-4: Basic properties of R. L. and C.

Property R L C
7
v relati =~ : lf 1t +i(10) i 22
1—v relation = = — vdar—+ (1 i = —
R L ¢ dr
fo
) t
i relati 'R L(h lf'd+()
v-1 relation v=1 V= — V= — 1 at v(f
dt C 0
o
— 9 cdi dv
p (power transfer in) p=i-R p=Li — p=Cv —
dt dt
| 1 . »
w (stored energy) 0 w = ;Li“ w= ;C‘v“
Seri binati Req = Ry + R Leq=1L;+L B €1
Series combination = ) = 2 g = ————
eq 1 2 eq | 2 eq 3l
Parallel combinati RiR L Lila By =2
arallel combination =—— =— oq = 2
eq Ri + Ry eq L1+ Ly eq |
dc behavior no change short circuit open circuit
Can v change instantaneously? yes yes no
Can i change instantaneously? yes no yes
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RLC Circuit at DC

=1mH

ILl

2kQ 6 kQ
VA fmj‘ VWA
L, =0.5mH
gL = 0.2 mH C274,uF—:
= 10 uF 24V
2k i 6 kQ
VA WA

Z*’z é)

[Ulaby & Maharbiz]

B. Murmann
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The Role of L and C in Practical Circuits

= Sometimes your friend, sometimes your foe

— In some circuits we exploit the energy storage nature and add explicit
L and C to achieve a certain objective

— In some circuits, we are limited by the unwanted presence of L
and/or C - Parasitic capacitance, parasitic inductance

Example:
EE101A DC-DC converter

B. Murmann

Switch 1

N

+ Switch 2
DC\ -

L1

[ CIc>ad

EE101B - Spring 2017 - Chapter 6
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Example: Microprocessor Power Supply

Voltage ! 1"

regulator | Connector :: Circuit board

vl

+~1.14

=1.12

Time (clock cycles)

P -1.10
< | m w L h /HW!,M
E - 1.08
- .!V‘;\{’VW\\_I\Vf /W\I M/ \v/W\/"V’V“\/\W\/M,J‘”\/\f\f"V\/\Mf‘\/\NV1
oltage
30 “di/dt noise” 102
25 0 L - 1.00
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Voltage (V)

[Grochowski et al, “Microarchitectural di/dt Control,” IEEE Design & Test of Computers, May-June 2003]
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Example: Wire Delay and Gate Delay
Simple model of a long wire (e.g., on a microprocessor)
Simple model of a digital logic path
(e.g., on a microprocessor) l DO
; ; “T
Csclfl g Cwin:I é Cl‘anou(l G ‘I
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(Cheesy) Analysis of Digital Logic Delay

U SO S

_ Vpp/2 _ 1C.Vpp
¢ dvo 2 ip

dt
-_—C CL=4(Cyn + Cyp) = 8- WLCyy
—l ] 1 w 2
Vss Vss lp = E.ucox T (VDD - |VTp|)
B. Murmann EE101B - Spring 2017 - Chapter 6 9
t _ 1 CLVDD ~ 1 8 * WLCOXVDD
d=5—5 =35
2 21 w 2
tp 7 ;uCox T (VDD - VTp)

By [ 8L
d = 2 =
.U(VDD - VTp) HVbp

8(1um)?
Example: tg = %
100 =-- 5V
S

= 160ps
= Assuming that we need to accommodate 10 such delays within each
processor cycle, this leads to a clock speed of

fCLK = m = 625MHz
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Microprocessor Clock Speed Over Time

5 GHzr

2 GHzH

1 GHzH

500 MHz

200 MHz

100 MHz

T

50 MHz |

20 MHz+

. http://cpudb.stanford.edu

10 MHZ 1 1 1 1 1 J
1985 1990 1995 2000 2005 2010 2015
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Example: Analog Filters, Oscillators

Sallen-Key Y AN AN I
Lowpass filter ' |—l/ Yout

LC Oscillator | |
———
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Example: Fingerprint Sensor

) ~ FINGER
oo %ﬁ Sassgssasss fé\%’ﬁf%
pe e T T VALLEY l
. (?_3('_1)_4 .)—( i

A
N AP

e e N A A o A N A P N A P N P N

‘ o

sensor cell

cr Si oxide
50 :

?B A Vo

= —J—_ cl T Cout

metal2 plates

[Tartagni, IEEE J. Solid-State Circuits, Jan. 1998]
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What Do We Want to Accomplish?

» For arbitrary systems consisting of R, L, C and controlled sources
— Predict the response to practically relevant signals
» Steps, ramps, sinusoids, stepped sinusoids, ...
— Describe the system itself in a compact and insightful way
* Poles and zeros (more later)

Vo u(r)

S Fa AR
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Why Sinusoids?

= We can decompose arbitrary periodic signals into sums of sinusoids
— Fourier series, see EE102A

‘ B W 1 ~T+Th )
f)= 30 D py= [ fe et a
0 Jr

n=-—o0
JF(t) = 3cos(2mt) + cos(3mt — 7/4) + 2 cos(4nt + 7/3)
F(t)
Example: T
i? 15 1 0‘5 o 05 1 1‘5 2
2
Amplitude 1]
Spectrum | [ I
—4n ' —Im T 2n T dn
[Pauly, EE102A] @
Phase x/2t
Spectrum [ T+ I
7 T~ 1 S 4x T
1[ T . 2 | 4x
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LTI Review: Response of a System (in General)

The output consists of two components:

e The zero-input response, which is what the system does with no input at
all. This is due to initial conditions, such as energy stored in capacitors

and inductors.

x(t)=0 y(2)
0o~ 7

[Pauly, EE102A]
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e T[he zero-state response, which is the output of the system with all initial

conditions zero.
() NG

_— H >

I'

If H is a linear system, its zero-input response is zero. Homogeneity
states if y = I'(ax), then y = aF'(x). If a = 0 then a zero input requires
a zero output.

0 1

x(t)=0 I y(t)=0
— | u -

t

[Pauly, EE102A]
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Example: Solve for the voltage across the capacitor y(t) for an arbitrary
input voltage x(f), given an initial value y(0) = Y.

From Kirchhoff’s voltage law [Pauly, EE102A]

x(t) = Ri(t) + y(t)

Using i(t) = Cy'(?)

RCY'(t) + y(t) = ().
This is a first order LCCODE, which is linear with zero initial conditions.
First we solve for the homogeneous solution by setting the right side (the

input) to zero
RCy'(t) + y(t) = 0.
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The solution to this is )
u(t) = Ae” /1
which can be verified by direct substitution.

To solve for the total response, we let the undetermined coefficient be a
function of time

y(t) = A(t)e /1.
Substituting this into the differential equation

1 . :
A(t)eI/RC] + A(t)e O = o(2)

v 14 _,JffI/RC'i
RC [A ()e o

Simplying

, -
A (?L) = ;?.‘(t) lm(:t/RC

which can be integrated from t = 0 to get

t
Alt) = / z(T) l ! ,f”/RC] dr + A(0) [Pauly, EE102A]
Jo RC
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Then
y(t) = A(t)e /HC

i ) 1 : T
= g VB / z(7) [%E:T/HC] dr + A(0)e ¥/ RC
0 g

' 1 » y
_ i ~(t=7)/RC| 4o 1 A(0)e—t/RC
A _1(:)[—30( :|d;+4(£)r_

At t =0, y(0) =Yy, so this gives A(0) =Y

t
1 _ 5 i -
y(t) :/ 5% ) [—_'EE_“'_T)/R(‘] dr + Yoe_t/R('

Jo RC ——

i
zero—state response

~» zero—input response

[Pauly, EE102A]
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Impulse Response

o(1) h(t.0)
0 1 0
—_— H —
ot —1) T h(r.T)
0t 7 0 7

If H is time invariant (true for almost all circuits we deal with in EE101B):

[Pauly, EE102A]
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RC Circuit Impulse Response

Let Y,=0, and x(t) = 5(t).

t
y 1 i R Il that:
h(t) = [ o(7) l ‘r_“—TJ/R(] . ‘eca a
JO— RC /"- fit)a(t —T) dt = f(T)
— 1 F—i/f"ff' T
RC

fort > 0, and zero otherwise. We integrate from 0— to include the impulse.

This impulse response looks like:

1 4

[Pauly, EE102A]

rRC  2RC T
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For an LTI system with impulse response h(t), output is the convolution of
input and impulse response:

y(t) = /x h(T)z(t —7)dr

— 00

x(1) v(1)

—_—— *h(.’) -

If the input is a complex exponential z(t) = e/«

el (1)

—_ *I.'(f) NN

[Pauly, EE102A]
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y(t) = / h(T)e?“t=T) dr

= ej“’m/ h(T)e %7 dr éH(jw)ej“‘

—00

e Complex exponential in =
same complex exponential x complex constant out,

e Complex exponential is eigenfunction of LTIl system with eigenvalue
H(jw)

* H(jo) is the continuous time Fourier transform of h(t)

= The Fourier transform allows us to replace the convolution operation
by a simple multiplication

= General definition of the continuous time Fourier transform

F(jw) = foof(t)e‘f‘*’fdt
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Computing the System Output Using the Fourier Transform

Y(jw) = H(jw)X(jw)

where X (jw) is the input spectrum, Y (jw) is the output spectrum, and
H{(jw) is the Fourier transform of the impulse response /().

e H(jw) is called the frequency response or transfer function of the system.
Each frequency in the input spectrum X (jw) is

— Scaled by the system amplitude response |H (jw)],

Y (jw)| = [H(jw)

(X ()l
— Phase shifted by the system phase response/H (jw),

LY (jw) = LH(jw) + LX(jw)

[Pauly, EE102A]
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fn Flw) = F1f(0] [F(w)|

BASIC FUNCTIONS

:

]

w

i

B el

w

$ 1k

=

Ll

bl

5
£
A
&

bilti
1™ 5o - =
@

o o ]
(]

| <= 27 §(w) ‘2:1
w

u(t) == xiw)+l/jo / :r\

Fourier Transform Pairs

5]

sen(r) = 2jw A . (a=0)
rect(t/t) <=+ Tsinc{wt/2) —2z|2x “ .
== T T [Ulaby & Maharbiz]

=2/ w?

t
\
i

Il

oA y(t) > 1f(a+ jo) la

coswgl = w[8(w —wg) + 8w+ wy)] ﬂ_I_xi_,m

sinwgt = 8w+ wg) — S{w — ap)] @

ADDITIONAL FUNCTIONS

10.
11.

13.

e/l e 27 §(w — wp)

e u(t) <> at jw)?
[e sinawpt] u(t) <=+  wp/lla+ jo) 4+ o?]
le ™ coswpt] u(t) <=+ (a+ jw)/[(a+ jw)*+ “’él 26




e If the input is to a system is a complex exponential 7“0 the input
spectrum is

X(jw) = F [efot]

The output spectrum is

Y(jw) = H(jw)(2rd(w —wo))

The ouput signal is

y(t) = F LY (jw)]
e

! jwo) (278 (w — w
[Pauly, EE102A] [H (jwo)(274( 0))]
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= H(jwo)e’"
_ ‘H(jwo)‘ej(wotﬂ%ﬂr(jwo))

A sinusoidal input ¢/“%! to an LTI system produces a sinusoidal output
at the

— Same frequency,
— Scaled in amplitude, and

— Phase shifted.

This corresponds to multiplication by a complex number H (jwy).

[Pauly, EE102A]
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Important Expressions

e/t = cos(wt) + j - sin(wt)
1, . .
cos(wt) = 5 (e/@t + e7Jot)

1 . .
sin(wt) = T (e/ot — emJot)

(Note that these expressions clarify the relationship between transform pairs 8, 9, 10)

B. Murmann EE101B - Spring 2017 - Chapter 6 29

Back to Our RC Circuit

ity R
+
x(1) C = »()
1 t 1 1 1
h(t) = —e RC-u(t N H(jw) = — = .
() = =€ RE - u(t) 7 (o) RCRl—C+jw 1T jwRC
[T N 1 _ .
|H(jw)| = 1+ja)RC‘ = W |H(—jw)| = |H(jw)| (even)
] wRC
¢(w) = £H(jw) = —arctan (T) d(—w) = —¢p(w) (odd)
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» For a complex exponential input, we know
y(@®) =F HH(jw) - m8(w — wg)}
= T‘1{|H(ja)o)|ej4’(‘“0) -6 (w — wo)}
= |H(jw0)|ej¢(w0)ejw0t
= |H(jwg)|e/[@ot+(@o)]

= How about plain vanilla sine and cosine functions? This is easy to figure
out, since they are just combinations of two complex exponentials

1, .
x(t) = cos(wyt) = E(eja)ot + ejwot)
~ (o)l ot 9@ 4 2 |H (—jag) e/t 600
Y (&) = 5 [H(wo) e/ @0l 4+ = |H(=jawg) |e/mwot 9 Ceo
! ] J[wot+¢(wo)] 1 . J[= (@ot+d(wo)]
y(£) = 5 [H(jwo) /12020 4 = |H (jeog) /1= (ot 44 o

y(t) = |H(jwy)| cos[wgt + ¢ (wy)]
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Bottom Line

» Whichever sinusoidal signal we apply, all we need to do in order to find
the time domain output is
— Scale the amplitude by the magnitude of the transfer function

— Shift the argument by the angle of the transfer function

= Consequently, all that we’'ll bother to look at in detail is H(jw)

— A circuit designer will rarely think about the actual Fourier transform
of sinusoids in terms of their mathematical representations (delta
functions on the positive and negative side of the o axis)

» |n addition, a circuit designer will usually not bother to draw two-sided
spectra or two-sided representations of the frequency response

— One side tells the whole story, due to known symmetries (the
symmetries noted in our example hold in general)
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Plotting H(jw)

10

oRC

10

oRC

33
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B. Murmann

Better: Magnitude log-log, angle semilog in degrees

oRC

-50-
-100

[6p] (@)H7

oRC

= We can now “see” interesting breakpoints and asymptotes

34
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Points and Slopes of Interest

1 1
H 7 — e “® L
| (lw)lam% ’1 n 1].‘ 7 Corner frequency
) ] 1 High frequency asymptote,
IILI(’(")|(L)>>R—1C ~ [joRc| ~ wRC 10x drop per decade
LH(]'a))w_ 1 = —arctan(1) = —45° Phase shift at corner frequency
=RC
<¢H(jw) 1 =-90° Phase shift asymptote at
“>RC high frequencies

The transition from small phase shift to nearly 90 degree
phase shift occurs within about two frequency decades.
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Magnitude in decibels (dB)

A logarithmic unit with lots of history
— See http://en.wikipedia.org/wiki/Decibel

» The decibel is used to express the logarithmic ratio between two
quantities. The base definition is for ratios of power.

P, 1w
RdB =10 1Og10 P—O RdB =10 logm 1‘[,[—W = 60dB

Since power is proportional to voltage (or current) squared, we have

Vi Vi

2 v
Rgp = 101logy, <V—02> = 201logy, <V—0> Rap = 20logso <1mV

> = 60dB

Note that

1
20log;, (ﬁ) = —3.0103dB = —3dB
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“Bode Plot” (Magnitude in dB)

IH(jo)| [dB]

oRC

>

()

S,

-/é\ ffffffffffffff

=

T }

\J |

_100 : R : L : Lo : R

107 10” 10° 10’ 10°

oRC
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Chapter 7

The Laplace Transform

Boris Murmann

Stanford University

Reading: Smith, Chapter 32 (available on course web under “Reading Material”)
Reference: Oppenheim and Willsky, Chapter 9
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Jean Baptiste Joseph Fourier Pierre-Simon Laplace
Mathematician and Physicist Mathematician and Astronomer
1768 — 1830 1749 — 1827
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Limitations of the Fourier Transform

» The Fourier transform is a great tool for describing signals

» However, when it comes to describing and analyzing systems, the
Fourier transform has a few shortcomings

— It does not handle initial conditions
— It does not converge/exist for certain functions of interest

— It does not lead to a compact representation of system properties
* Poles, zeros, more later...

= The solution to this problem is the Laplace transform, which can be
viewed as a generalization of the Fourier transform

— Often just advertised as a tool for solving differential equations
» But, it is much more than that for electrical engineers
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{‘(i{

sT

Z=e€

Laplace Transform —

ls=ja)

Fourier Transform

z Transform

Phasor Transform
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Motivating Example

= Same as analyzed in the previous chapter, but let’s also consider

negative values for R

— May look strange at first glance, but we can easily build negative R
with active components (and this is used in oscillators, etc.)

1 t
h(t) ——e RC
RC
,,,,,,,,,,,,, R>0 J
06N\ fomnmnee . e-
'; 'C libl ”
O 04l N Q. ows Up
2 3 2% 1 2 3
t/RC t/RC
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Fourier Transforms
& , 1
h(t) = e~ a=>0 H(jw =j e y(t) - e J@t dt = .
® (o) = | e™u(® —
(0.e]
h(t) = ePt b>0 H(jw) = f ePtu(t) - e J@tdt
—0o0

B. Murmann

Integral does
not converge
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(Bilateral) Laplace Transform

X(o,w) = JOO [x(t) - e 9t]e J@tqt

This is really just the Fourier transform of [x(t) - e~7¢]

= More commonly written as
X(s) = f x(t)e stdt s=0+jw

» This integral converges for a much larger class of functions that we are
interested in

» Let’s have a look at our specific example
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Laplace Transforms

h(t) =e™** a>0 H(s) = f e~ Uyu(t) - e teI0ldt =
o a+s

Converges for g > —a

— bt > H — bt . p—0Ot,—jwt —
h(t) =e b>0 (s) f_ooe u(t) -e %e dt T

Converges for g > b

= A Laplace transform always comes with a “region of convergence” (ROC)
— Covered in great detail in EE102B; we’ll just look at this briefly
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Region of Convergence

h(t) = e~ % a>0 h(t) = ePt b>0
s-plane . s-plane :
P jw P jw
1 1
! ' ROC

: ROC :
1 1
1 1
1 1

1 0_ 1 0_
I
—a : b 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Fourier transform along Fourier transform does
this line (o = 0)! not exist!
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(Unilateral) Laplace Transform

X(s) = j (De-stdt

» The unilateral version of the Laplace transform is most commonly used in
circuit texts, as it lets us deal with initial conditions

= Setting the lower integration limit to 0- makes it clear that we are including
impulses (5(t)) around t=0

= If x(t) = 0 for t < 0, the Fourier transform still follows from the unilateral
Laplace transform by substituting s = jw (just like in the more general
bilateral case)

— In the context of transforming the impulse response of a system, this is
just requiring that the system is causal

= Unless otherwise noted, we will assume that Laplace transforms in
EE101B are unilateral
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= Note that just like e/®t, et is also an eigenfunction of LTI systems

e |f we have a convolution system with an impulse response A (%), and and
input e where s = 0 + jw

y(t) = / h(r)et) dr

o0

— (r-*’/ h(r)e "™ dr

oo

e We get the complex exponential back, with a complex constant multiplier

His} = /ﬁx h(1)e™*" dr

y(t) = e"H(s)

[Pauly, EE102A]
provided the integral converges.
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* H(s) is the Laplace transform of the LTI system’s impulse response, and
is also called the system transfer function

= We can compute the system output using
Y(s) =H(s) - X(s)

= As before (with the Fourier transform), this saves us from evaluating
convolution integrals

» If the ROC of H(s) includes the imaginary axis, then for s = jw, H(s)
gives us the Fourier transform (frequency response) of the system
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Time-Domain

[Modified from Ulaby & Maharbiz]

Laplace Domain Framework

Circuit

Laplace
transform

s-Domain
Circuit

Gain important insight
from s-domain
representation

Time Domain
Apply signal ] .
. . . Time-Domain
Differential Equation . N
Solution
E Inverse
i Laplace
d transform
Y
Apply signal s-Domain
Algebraic Equation Solution
s-Domain
Get the frequency

(poles, zeros)

response (Fourier
transform) by setting

s=jw
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0] F(s) =LLf(1)]
1 5(1) <> 1
la 5t —T) <= e Ts
2 loru(t) <= é
(,—Ts
2a u(t—T) <= .
H Laplace transform pairs
3 e u(t) -
s+a
—Ts
e .
3a e—alt=T) (it —T) <= e [Ulaby & MaharblZ]
4 tu(r) <=> lz
—Ts
4a t—T)ult—T) = 5
s
5 2u(r) <> %
S .
L 1 Another common pair:
6 te u(t) -
(s+a)*
7 el () - 2 = 1
S n—1 —at [(ita]!‘ _(1 - e_at)u(t) “ .~
8 e y(r) = Grar a S(S + a)
9 sinwt u(f) <> sersz
10 sin(wr +0) k() <> “"”;:7”’;“59 (follows from 2 and 3)
s [
11 coswt u(t) <= sZJr;wQ '
12 cos(wt +6) u(t) <= M
2 + w?
13 e~ sinewt u(t) = (Sﬁ»ﬂ)ﬁ
14 e~ coswt ult) —<=—> (H_:rﬁ
15 267" cos(br — 0 el? s
5 = — - 4
=08 (bt~ Q) i) P S o E—"
W el? e 7 14
16 me cos(br — 8) u(r)  <bm=p Gratior —+ Gra_jor




Table 6-3: Properties of the Laplace transform ( f (1) = 0 forz < 07).

Property 1 F(s) = L[ (1)]
1. Multiplication by constant K f(t) <= K F(s)
2. Linearity K| f1it) + Ky fo(r) <= K| Fi(s)+ K3 Fa(s)
. . : 1 s .
3. Time scaling flat), a=>0 <= N F (;) [Ulaby & Maharblz]
4. Time shift FG—T)u(t—T) <=> ¢ TSFs), T=0
5. Frequency shift e f(t) <«=> F(s+a)
: T o df o L. T .
6. Time 1st derivative [fei= 5 e F(s) — f(07) Derivative <= Multiplication with s
d*f
7. Time 2nd derivative Jt= =T > s2F(s) —sf(07)
T
— Fi07)
t
1 L.
8. Time integral f fhYdt' <= _F(s) Integral <= Division by s
s
i d
9. Frequency derivative t f(ry ==> ——F(s)
oods »6 6
2 () f Bl
10. F 7 int 1 L = F(s') d : ’
requency integra . (s') ds
s
B. Murmann EE101B - Spring 2017 - Chapter 7 15

Proof of Derivative Property

If we write the definition of L(f'(t)), we get
+00
L(f'(t) = f(t)etdt.
0
If we set o/(t) = f'(t) and v(t) = e, from the integration by parts formula, we get
+o00
+o00

L(f'(t) = [f0e15 — [ f#) (=s)e "t

0

+o0
= [f(f)f_St] ::g + -\'/ f(t)e stdt.
0

If we assume that, as t goes to +o0, f(t)e™*t — 0, then:

~+o0

L(f'(t) =0 — f(0) + s / F(t)e=*tdt = sL(f(t)) — £(0).

0

[Darve, CME102]

B. Murmann EE101B - Spring 2017 - Chapter 7 16




Laplace Transform of Circuits/Circuit Elements

» One way to use the Laplace transform is to write the differential
equation, translate into an algebraic equation and then solve

— Circuit designers are far too lazy to do this...

= What we’ll do is apply the Laplace transform to each component and
write KCL/KVL in the Laplace domain

KCL L Z () =0 Zﬁ{ij(t)} =0 Z li(s) =0

KVL L Evj(t) =0 Zﬁ{vj(t)} =0 Z Vi(s) =0

Resistor L{v(t) = Ri(t)} L{v(t)} =R - L{i(t)} V(s) =R-1I(s)

B. Murmann EE101B - Spring 2017 - Chapter 7 17
dv.(t
ic(t) = C— ©
Capacitor t
dvq(t
Liic(O}=C-L {%}

I-(s) =sC -Vg(s) — Cvc(07)

1
sC
vc(07)
s

Thevenin

» |f v-(07) = 0, we can define s-domain impedances and admittances,
similar to (resistance and conductance for a resistor)

V, 1 1
(O =50 Vel ) = = e(s) =g =

B. Murmann EE101B - Spring 2017 - Chapter 7




Table 6-6: Circuit models for R, L, and C in the s-domain.

B. Murmann EE101B - Spring 2017 - Chapter 7

Time-Domain s-Domain
Resistor
i} & 1) #*
RS v RSV
= VR
Inductor
+
i) x lLL’
L= oy Vi OR
_ Lig(07) [Ulaby & Maharbiz]
ol i
1‘? Vi = LI, — L ir.(07) gL, il
EL:EfuLdtJriL(O’) S5 .
-
Capacitor
u—]‘_ +
icl—L"- 1
c ve ¢ Ve OR Coc(07)
T_ ”C(P‘)
emc i i
dr
1 Vo= 18 e0) Ic =sCVc — C ve(07)
Uc=éficd!+l—'c(0_) T e 19
-4
Example
R
- R 2 VWA N
VWA
n L — n 1 1
1 x0®) c—=v = X(s)(Z sCc T Y(s)
- - (0) /=
_S —
_ sc_ , y@©07) _ _
() = K)o + =0 = X + RO e
sC sC
Y(s) 1
y(07) () = %) = T+ sRC

20




Chapter 8
Analysis of First Order Circuits Using

the Laplace Transform

Boris Murmann

Stanford University

Reading: Smith, Chapter 32 (available on course web under “Reading Material”)
Reference: Oppenheim and Willsky, Chapter 9

B. Murmann EE101B - Spring 2017 - Chapter 8

Example
R
B R n \/\/\/‘
VWA
z 4 x0 () c==y - = X(s) C’) % —
: | (0) /3
S -

sc_ , y@©07) _
(5) = X(5) g+ = g = (X + ROl e
sC sC
Y(s) 1
y(07) () = %) = T+ sRC
B. Murmann EE101B - Spring 2017 - Chapter 8




Let’s Compute...

» The impulse response

The pole location of the circuit

» The frequency response

» The zero input response with an initial condition
» The step response

» The response to a stepped cosine

B. Murmann EE101B - Spring 2017 - Chapter 8 3

Impulse Response

= Set initial condition to zero

» Look up Laplace transform of §(t) in the transform pair table

1
H = Xis)=L{6®)} =1
() = 1o (5) = £L(5(0))
Y =H(s)X = — - 1=H
() = HX(5) = 1z 1= H(S)
1 —at h(t) ! _% (as we already knew...)
s+a ¢ RC €
1 : T 0
0.8\ R>0 |- 5
S 0.6[--N\ i =410
= ! : = “bl ”
Soal N S 15 OWs up
02 1 200~
% 1 2 3 2% 1 2 3
t/RC t/RC

B. Murmann EE101B - Spring 2017 - Chapter 8 4




Stability
» |n general, a system is said to be stable if every bounded input produces
a bounded output (BIBO)

= For an LTI system, it can be shown that stability requires the impulse
response to be absolutely integrable, i.e. f_oooolh(t)ldt <

— Means that the RC circuit with R>0 is stable, the circuit with R<0 is not

= For a causal LTI system with a rational H(s), this condition is equivalent
to having all the “poles” of H(s) in the left half of the s-plane

= The poles (p; ...p,,) are the roots of the denominator polynomial of H(s),
the zeros (z; ... z,) are the roots of the numerator polynomial

N(s) ag+ays+-+aps™  (s—2z)(—21)..(s—2,)

H(s) = = =
)=D® b+ bist ot bus™ 5= p)G —p2) - P
S S S
(1-3)0-5)-(-5,) o
H(s) = 60— 22 “m G=5
1-2 )(1-2 ). [1-2
Py P, P,
B. Murmann EE101B - Spring 2017 - Chapter 8 5
Stability of our RC Circuit
I 1
O =TrsRe=1_% P= "k
p
R >0 - pole in the left half plane R < 0 - pole in the right half plane
jw jw
|
: ROC :
| |
1 X o 1 X ?
RC | RC |

STABLE UNSTABLE
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Allin the Right Half Plane, Any Poles?

Brent Logan

Every day above ground...

Engineer. Lawyer. WordPress geek.
Bicycle commuter. Blood donor.
Snapshooterist extraordinaire.
(More...} »

...1sa good day! :-)

B. Murmann EE101B - Spring 2017 - Chapter 8 7

3D Plot of |H(s)| for R>0

H(s) = — H !
5) = ——— iw) =
1+ sRC (©j0) = T G+ joRe

frequericy..
~.response

B. Murmann EE101B - Spring 2017 - Chapter 8 8




10

3D Plot of |H(s)| for R<0

\

* The circuit is unstable and the frequency response is undefined (the jw
axis lies outside the ROC)
EE101B - Spring 2017 - Chapter 8

B. Murmann

Frequency Response
» [f the circuit is stable, the frequency response is simply found by

evaluating H(s) for s = jw

o
o
o
= =
s IS
— = T
+ -
M [ I
- 3 _
+ N S
— o DM
I @ — >
~ =
= I =
T _ I
S =
3
T >
=

—arctan(wRC)

EE101B - Spring 2017 - Chapter 8

2H(jw)

B. Murmann



Bode Plot

* The angular corner frequency coincides with the magnitude of the pole

— This is only the case for a single pole system

[H(e)| [dB]

oRC
0 o
S |
3 :
g _50 77777777777 :
I ! :
N ! o |
-100 L L L L
107 10" 10° 10" 10°
oRC
B. Murmann EE101B - Spring 2017 - Chapter 8 1
Geometrical Interpretation
1 -p 1
H = = e
) 1+sRC s-—p p RC
jo
. | —pl 14 1
S1 = jw_34p |H(s1)| = |S-p|=|p|\/7=ﬁ
S1—p
£H(s;) = —45°
+45° !
o
p
12
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Bode Plot Construction Rules (For Real Poles and Zeros)

log|H(jw)| = log|G| + log

(W
1.1
P1

+---—log

(W
1.1
Z1

= Identify all the pole frequencies o,; and o, and list them in increasing
order. Apply the following rules, beginning with the lowest frequency.

» For each zero, the magnitude slope increases by 20 dB/decade, when
the frequency is greater than the zero frequency.

» For each pole, the magnitude slope decreases by 20 dB/decade when
the frequency is greater than the pole frequency.

= To plot the phase, we know that each term contributes +45° for a LHP
zero, and — 45° for a RHP zero at o,;. A real pole contributes —45°. We
approximate the total £90° phase shift as a straight line over the interval

0.10; < ® < 100,

B. Murmann

EE101B - Spring 2017 - Chapter 8

Construct a Bode plot for a system
with the following parameters:

G =100 (DC gain)

o, = 10 rad/s

opp = 100 krad/s

LHP zero: w,, = 1 krad/s
RHP zero: o, = 10 Mrad/s

B. Murmann

Example
priey

40dB {

-20 dB/dec

0dB

-20 dB/dec

dmm————

-40 dB

w
-
o |-
g

0°

-45°

-45°/dec
-90°

-135°

1800 o

EE101B - Spring 2017 - Chapter 8
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Computing the Zero Input Response

= Also called the natural response of the circuit

R
I . Y(s) = [X{s) + RCy(07)] 1T sRC
+ 1
9@ Y V) =y(0)— gt { 1
@ 1 S + W Ss—a
€

y(©) = y(07)e e

» The initial condition simply dies out exponentially

- RC is called the time constant of the circuit, often denoted 7 = RC

= We got the same result by solving the differential equation
— But this time without dealing with differential equations...

B. Murmann EE101B - Spring 2017 - Chapter 8

e

Computing the Step Response

WW
+ x(t) = Vou(t) o LG
X)) == Y(s)

1
T 0 )=

Y(s) = H(s)X(s) = Vo !

s(s+a) azﬁ

1
X(s) =
T+ src<®)

= We could use £71 {S(Sia)} = %(1 — e %) to solve, but let’s perform a

partial fraction expansion to gain some valuable insight

aV, A B A(s+a) + Bs
V) o A _AG+a)

:s(s+a):s s+a  s(s+a)

B. Murmann EE101B - Spring 2017 - Chapter 8




Y(s) = aVly B _A(s+a)+Bs
S_s(s+a)_s s+a  s(s+a)
s=0: aVo =A(s+a) A=V, = VyH(0) Transfer function at DC
S+a5=0
s=-a aVy = B(—a) B = -V,
VoH (O V
v < IO Vo
s+a

_t ( _L)
y(t) = V()H(O) - Voe RC = VO 1—e RC

Steady-state Transient
response response

= This result can be generalized for arbitrary H(s) = A(s)/B(s)

— The steady state component, or “final value” of the step response is
always V,H(0); the transient part depends on the specifics of H(s)

B. Murmann EE101B - Spring 2017 - Chapter 8

0.8

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.6

0.4

0.2

2.5
t/RC

» T = RC is called the “settling time constant” in this context
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Closely Related: The Final Value Theorem
v |f L!iIE) y(t) exists, then
lim y(t) = lim sY(s)
t—oo s—0
= For the previous example

lim y(£) = | Yo ) _y,
tholy()_sTg s ss+a)) "°

» This theorem is useful for arbitrary responses (not just the step response)

B. Murmann EE101B - Spring 2017 - Chapter 8 19

Computing the Response to a Stepped Cosine

R
VWA x(t) = u(t) - cos(wot)
1 y S S
X(s)(* —_— —Y _ _
(=) <> sC (_S) ROk s2+wi  (s—jwe)(s + jwy)
as 1
V() =X(s) 1+sRC (s —jwo)(s +jwy)(s +a) “= ke

= This expression is nowhere to be found in the transform pair table

» Must perform a partial fraction expansion

B. Murmann EE101B - Spring 2017 - Chapter 8 20




Partial Fraction Expansion

as _ A 4 A* N B
(s—jwo)(s+ja)0)(s+a)_s—jwo S+jwy Ss+a

Y(s) =

_A(s+jwo)(s+a)+ A(s — jwo)(s +a) + B(s — jwo)(s + jwy)
- (s —jwo)(s +jwo)(s + a)

a/2
= i on = A(i . . A=
S = Jjwo ajwo (Jwo + jwe)(jwo + a) a+ jwg
a?
s=-a: a(—a) = B(—a — jwg)(—a + jwg) B=-— >
a“ + wg
= |nterestingly, note that
a/? 1/2 1
C+jwy  T+jwgRC - 21U@0) 15 (@gr0E ~ U@l
B. Murmann EE101B - Spring 2017 - Chapter 8 21

Putting It All Together

%H(fwo) N %H*(]'wo) B |H(jwe)|?

Y(s) =
() S —jwg s+ jwg s+a

1 . 1 , -t
y() = EH(in)erot + EH*(/wo)e_]wot — |H(jwo)|?e"RC

t
y(t) = [H(jwo)| cos[wot + £H (jwo)] — [H(jwo)|?e RC
L ) J
| Y
Steady-state response Transient response

Yss(t) Yer(t)

= After several time constants, the circuit approaches the steady-state
response, which is the same response we obtain from the Fourier
transform (or phasor transform) for everlasting sinusoids
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Example (woRC = 2)
0.5

e Yss(£)

-0.5

t/RC

B. Murmann

EE101B - Spring 2017 - Chapter 8
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More Examples

» Pole, zero and frequency response of
— A first-order RC highpass

— An RC lowpass with extra resistor
— An amplifier circuit with a RHP zero

» Bode plot and asymptotes of parallel and series RC impedance

B. Murmann
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First Order RC Highpass

|| H(s) Y(s) R s
S) = = =
: . XO rel s+l
1 R+ sc Stwre
x)(Y) ¢ RS Y6s)
s—z 1
H(s) = = - —
(s) s—p z=0 p RC
jw
05
o
1 X AV
RC
B. Murmann EE101B - Spring 2017 - Chapter 8 25
3~ . Redline is the -
. frequency
: response
2. 5
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Bode Plot of the Frequency Response

|H(j)| [dB]

oRC

100

ZH(jo) [deg]

B. Murmann

oRC
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RC Lowpass with Extra Resistor

R 1
VW .\ u _Y(s) Rty 1+ sRC
(S)_X(s)_R+i+R_1+ZsRC
x9 ) ==Y st
- sC T Y08
1-2 1 1
R% ] H(s)=—_£ Z==pc PT73pC
P
Jjw
O X o
1 1
RC  2RC

B. Murmann
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29

response

Red line is the
frequency

wwwwwwwwwwwwwwwwww

|
10’

\\\\\\\\\\\\\\\\\\\\\\\

jw/RC

A

oRC
10°
oRC

Bode Plot
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TSN
RS

-y N\
RS

\ R
Lo

NN

.....&m?“a.f“w.«w’w%v

AUA0K

\ \ L RO
) ! (S L e
d ; ; RO
, , ! L e
| \ L WA

\ \ \ o

\ \ e
\ \ \ Y
, , ,, /_ .:....’. ,

2
2

10

20

[ap] (DK [6op] (o)H

B. Murmann

30
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» |ntuition: At high frequencies, the capacitor becomes a “short” and the
circuit turns into a resistive voltage divider (ratio 2, no phase shift)

B. Murmann



Amplifier Circuit with a RHP Zero

» |n electronic circuits, right half plane zeros are typically caused by some
sort of feedforward mechanism

A
|| sC
[
+ VW—— +
R
O xs) 2x) Y(s)

Y(s) = —2X(5) - ——— + X(s) —2C
5) = ) Tosrc T X TR

RC
Ye) _ ,1-sy et pe_
RC RC

H) =¥ = 72 T3sRe

EE101B - Spring 2017 - Chapter 8 31

B. Murmann
Red line is the
frequency
jw ... response
s-plane 9
1.5~
X o—o
\¥)
e
1 2 0.5+ : o
=
_— -|— —_— LTI \\\“-“:‘ti‘::“:“% S
N
RC RC 0 o
ety
-2

B. Murmann EE101B - Spring 2017 - Chapter 8 32




N A O

|H(j)| [dB]

o

—
o !,
o O

ZH(jo) [deg]
3

= The circuit goes through a total phase shift of -180 degrees

= At low frequencies, the amplifier is inverting with a gain of 2

= At high frequencies, the amplifier is non-inverting with unity gain

B. Murmann

EE101B - Spring 2017 - Chapter 8
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Circuit Impedances

Z1(s) Zy(s)
_l Vi(s) _l Vi(s)
I;(s) I;(s)
R 1
1 ST %R
sC [ = =
Vi (s) 1 1 V,(s) (1 ! R
Z =——=R+—=—(1+SsRC = =(= R —
1) =175 sCsc TSRO L) =175 (R ¢ 1+ sRC
= Looks capacitive at low frequencies » Looks resistive at low frequencies
= Resistive at high frequencies after = Capacitive at high frequencies after

going through a LHP zero

B. Murmann

going through a LHP pole
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1Z(jo)l [Q]

ZZ(jo) [deg]

B. Murmann

Example (R = 1kQ, C = 1nF)

10° ‘ ‘
1 Z4 !
4 | |
10" e L .
Zy :
e T 1
0 ! !
10 1 1
10° 10° 10°

o [rad/sec]

-100

10" 10° 10
o [rad/sec]
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Chapter 9
Analysis of Second Order Circuits Using
the Laplace Transform

Boris Murmann

Stanford University

Reading: Smith, Chapter 32 (available on course web under “Reading Material”)
Reference: Oppenheim and Willsky, Chapter 9

B. Murmann EE101B - Spring 2017 - Chapter 9 1

Second Order RLC Lowpass

R sL
YWW—"M
+ Y(s) ! 1
m 1 1 _rs) sC _
— =Y H(s) = = —
Ol sC ©) HO=yG=T L +r 1tsRC+sZLC
sC

= A common way to parameterize this expression is

H(s) - _ i
S) = Wy = — = — [—
145 .52 ° " VIC C=zrJc
2
wol ~ w§
= Note that
_ 1
H(0) =1 |H(jwo)| = oy o =Q
T w0 w2
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Pole Locations

2
N
Wy

P
woQ

(1+/1-2Q?)

1+ 0

Wo

FOFQ < 0.5: p1,2 = _5

-> Distinct real poles

FOI’Q = 0.5: pl,Z = —wWy
- Coincident real poles

Wo

FOI’Q > 0.5: pl,Z = — 20
- Complex conjugate poles

1+

(145407 -1)

jw
—X%—%—t—0
wWo
20
jw
¥ o
—wy
1 _](U
X
; o
X

B. Murmann EE101B - Spring 2017 - Chapter 9 3
Q=0.25
Red line is the
] : frequency
! resporise
0.5 = “\ |
. % ==
e
< e
< S
L e e e /
= ) 0
s e ==
0~ e T
s e L B RN R
e e e R P e e S e R S R
S A TSI S S L S Tt s
R L e e R A S e S S S e
= e 2
s
- B e e e i e e B S e
2 s = 1
0 e o
o/wg -1
5 Jjw/wy
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Bode Plot for Real Poles

(O]

/

(Q)
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Bode Plot for Complex Poles

|H(j)] [dB]

n
o

100} Slope = -2Q/,
(prove this)
-180f---—----- ‘ ‘ ‘

ZH(jo) [deg]

10
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A Closer Look at the Magnitude

[H ()| [dB]

2T S S R S S Lo I Loobo- -
‘

-40 ; ) ) ) ) L
10 10

m/mo

= Q = 1//2 corresponds to a second order Butterworth response, also
called “maximally flat” second order response

— More about this when we cover filter design
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Computing the Step Response

R L
\/VV\ YN
] + X(t) = Vou(t) Vo Vo u(r)
X(s)( X —~ —— Y(s) 1
<> sC - L{u(®)} = S 0
_ _ 1 Vo _ P1P2 _&
T A R CE Ry B
+ m + (1)_(2)

= First consider distinct real poles and perform a partial fraction expansion

A B C
Y(s) =—+ +
S S—p1 S—D2

B. Murmann EE101B - Spring 2017 - Chapter 9 1

Partial Fraction Expansion for Distinct Real Poles (Q < 0.5)

Y(S): P1D2 =é+ B n C
Vo (—p)(—p2)s s s—p1 S—p2

_AG = p)(s —p2) + B(s —pa)s + C(s — py)s
(s —p1)(s —Dp2)s

P1D2

s=0: p1p2 = A(s —p1)(s — p2) A= =HO)=1
(s —pI(s —p2)|,_,
D2 P1
S = . = B b B = C =
P1 P1D2 (p1 — P2)P1 pL — Py T
Y(s 1 B Cc t
()=—+ + &=1+Bep1t+Cep2t
Vo S S—p1 S—Dp2 Vo \ J

Y
Transient response
(decaying exponentials)

B. Murmann EE101B - Spring 2017 - Chapter 9 12




= Consider the special case where |p,| >> |p4], i-e. p; is a dominant pole

B = b2 ~ 1 C = p

Pl—Pzz P2 — D1

y©)
Vo

system, with a time constantt = —1/p;

B. Murmann EE101B - Spring 2017 - Chapter 9

150

=1+ BeP1t + CeP2t = 1 — eP1t

The step response approaches the same result we saw for a single pole

Partial Fraction Expansion for Coincident Real Poles (Q = 0.5)

Y(s) _ p* A B, B, A(s — p)?

+ B;(s —p)s + Bys

Vo G-pEs s s—p G-p?

s =p: p® = Byp B, =p = —w,
s=1: p?=0-p)2+B(1-p)+p
Y(s) 1 1 wo .
Vo s s+wg (5+wg)?
t
y® 1— (1 + wot)e @ot
Vo

“Critically damped response”
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(s —p)?s

B]_:_l

1 _t—at
(s+a)?| €




Step Response for Real Poles

17777777777777777777777777777777777777777777777777; ________________________ iy
P ‘_,-"'----
0.8 ’;.f“”” .;;(“f' ”””””””””””””””””””””””””””””””””””””” n
/.’ "_r
K4 Sd
/’ //
06 ,, /"‘,
,,,,,,,,,,,,,,, N - HAiiii e .—---_- il N -
—~ I' /”
fandt Ay
> l'l ./
‘i /
s
,,,,,,,,, R R
0.4 [
1
i |
0.2t e e Q=0.3
‘ N Q=0.4
| | —Q=0.5
0
0 5 10
to,

» The critically damped case (Q = 0.5) corresponds to the fastest possible
settling without overshoot; the case for Q < 0.5 is called overdamped
B. Murmann
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Partial Fraction Expansion for Complex Conjugate Poles (Q > 0.5)
= Essentially the same algebra as for district real poles, except that we are
dealing with complex conjugate roots

Y(s) 1 B B* * * .
(s) _ N : B=—P _—_ P ___|pese
Voo s s—p s-—p p—p* 2-Im(p)

t .

&=1+Bept+B*ept

Vo

j6

_1 e]

e /o
- + -
s—(at+jwg) s—(a—jwg)

= 2e% cos(wgqt + 0) u(t)

y(t)

= 1+ 2|Ble*cos(wyt + ¢)
0

a = Re(p) wq = Im(p)
B. Murmann

¢ =B
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— _ﬂ — 7 2 _ — _ﬂ 2 2 _ —
p =50 (1142 - 1) Pl = — 55 V12 +407 — 1= wq
a = Re(p) = 55 Jo
Envelope decay time constant
Approaches zero for high Q p jwa

.:; \\\\\ w 0
i
1 Lbo20
wa=Imlp) =0 15450
p* X
Damped frequency
Approaches w, for high Q

B. Murmann EE101B - Spring 2017 - Chapter 9 17
Final Result — Step Response with Complex Poles
t Wy -Yol 1
&=1——Oe 2Q sin |wgt + acos | =—
Vo Wgq 2Q
2 I I I I
15 N - P
- i i i i
2 A T i/\ : :
R e
| S ‘ ‘ : 3
051 - ‘7’%(!:"3* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
72 S N S A S S Q=0.5
',}' """" Q=1
\ \ | —Q=3
0 \ \ \ \ \ \ \ \ :
0 2 4 6 8 10 12 14 16 18 20
to
0
B. Murmann
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2
150yttt iy *
>
2 1 At
e |
os| || WAV Y f
0 10 20 30 40 50 60 70 80 90 100
to
0

B. Murmann
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0S [%]

Percent Overshoot as a Function of Q

_ T

0S = 100% - e V4@*-1

100

B. Murmann
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Same Circuit with Negative Resistor
100

50

[ IR T S N S R N R R
0 10 20 30 40 50 60 70 80 90 100

tmo

» The real part of the poles becomes positive (poles in the RHP); the
sinusoid grows exponentially

= We’'ll get back to this when we talk about oscillators...
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Chapter 10
CS Stage Frequency Response

Boris Murmann

Stanford University

Reading: Murmann, Sections 3-2-1, 3-2-2, 3-3-1, 3-3-3, 3-3-4
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What is the Bandwidth of this Circuit?
Vb

Rp

Vourt

Vs

Vs _-|T-_ |
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Intrinsic Gate Capacitance of a MOSFET (Triode Region)

Gate (G)

I 1/2Cye
Source (S) ’ V‘//4 ’ Drain (D) ¢

¥,

i A "

tOX ==

+ * + &———1
n Channel n 1 /2 Cgc

B. Murmann EE101B - Spring 2017 - Chapter 10

Transition to Saturation

Saturation 2/3 WLC,, 0

» The gate-drain capacitance goes to zero due to pinch-off
— The channel charge becomes independent of the drain voltage

» The gate-source capacitance is less than WLC_, since one end of the
inversion charge “triangle” is pinned

— The factor 2/3 comes from the geometry of the triangle

B. Murmann EE101B - Spring 2017 - Chapter 10




Circuit Model with Intrinsic Capacitance

VDD

_ Vout (S) 0. R
v5(5) gmfip "7 + SRsCys

H(s)

B. Murmann EE101B - Spring 2017 - Chapter 10 5

Extrinsic Capacitances

Fringe Electric

Field Lines Gate ’
Source i

v W

i n+ F—— T T
—— “sb alllny an0gs) —> l~— | Depletion
| Overlap Ly, Overlap Ly, ot Region

= Capacitances due to gate overlap and fringe capacitance, as well as
(reverse biased) drain and source junctions

» These capacitances are classified as “extrinsic” since they are not
fundamentally required for the MOSFET to function
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MOSFET Model with Extrinsic Capacitances

G . ® | * D
P i
Vgs = Cos ImVes
S _ —=o
= Cp =0 == Cop = Cap
B ® ® o~
B. Murmann EE101B - Spring 2017 - Chapter 10
Analysis with Extrinsic Capacitances
Cod
o Il
Il
Rs
+ +
Vs Vgs T Cgs ImVys ¢ RD T Cdb Vout
o | o
|
+ +
Vs /R Rs ImVgs ¢ Rp T Cib  Vour

B. Murmann
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= Writing KCL at the circuit’'s two nodes and solving for v, /vs gives

C
_ o294
Vout (S) L=s Im

(s) () Imfo T4 bis + bys?

b, = CgsRs + ng (Rs + Rp + gmRpRs) + CapRp

b, = RsRp (Cgngd + Cgscdb + ngCdb)

= Pretty messy!

= Only thing we can see clearly at this point is that the circuit has a RHP
zero at high frequencies
— What causes this zero?

» Let’s plug in some typical numbers to see what this response looks like

1
gm = 1mS,Rs = R = 10kQ, Cys = 10pF, Cyq = Cqp = 1pF f, = Eé]—m = 159MHz
gd

f [HZ]




Observations

= The circuit has two real poles that are quite far apart
— Alow-Q system

1-2 1-2
H(s) =G - =G-
() 1+ bys + bys? 145 +£
woQ w3
1 Mrad \/b_
=—=121.82 V2
Wy \/b_z sec Q_b_1_0199

(0]
Q

B. Murmann EE101B - Spring 2017 - Chapter 10

The Dominant Pole Approximation

= |f all we want to know about the circuit is it's 3-dB bandwidth, it is clear
that both p, and z are irrelevant

= Given |p,| >> |p1|, we can approximate the denominator as follows

1 1 1

2

(3] s e (e A
P1 P1 Plpz b1 D1D2
1 N 1
1+b15+b252_1_i+ s?
P1  P1DP2
1 b,
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Resulting Bandwidth Estimate
= All we need to estimate the bandwidth of this circuit is b,!

1

|H(s)|$=]'27ff3d3,actual = ﬁ = f3dB,actual= 736kHz

736 — 692

11
f3dB,estimate = Eb_l = 692kHz Error = T =—-5.9%

» Pretty good, especially given that it is very painful to solve for the exact
corner frequency

* Important question at this point: Is there an “easy” way to compute b;
without grinding through KCL?
— Yes! We can apply the method of open-circuit time constants (OCTC)
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Chapter 11

Open-Circuit Time Constant Analysis

Boris Murmann

Stanford University

Reading: Murmann, Section 3-4

B. Murmann EE101B - Spring 2017 - Chapter 11

Open-Circuit Time Constant (OCTC) Analysis

Also called “Zero-Value Time Constant (ZVTC) Analysis”
Developed in the mid 1960s at MIT

A step-by-step circuit analysis method that allows us to determine b, (and
only b,) without solving for the complete transfer function

Here's how it works

— Remove all but one capacitor (C;)

— Short independent voltage sources

— Remove independent current sources

— Calculate resistance seen by capacitor (R;,) and compute 7;, = R;,C;
— Repeat above steps for all remaining capacitors in the circuit

— The sum of all 7;, equals b,

H(s) = Ns) b —Z o =
S _1+b15+b252+b353+... 1= Tjo —3dB—b1
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Verification for an Arbitrary Three-Port Network

= Consider a linear active circuit containing only capacitors as energy
storage elements

= The math can be easily extended to N ports

iz

+Vy —
C,
i1 = (g11 + sCVy + g12V2 + g13V3
Linear active .
. + | network without + Iy = g21V1 + (922 + 5C2)V5 + Gasvs
Iy Vy energy storage and C V3 i .
all independent Co I3 = g31V1 + g32V2 + (gs3 + sC3)v3
sources set to zero
iy g11 +sC; 912 913 (21
| = 921 g2z + sC; 923 V2
i3 931 932 g3z + sC3| V3
L Y J
G

B. Murmann EE101B - Spring 2017 - Chapter 11

* As an example, say we declared port 1 as our input (and i; as an
independent source) and v; as our output

* How can we find the transfer function v,/i,?

= One way is to use Cramer’s rule

g11 912 Iy
vy = —det(G?’) = A5 G3=1921 Y2z +sC; O
det(6) A 931 932 0

vz _ Some Numerator
i det(G)

» Key take-home: The denominator of the transfer function is given by the
determinant of the network matrix

— This means that we should be able to find b, from the determinant of G
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g11 +sC; 912 913

A= 921 g22+SC2 923 =k0+k15+k232+k353 =k0(1+b15+)
931 932 g3z +sC;3
ky
by ko 0 €1=C2=C3=0

How to find k;? Expand determinant by each row to find contributions from each C;

kl = h1$C1 + thC2+h3SC3

921 Y922 +5C;
g31 932

921 923
g3z1 Yz3 +5C3

g22 +5C; 923
932 g3z + sC3

A= (g11 +56y) 12 + 813

= h1: All
C2=C3=0

ki = Ci1A11lcy=ca=0 + C28221c,=c;=0*C3433l ¢, =c,=0

B. Murmann EE101B - Spring 2017 - Chapter 11 5
kq Agq Azz Azz
1 1 2 3
ko A lc;=0 A lc;=0 A lci=0

» Finally, note that the terms that multiply the capacitances are really just
the resistances looking into the respective ports with all capacitors
removed

» To see this, apply a test current iy, leti, = i; =0, C; = C, = C3 = 0 and
compute Ry, = v1/i;

A, Ay i1 912 913
v == ilT A =10 gz2+sC 923 = 1011
0 932 g3z +5sC3
_n_An R —Ui_fu
7T A o=, 7 A om0

by = Ci1R1, + C3Ry, + C3R3,

B. Murmann EE101B - Spring 2017 - Chapter 11 6




Application to Our CS Stage Example

Cyd
|| i
—\\V\/ I
R
+ +
Vs C—D Vgs T Caos ImVes Ro Cab  Vour
\ 4
» Three capacitors, so we need to run three OCTC calculations
B. Murmann EE101B - Spring 2017 - Chapter 11
Calculation for C
—AN———
Rs
+ +
Vgs = Cos ImVes Rp Vout
\ 4
Tgso = Rngs
B. Murmann
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Calculation for C

S
+ +
Vgs ImVes Ro Cab  Vour
Tabo = RpCap
B. Murmann EE101B - Spring 2017 - Chapter 11 9
Calculation for C 4
Cod
o ||
—\\V\/ ] ]
Rs
+ +
Vgs ImVgs Ro Vout

» Result is not obvious at first glance

» Must go back to first principles
— Inject a test current, measure voltage
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It

Vgs ImVgs ¢ Rp Vout

*—

Ut = Vygs + Rp (gmvgs + it) = itRs + Rp (gmitRS + it)
v
Rgao = l_t = Rs+ Rp + gmRsRp Tgdo = (Rs+Rp + gmRsRp)Cya
t

Riett * Reight + ImRiertRright

B. Murmann EE101B - Spring 2017 - Chapter 11 1

Putting it All Together

by = Z Tjo = Rngs + (Rs +Rp + ngDRs)ng + RpCap
1
w_ = —
3dB b1

= Same result we got from the full KCL-based analysis of the CS stage
— But without the pain of doing the full-blown analysis

» Another nice feature of this analysis is that we can inspect the circuit
nicely for potential bottlenecks

— Using the previous numbers, we see:
gm = 1mS,Rs = Rp = 10kQ, Cys = 1pF, Cyq = Cqp = 0.1pF

Tgso = RsCys = 100ns Tapo = RpCqp = 10ns Tgao = (Rs+Rp + gmRpRs)Cyq = 120ns

negligible most significant
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A Closer Look at 74,

= Even though C, is relatively small, the associated time constant is the
largest in the circuit — what’s going on here?

= The issue has to do with the so-called Miller effect
| 1
; “ sC

Y 1 |f‘>

I
Ic = SC(Viest — AvViest) Vtc . =sC(1-4,) = §Ceq Ceq = C(1-4,)
es

= If A, is negative, the capacitance is seen “amplified” by 1 + |4,|

= This effect is studied in much more detail in EE114

B. Murmann EE101B - Spring 2017 - Chapter 11 13

Important Notes on OCTC

The key advantages of this method are
— It provides a shortcut for finding the -3dB frequency of a circuit
— It provides us with insight about the limiting time constants!

Whenever you apply the OCTC method, it is important to remember the
assumptions for which it is accurate

— The circuit has a dominant pole and no zeros nearby
— The circuit does not have any high-Q complex poles

Interestingly, when these underlying assumptions are not precisely met,
it may still be “OK” to work with OCTCs

— See examples on the following slides

A common pitfall has to do with AC coupling caps or bypass caps

— Meant to be “shorts” at high frequencies, and do not degrade the
signal bandwidth

— Simply ignore such caps in your OCTC analysis

B. Murmann EE101B - Spring 2017 - Chapter 11 14




And Finally...

Open Circuit Time
Constants do not

(necessarily)

correspond to poles!

Example: Circuit With Two Identical Poles

—AAM—

? L 2
R
+ +
Vs @) v = C gnW% <¢> é R =—C v
\ 4 \ 4 \ 4

4

» Exact calculation of the -3dB frequency

vo(s) _ ng i _ 1
ve(s) (1 +sRC)? V2 14 (w3qgRC)?
_VV2Z-1 064

@saB = pr T RC




= On the other hand, running an OCTC analysis gives

1105

W3dB =5 T RC+RC_RC
0.5 — 0.64

Error = 05 =—-22%

= Observations
— The OCTC result is conservative; the actual bandwidth is somewhat
larger. This tends to hold in general, and engineers like this!

= Note that in this example the OCTCs correspond to the pole frequencies
(the circuit has two poles at -1/RC)
— This is rarely the case in more interesting circuits

— In any circuit with a capacitive loop, the OCTCs do not correspond to
the pole frequencies

B. Murmann EE101B - Spring 2017 - Chapter 11 17

Example: Circuit with Capacitive Loop
C

. Il . . °
I
+ +
VS Vx C ngX % R TC Vout ng = 2

il

Zr=b1=RC+RC+ (R+ R+ gnR?*)C = 6RC

b, = 3(RC)?

1 2 0.18
1+b1$+b252=0 ﬁpl'zz—ﬁ 1i\/; plg—ﬁ

» The time constants do not correspond to the poles

» The OCTC bandwidth estimate (0.167/RC) is again somewhat lower
than the actual bandwidth (~0.18/RC)
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Example: Miserable Failure of OCTC

+
Vs C_ § R Vout
\ 4
B. Murmann EE101B - Spring 2017 - Chapter 11 19

Example: Common-Drain Stage

VDD

——

R
Vv A — [

VouTt

R
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Handy Formulas

Rp + Rg
s =177 5
1+ R
Rgd Rp Imis
N . _ BotRs
Re 957 14 gmRs
VVV-}-—' + Ras
/‘ Rgd =RG +RD +GmRGRD
4 RgS
T Rs __9m
™ 14 gnRs

(Note: These expressions neglect finite r, and backgate effect)

B. Murmann EE101B - Spring 2017 - Chapter 11 21

Example: Coupling Capacitor

Repas z Ry 2 Re g SZ LED

\IDD CDE: Rhiu Vou{?
® v L I —5 ™
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Chapter 12

Basic Analysis of Opamp Circuits

Boris Murmann

Stanford University

References:
Ulaby & Maharbiz, Chapter 4
“Op Amps for Everyone” by Texas Instruments, Chapter 3

B. Murmann EE101B - Spring 2017 - Chapter 12

Ray Stata. Vice President
Analog Devices, Inc., Cambridge, Mass.
(Electromechanical Design, Nov. 1965)

The term “operational amplifier” was orginally coined
by those in the analog computer field to denote an am-
plifier circuit which performed various mathematical op-
erations such as integration, differentiation, summation
and subtraction. Although operational amplifiers are still
widely used for analog computation, the application of
these devices has been so vastly extended that the termi-
nology is now archaic. Today, the widest use of operational
amplifiers is in such applications as signal conditioning,
servo and process controfs, analog instrumentation and
system design, impedance transformation, voltage and
current regulators and a host of other routine functions.

Non-linear applications of operational amplifiers have
also been added to the growing frontier of analog am-
plifier technology. In this category, operational amplifiers
are used for voltage comparators, A to D and D to A
converters, logarithmic amplifiers, non-linear function gen-
erators and ultra-linear rectifiers, to name only a few
applications.
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Motivation

Voo
= We know how to build basic gain
Rp stages
= But, none of the circuits we have
Vour looked at so far have “precisely”
controlled characteristics
!: = Parameters like g, are not well
R defined and cause large
s + . e
Vs variability
Vin
Vs - . This.car) be a problem for many
. applications

- — Let’s look at an example

Ay, = —gmRp

B. Murmann EE101B - Spring 2017 - Chapter 12 3

[ 2o |
[ | [ ]

[omss -umi

Strain Gauges Aftachment points to

Printed Circuit Board
completing Wheatstone

Holes drilled in Strain
Bridge circuit Gauge Load Cell

http://www.phantomscales.com/ohaus/valor1000.php
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Full-bridge strain gauge circuit

A

strain gauge strain gauge

(stressed) (stressed)
Precisely —~ \
regulated — y V)
reference — ¢/ -t
voltage
strain gauge strain gauge
(stressed) (stressed)
“Wheatstone Bridge”
R+AR R-AR AR
“\T2r "2 )Vrer =g Vrer
http://www.allaboutcircuits.com/vol_1/chpt_9/7.html
B. Murmann EE101B - Spring 2017 - Chapter 12 5
Typical Readout Circuit
Signal Conditioning Front-End
VEX

Sensor

I3

B. Murmann

Digital

VinADC In’face

“Instrumentation Amplifier”

http://www.planetanalog.com/document.asp?doc_id=527950
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Bio Instrumentation Ampilifier IC

Voakage

P
— o
L)
ECoG/EEG Electrodes 4 5
\\/ ly Low Noise 9
Amplifier DsP Vref Vref
-4V (Gain100) E— ADC Biomarker
O Bandpass ! Extraction
[§ (0.5-100H2) §£
Vpolrization| § ) llgut
Sa?
ci Chp Cfb pPower
Vin- 7‘¥H i Chopper Amp Output Buffer
e il (x5, 2-pole LPF)
< VA <
Ci
6 Reference Vin-
minus ||
Cfb

Switcap
Integrator
F

[Denison et al., A 2uW 100 nV/rt-Hz Chopper-
Stabilized Instrumentation Amplifier for Chronic
V

Measurement of Neural Field Potentials] ref Vref [ﬁ'cw]
Neural Field Potentials (NFP)
EEG (Surface) ECoG (Sub-dural) Local Field Potential Single Units Arripilfiar
Medtronic N | > I i —
3cm 0.5cm 1 mm 0.2mm (Amm
0.5-50 Hz 0.5-200 Hz 0.5-200 Hz 100-10 k Hz
0.5-10pV 5-100pV 10p-1mV 10p—1mV
B. Murmann EE101B - Spring 2017 - Chapter 12 7

Fifth Order Lowpass Filter

C;
C, 7
]l Il
1 I
G <
Ll Pl
| k]|
Pl o
° |
I I
Vou
Vrnul'

R2
—AAN—
]
1.
I
j*— ‘
+
1
e
Ll
RZ
AN,
R2
R2
A
R/2
A\
R2
R
A
o
Y
4
1
il
Ry
—~AN—Vbp
R2
R
R
R2
R,
“AM—Dp.

[S. Chatterjee et al., “0.5-V analog circuit techniques
and their application in OTA and filter design”]

Biasing Circuits
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Typical (Discrete) Operational Amplifier

R1 R2 N5
IN- —
i; - ]JW ) E— -HPS PGH'
P1 P2 al >
IN+ —
R5 0,1
* NN I\—.
— . ouTt
| o —
— - N3 - | | 10UT ] 1 sl Voo
I )
| Leg PR ] < 1IN-[] 2 7[] 20UT
N1 N2 i N4 N6 N7 1IN+ [ 3 6 ]2|N—
R3 D1 R4 D2 R7 GND [ 4 5 ]2|N+
L 3 L 2 T L * @
GND
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Key Characteristics
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
Vs
FREQUENCY
107 T
Vpp=5V
106 [~ RL=10kQ
= Tp =25°C Large DC gain ~20,000
£ 105 0°
55 TN\~ .
ER L, * Huge input
a3 10 30° ; 12
g \\\AVD . impedance ~102Q
2E 103 60° £
2% N\ \\ g = Small output
o 0 .
5 £ 102 ~ — o0 £ impedance ~300Q
A > Phase Shift \\
> 101 120°
< \
1 \\ 150°
0.1 180°
10 100 1k 10k 100k 1M 10M
f - Frequency - Hz
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Equivalent Circuit for Low-Frequency, Small-Signal Analysis

SO+

[Ulaby & Maharbiz]

Op-Amp Characteristics

Parameter

Typical Range

Ideal Op Amp

e Linear input—output response | Open-loop gain A

e High input resistance Input resistance R;
e Low output resistance Output resistance K,
e Very high gain Supply voltage Ve

104 to 108 (V/V)
10 to 1013 @
1101009
5t024V

0o
oo Q2
0Q
As specified by manufacturer

B. Murmann EE101B - Spring 2017 - Chapter 12 1"
Large Signal Transfer Characteristic
Vo
A
i T Vee
‘z+ ! ..
) ! Positive
1 1 saturation
p 3 \ 7 satu
— Vi o
o— g
+ \6 KEp N : region
+ o———1- ~ o ! - —
= 21 + : 0 L
n 1
v 1 . Negative !
P Vi _ |- + Vo saturation i
—Vee = Ve region |}
o o o -
- Linear range
[Ulaby & Maharbiz]
12

B. Murmann
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First Circuit Example

For Voe=10 V., A=10% R, =10" Q. R,=10 <.
R = 80k, and R = 20k,

Vee=10V
\T KCL at Node a:
+

[Ulaby & Maharbiz]

\"p

2 i 4 . Un —Vp  Uo — A(Up — Up)
R; N — 0 Vo -
A C) " @:\A ) R R,
= 3 KCL at Node b:
N Ui Vn Ve o
: = 1 R; R> R,
~<— Feedback Vp =y .
fe
SRy
= L
ARi(R + R RH)R
G — & _ [ i(R1 + Ry) + RyR,] = 4.999975
vs  AR>Ri + Ro(R2 + Ri) + R1R> + Ri(R; + R7)
B. Murmann EE101B - Spring 2017 - Chapter 12 13
Ideal Op-Amp Approximation
ip="0
—
Vp O/ + B
0’;/ . Ri= ) (R, =0) . Ideal Op Amp
S l“__>0 _ l ° e Current constraint ip=1inp =0
n e Voltage constraint Up = Up
e A =0 Rl = RO = 0
o I 0o [Ulaby & Maharbiz]

* The previous analysis was far too messy to give any meaningful insight

» |dealizing the op-amp makes our life much easier, and lest us quickly
derive the first order behavior of any op-amp circuit
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Example Re-Visited

R ip =0
VWA
Vi [n =0
O
[Ulaby & Maharbiz] i

(o Jbu
f

v,  80kQ +20kQ

v, 20kQ

B. Murmann EE101B - Spring 2017 - Chapter 12

KCL at node v,;

Laundry List of Basic Topologies

» Non-inverting amplifier (previous example)
* |nverting amplifier

= Summing amplifier

» Differencing amplifier

= Unity gain buffer

= Instrumentation amplifier

» |ntegrator

= Differentiator
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Inverting Amplifier

At node v,

sz Feedback R R¢

R, 1 in=0
VWA O =
V
o Vo v, =v =0
+ vy =0 g
Vel _ o———> | +
Ry
Vo Ry
— _— C— Gi= ==
Us Rq
[Ulaby & Maharbiz]
B. Murmann EE101B - Spring 2017 - Chapter 12 17
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Advanced Version!
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Summing Amplifier (Inverting)

Summing point

Ry
R> \
)’

AA%
VWA
1 ’

f
VWA

Vo

Original circuit

[Ulaby & Maharbiz]
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Difference Amplifier

VWA — 0= N
i V=0 Vo
R3A 3 - lp = i —0
. At node v,

Up — V] Up —

R, R>
Atvp, iz +ig+1p, =0, 0r

Vp — V2 Vp
+ —
R3 Ry

+ip=0.
[Ulaby & Maharbiz]

vp = vy, we end up with

V
+ 2 4+iy=0.

(4.38)

(4.39)

Upon imposing the ideal op-amp constraints i, = i, = 0 and

D o
R34+ R4 R, Ry

B. Murmann EE101B - Spring 2017 - Chapter 12
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Unity Gain Buffer

Input circuit

[Ulaby & Maharbiz]

B. Murmann EE101B - Spring 2017 - Chapter 12
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Instrumentation Amplifier

+
i Op
Amp 1 Ry
» VWA
R] l‘.,l RS J
Vw‘ ‘; VM" - =
cain control £R Op .
Gain contro ) Ry Yo, Rs Amp 3 —0V,
AA o VWA o +
Op Ry
‘ Amp 2
1% + [Ulaby & Maharbiz]
Ifweset Rl = R3s = Ry = Rs =R
R, | R +R,+R,
vo = (VZ - vl )
R, R, 2R
Vo= |14+ — ] (v2—v1).
R>
B. Murmann EE101B - Spring 2017 - Chapter 12 23

Tricky Feedback Networks

[Op Amps for Everyone, TI]

Vour

ViN
= R4 Rz RTH
|:> —— VTH
R.R -
Y R, + Ry + é 3 -
_ Your 4
Vin R,
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Integrator and Differentiator

(@)

I R
1 WA
v. R v. ©
m—vvv\_ Vout " | | Vout
V, 1 V
out - _ out — —SRC
Vin SRC Vin

» |ntegrators are a fundamental building block for filters
— More later

B. Murmann EE101B - Spring 2017 - Chapter 12
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First Order Active Lowpass Filter

Vour
1
Lisc
Vour _ Re"°F _ Re 1
Vin R; R;1+SsRpCr

B. Murmann EE101B - Spring 2017 - Chapter 12
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Cool Tricks: Eliminating “Crossover Distortion”

Crossover distortion

(Y%
< \ +V
/( )
ANV
S
Cutput -~ Output
//
Input Input
Load Load
& -V
-V

http://en.wikipedia.org/wiki/Crossover_distortion

B. Murmann EE101B - Spring 2017 - Chapter 12 27




Chapter 13
Feedback Analysis of Opamp Circuits

Boris Murmann

Stanford University

References:
“Op Amps for Everyone” by Texas Instruments, Chapter 6
Maloberti, Chapter 12 (see e-book link under reading material)

EE101B - Spring 2017 - Chapter 13

B. Murmann
Back to Our Example
For Voe=10 V, A=10% R, =10" Q, R,=10 , laby & Maharbi
Ry = 80 kG, and K5 =30k, [Ulaby & Maharbiz]
Ve =10V
B |+ KCL at Node a:
i Ry i +
Vg Ct) . B g é,q(vpvn) o Ul'l - UO _ vO - A(vp - Un)
— Rl RO
<:R|
. KCL at Node b:
—~— Feedback Vp =V ‘l)ig vn - vp _I_ U_n _I_ v]’] - UO _ O
Ry R; R> R
+ L
v [ARi{(R| + Ry) + R>R,]
G=—= ‘ . = 4.999975
vs  ARRi + Ro(R>+ Ri) + RiR> + Ri(R1 + R»)
. 4999975 -5
Gain Errror: € = — = -5-107® = -5 ppm
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Motivation

» The analysis on the previous page is correct

— Butitis very tedious and does not provide any interesting
engineering insight

* |n the following treatment, we will look at a more systematic way to
analyze the effect of finite gain for this specific example

— The circuit is interpreted as a feedback system

* Then, we generalize this approach for use in arbitrary opamp feedback
circuits

B. Murmann EE101B - Spring 2017 - Chapter 13 3

Circuits with Negative Feedback

= First proposed by Harold S. Black, 1927

Vin Vout
A |

B Vour = AWin — FUoyut)

Vo A 1T

A = = = =
L v  14AF  F14T r=ar

Always a positive quantity for
negative feedback

ACL|T_)OO = f = Acpi

= Key result: When loop gain (T) is large, the closed loop gain (A;)
approaches the ideal closed loop gain (4.,,;), which is equal to 1/F

B. Murmann EE101B - Spring 2017 - Chapter 13 4




Identification of A and F

Vout
A
_ Yy R, ||R] . R
F= = =
Vour R2lR7+Ri R+ Ry
F
o A_Vout_G Ry + Ry||RY ~
\I Un Ry + Ry | |7+ BS
v s
é) : A 1 :
- RS Vo
"o Va _ <:>| G(v,v,) . .
L Key point: In typical opamp
o circuits, R; and R, are negligible
Lt compared to the resistances
— ek vow ; used in the feedback network
Ry
£ L
B. Murmann EE101B - Spring 2017 - Chapter 13 5

Better: Think Directly in Terms of Loop Gain

Minus sign due to “-” at

A Vout summing node
= A +
Vr Vt
- D.
L T=AF = ——
= = Vg
F |-

B. Murmann EE101B - Spring 2017 - Chapter 13 6




Ve =10V

L - V. V Note: To find the loop gain,
r t s
& k, S it is best to break the loop
' W | G(v,v,) at the opamp’s voltage
= controlled voltage source.

This approach preserves all
of the node impedances in
the circuit.

~+— Feedback Vh = Vn

— T —
3

'll_v.?a

T _Ur_ RalIB = 6ﬂ:zooooo
v Ry||[Br+ Ry +Bg~ ~ 20kQ + 80kQ ’

(Exact value: 199,600, above approximation has 0.2% error)

B. Murmann EE101B - Spring 2017 - Chapter 13

Closed-Loop Gain Calculation

1
Ao (1-7)-Acr 1

AcLi

T 1
Act :ACLIH—TEACLI 1—? €

IR

» Note that we already know A.;; from the ideal opamp analysis
— Infinite opamp gain automatically implies infinite loop gain

Ay = _200000 4999975 €= L = S5ppm
L= 14200000 ~ 200,000

= Same result as before, except that we did not have to go through a
painful nodal analysis
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What if the Opamp Gain Changes?

Ar =5 200,000 = 4.999975
=" "1+4200000 ~
= Cut the gain in half:
A = 100,000 = 4.999950
=~ 1+100,000
» Double the gain:
A = 400,000 = 4.999988
¢ =* 14400000 ~

The closed-loop gain is immune to large variations in opamp gain

» The voltage gain of the overall circuit is primarily defined by the divider
ratio of the resistive feedback

— A quantity that we can control very precisely

B. Murmann EE101B - Spring 2017 - Chapter 13 9

Inverting Configuration

R,
IVV\’ Vln A Vout
Vin RZ -
Vout
-
F -
= |tis not immediately clear how to map this circuit into B

the block diagram representation
— Both resistors affect the input and feedback path

— Electronic components are not unidirectional, as
assumed in the block diagram (which has no
notion of impedance)

>

R 2

= We can still try to make this work using
superposition...

B. Murmann EE101B - Spring 2017 - Chapter 13 10




Superposition

= A
4—“|
= —AF
R‘I
—’\/\/\/—“l
V. R2
AN vy, — _ Ry G
R{ + R,
R1 Vtest
AVAYAY;
~ AF=——2 g
'”—’V\/\'—‘ Vout - R, + R,

(Note: Same loop gain as non-inverting circuit!)




Result

R, G
a=__ B . P AP RART R
R, +R, A __R_ . R
Ri+ R,
Vin Vout
A
F

= From the KCL analysis with infinite amplifier gain we already knew Ay,
and this has to be equal to 1/F in the assumed representation

= Beyond that, all we need to know is the loop gain to compute the

deviation from ideality
— We do not really need to know what A is...

Comparison

R, R
YW\ WA
Vin R2 R2
—W— Vout I—M e
-t Vin +
R Rk
R, + R, R, +R,
Ry Ri+ R,
Acpr = _R_ CcLI = R,
Vin Vout
A=T/F

Model valid for -
both topologies:

F=1/AC|_|

Vout




Methodology for Opamp Circuit Analysis

» Find A.;; using nodal analysis, assuming infinite opamp gain
— Often this is done by inspection, or simply by remembering the result
» Find the loop gain to compute the deviation term

— This is usually straightforward, especially when there are ideal
breakpoints that do not alter the impedance loading around the loop

— The best breakpoint for a voltage amplifier is right at the controlled
voltage source (see example on slide 7)

= Done!

B. Murmann EE101B - Spring 2017 - Chapter 13

Advanced Analysis Frameworks

» Return ratio analysis
— Proposed by Bode

— Very similar to the flow we have followed, except that it includes
extensions to handle feedforward through the feedback network
» Relevant when the forward amplifier has high output impedance
* Not significant in the examples we consider in EE101B
» Two-port analysis
— Proposed by Black
— Map the feedback network onto one of four topologies
* Voltage-voltage, voltage-current, current-voltage, current-current
feedback; depending on what the desired input/output quantities are

* Model the feedback network as an ideal two-port and absorb
impedance loading effects into a

— In my opinion, an overkill for gaining basic intuition about feedback...
— Have a look at Maloberti, Chapter 12, if you are interested
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Feedback and Port Impedances

» Feedback not only helps desensitize the circuit to amplifier gain
variations, it also lets us control/improve the port impedances

» We can calculate the port impedances of arbitrary feedback circuits
using "Blackman's Impedance Formula"
— Based on loop gain calculations
— Extremely useful and easy to use

1+ T(port shorted)
14 T(port open)

Zport = Zporto :

* Zporto IS the port impedance with the loop’s gain element set to zero

» T(port shorted) is the loop gain with the port under consideration shorted

= T(port open) is the loop gain with the port under consideration open

B. Murmann EE101B - Spring 2017 - Chapter 13

Example: Input Resistance of Non-Inverting Configuration

» To find R;;,o set the amplifier

or oy gain to zero
Rin =? .
—. | Rino = R;
_ é 3 M = ¢ 3, » To find T(port shorted) we
S @ G(vyy) short v, to ground and find T
Rl T(port shorted) = G Rz
. port shorted) = %R,
‘ b ‘R » To find T(port open) we leave
= o v, floating and find T
Intuition: Think Miller effect!
T (port open) =0
1+G R }_?{_ZR
Rin =R; - # = R; - 200,000 Increased by loop gain = huge

B. Murmann EE101B - Spring 2017 - Chapter 13




Output Resistance of Non-Inverting Configuration

Example:
» To find R,,;o Set the amplifier
=10V gain to zero
v |4 ROUt =7 Routo = R,
b

& =3 » To find T(port shorted) we

é) W |l W short v, to ground and find T

T (port shorted) = 0

~+— Feedback Vp =y
b

v, open and find T

i
T(port open) = G R
port open) = R 1R,
1+0 R, -
Rout = Ry - R, = 200,000 Decreased by loop gain = tiny

1+GR2+R1

B. Murmann EE101B - Spring 2017 - Chapter 13

y * To find T(port open) we leave




Chapter 14

Frequency Response of Opamp Circuits

Boris Murmann

Stanford University

References:
“Op Amps for Everyone” by Texas Instruments, Chapter 6
Maloberti, Chapter 12 (see e-book link under reading material)

B. Murmann EE101B - Spring 2017 - Chapter 14

Opamp Feedback Circuit Model

Vin Vout

T=AF

» Find F by analyzing the circuit with an infinite gain opamp. This yields
F =1/Ac.;, where A, is the ideal closed-loop gain.

» Find the loop gain T by injecting a test signal at a suitable breakpoint.
T = —v, /v, the ratio between return voltage and injected test voltage.

* The closed loop behavior is fully defined once F and T are known. We
often do not care what A is, but we can compute it using A = T/F.

A Vw1 T A
L™ v, F1+T 1+T
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Basic Examples

R4 R
YW YW
Vin R2 R2
—W— Vout I—W o Vout
— Vin +
4 R, A = Ri+ R,
= - CLI —
CLI R2 RZ
T K2 ¢ T R ¢
= —-- ' e ——
R, + R, (samel) R, +R,
A=TA e A=TA G
- CLI — Rl T R2 - CLI —
B. Murmann EE101B - Spring 2017 - Chapter 14 3
Frequency Response of a TLC272 Opamp
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT » At first glance this amplifier
vs ’
FREQUENCY seems to have two LHP
107 i poles
Vpp=5V .
106 [~ R_ =10 kO — One at low frequencies
3 Ta =25°C — One at high frequencies
e _ 105 0°
AN
52 104 30° Go
T 3 A - =
- \ NAvo - G(s) S S
@< 10 AN 60° = 1-—=)(1-=>
5% N~ 3 P1 P2
° = 10 ] 90° <«
13 Phase Shift \ .
S o AN 120° ) .
< \ » Let’s start by modeling only
1 N\ 150 the dominant pole (at low
\ frequencies)
0.1 : 180°
10 100 1k 10k 100k 1M (10M
@®,1  f-Frequency - Hz ®p2
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Loop Gain

= For both of the above circuit examples, we now have

R, G(s) = R, Go
R, + R, R1+R2(1_i>

P1

T(s) =

To

T(s) =

= T, is the DC loop gain

B. Murmann EE101B - Spring 2017 - Chapter 14

Closed Loop Gain

Ty
1 S
pogy ot 1@ 1 7 1 T,
cL(8) == = — = —
F1+T(G) Fq, To _ F( _i>
P1
1 T, 1 Ay 1
A (s) = = _
cr(s) F1+T0(1_ 5 ) 1+T0<1_ s )
p1(1+Tp) p1(1+Ty)

1

1
For TO >1 ACL(S) = Fﬁ
1——_
p1To
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jw

s-plane

X X o
1+ Ty)p p1

Feedback

= Applying feedback has increased the bandwidth by (1 + T,)
= But, we have sacrificed gain in the process, since Ac;y = Ao/(1 + Tp)
» Essentially, we have traded gain for bandwidth

= Also note that the circuit is stable, since the pole remains in the LHP

B. Murmann EE101B - Spring 2017 - Chapter 14

Bode Plot (Assuming T, >> 1)

Magnitude
Ao | A(s)
To
1 Acp(s)
F
NN w

Wp1,cL
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A = l T(s) . A(s) _|1/F for |IT(s)| » 1
c(s) = F14+T(Gs) 1+T(@)  |AG) for |IT(s)] « 1
Magnitud
agnitude )5 1 o<t
A L A®
IT(s)] T(s) = A(s)F
1
F Acr(s)
N

* The loop forces A, to be close to 1/F until it runs out of loop gain
— This is where the closed loop pole appears

B. Murmann EE101B - Spring 2017 - Chapter 14

Bode Plot of Loop Gain

Magnitude ITGwy,)| =1
TO Tow ~ Toa)pl _
1 +j—u1 Wy1
Wp1

Wy1 = Towp1 = Wp1cr

Wp1 To Wy

* The frequency w,,; is called the unity gain frequency of the loop or loop

gain-bandwidth product; it is approximately equal to the closed-loop
bandwidth
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Example (Non-Inverting Amplifier)

Ry
YW
R>
il - R{+R
I—MWW o Vout Agy = 2172 _ g9
Vin + R2

T(S) = mG(s) = OlG(S)

IT(s)l=1 = |G(s)| =10

» The closed-loop bandwidth corresponds to the frequency where the
opamp’s gain magnitude has reduced to 10.

B. Murmann EE101B - Spring 2017 - Chapter 14 11

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT

Vs
FREQUENCY
107 i
Vpp=5V
106 |- RL=10kQ
= Ta =25°C
£ 105 0°
s S N
£ER ., .
o :;_‘ 10 \ 30°
- \ NAvD pe
o £ 103 60° <
@ < \ 7
) g, o
5 S 402 ~0 o0° &
© = -— > &
-l O o
IQ> Phase Shift \\
1 0
Z 10 \ 120
N\
1 \ 150 wp1,cr, = 200kHz
0.1 v 1800

10 100 1k 10k 100k 1M 10M
f - Frequency — Hz
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Example (Inverting Amplifier)

Ry
YW
Vin R R
—W— Vout Aoy = =1 - _10
R,
T(s) = G(s) —G(s)

THI=1 = |6 =11

» The closed loop bandwidth corresponds to the frequency where the
opamp’s gain magnitude has reduced to 11

— Very close to what we had before, with slightly less bandwidth

B. Murmann EE101B - Spring 2017 - Chapter 14 13

Let’s Now Consider the Second Opamp Pole

T,
T(s) = 0
S
1+——|[1+—=—
( v1>< “’pz)
A()_1 T(s) 1 T, 1
WS =T ETTT(s)  F1+T, L O T oy, 1 =
1+ To)a)pla)pz a1+ To)wplwpz
ACLO
ACL(S) = S SZ
1 -
* woQ * wE

\/(1 + TO)wplpr Wy1

Wy = \/(1 + To)Wp1Wpz = JWy1 Wy / o
p2

(Upz

B. Murmann EE101B - Spring 2017 - Chapter 14 14




Maximally flat frequency response

Critically damped step response

= Key point: In a

practical amplifier design, the second pole must occur

beyond the loop’s unity gain frequency

B. Murmann

EE101B - Spring 2017 - Chapter 14 15

Ayp - Large-Signal Differential

Voltage Amplification

LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT

Vs
FREQUENCY
107 |
Vpp=5V ~ |Pu1 o 1 —
106 [~ R =10 kQ Q= Wpy 1_0_0'316
Ta =25°C P
105 0°
\
104 30° * Looks like we're OK with
\\\AVD - our example circuit
103 60° £ .
\ N » = Open questions
17
102 N~ — 90 g — What are the
Phase Shift N locations of the
101 \ 120° closed-loop poles?
: A\ 150° — What is the exact
\ closed-loop 3-dB
01 Y 1| e bandwidth?

10 100 1k

B. Murmann

10k 100k Oy 1 Mmp21°M
f - Frequency — Hz
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Closed-Loop Pole Positions (Q < 0.5)

—_% 1 — 402 Wy Wpr T Wy Wpp
PcrLiz2 = 20 (1i 1-4Q ) 20~ > = 2
Jjw
Feedback Feedback
(increasing T) (increasing T)
-------------- > : €
—X X——X% X o
p2 Pcrz | Pcra P1
O
B 2

» For Q = 0.5 (critically damped step response), the closed loop circuit has
two coincident real poles at approximately p,/2

B. Murmann EE101B - Spring 2017 - Chapter 14 17

Closed-Loop Pole Positions (Q > 0.5)

Feedback 4
(increasing T,) E
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Exact Closed-Loop 3-dB Frequency

Acro Acro w
_ ~ ~ - ul
Ac (s) = S 2 = S ) Wo = JWy1Wp Q= |—
1+—%+> 1+—+
woQ a)(z) Wy1  Wy1Wp2

= Note that for w,, — o, the closed loop response approaches the
expression we derived for a single pole feedback system

» To find the 3-dB bandwidth we need to solve this equation:

= Best done numerically...

B. Murmann EE101B - Spring 2017 - Chapter 14 19

= As expected, for large
wp2/wy1, the bandwidth
approaches that of a first
order system (w,1)

* The bandwidth is
maximum for the
maximally flat response:

®a48/04

Q — i Wy1
\/E wpz

IR

pr = Za)ul
W3gp = Wo = |/ Wy1Wp2

(Op /(D (l)3dB = (l)ul\/z
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A (0)l [dB]

= Bottom line

— If possible, design for a maximally flat response (w,; = 2wy, )
— Pushing w,, to higher frequencies is also fine (not much loss in BW)
— Definitely avoid placing the second pole close to or before w,;

» Peaking, bandwidth loss and significant step response ringing

B. Murmann EE101B - Spring 2017 - Chapter 14
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Unity Gain Configuration

Vout

Acu =1

Vin

T(s) =G(s)
T =1 = |6(s)|=1

= The closed loop bandwidth corresponds to the frequency where the

opamp’s gain magnitude has reduced to unity - larger bandwidth and
larger w,; than in the previous example
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LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT

Vs
FREQUENCY
107 i
Vpp=5V
106 - R =10 kQ
= Ta =25°C
= 105 0° .
25 e = Looks like we may
E % .
£ ::; 104 \ 30° be in trouble
S8 \ Nhvo _ & = Thesecond pole is
7 < 10 AR o now close to the
- - N\ . @ loop’s unity gain
L& 10 Y 90° £ fi
> Phase Shift requency
o N
> 101 120°
< \
1 ™ 150°
0.1 l 180°
10 100 1k 10k 100k 1M 10M
f - Frequency - Hz
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Zoom

10 120°

150°

180°
100 k 1M 10M

Wy (Upz

IR
—

Wpz = Wyq Q
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Discussion

» This opamp was skillfully designed so that in the worst case (unity gain
configuration) it still achieves a reasonable frequency and step response

» This is usually the case for “internally compensated” opamps
— We will cover the concept of frequency compensation next

= Question: Should the vendor of this part consider reducing w,,; so that
there is more “margin” and potentially less peaking/ringing when the

opamp is used as a unity gain buffer?

B. Murmann

EE101B - Spring 2017 - Chapter 14
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Chapter 15
Stability of Opamp Circuits

Boris Murmann

Stanford University

References:
“Op Amps for Everyone” by Texas Instruments, Chapter 7
Maloberti, Chapter 12 (see e-book link under reading material)

B. Murmann EE101B - Spring 2017 - Chapter 15

Motivation

» We studied the frequency response of opamps with one and two poles

— In both cases, the circuit is still stable with feedback applied, i.e. the
poles can never wander into the right half plane

= However, in the circuit with two poles we must make one of the poles
dominant to “tame” the Q of the closed-loop transfer function
— The second pole should occur at least 2-4x beyond the extrapolated
loop unity gain frequency (w,,)

» Unfortunately, many practical opamp circuits will have more than two
poles (and also unwanted zeros) in their loop transfer function, and this
can lead to an unstable system

» Let’'s have a look at a simple example with three poles
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Three-Pole Example

= Consider a circuit with three identical poles in its loop gain, and a
feedback network with a constant transfer function F

TO
()
_ T 1 T(s) 1 P, 1 T
T(s)=ASF=—"—5 Ac(s)== == == %
[1_sj FIeT(s) Fq,  To F(1_SJ T
P, [1_Sj P,
P4

» The poles of A (s) are therefore the solution to
3 s 3
s
1-=| +T,=0 1-=| =T,
( pJ ° [ DJ ’

B. Murmann EE101B - Spring 2017 - Chapter 15

(3]

$1 =Py (1 + %/T_o)
o, -, (1- T
s, (1o )

0=1-Re(3/T,e™)
0=1-3T, cos(60°) \

=T,=8

= Conclusion: A feedback amplifier with three identical poles is unstable
unless we limit the low-frequency loop gain to less than eight!
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Stability

= What we already know
— The most general stability criterion is BIBO
— An LTI system is stable if all of its poles are in the LHP
= Since the circuits we consider are LTI, we could (in principle) always
compute the closed-loop poles to check stability
— But this is very tedious, especially for systems with more than 2 poles

» Assuming that the system before closing the loop is stable, we can use a
simplified approach, called the “Bode Criterion”

A closed-loop system is stable if the open-loop
system is stable and the frequency response of
the loop gain has a magnitude of less than unity
at the frequency where its phase shift is -180°

B. Murmann EE101B - Spring 2017 - Chapter 15 5

Intuition
Vout
A — o
= A +
Ve Vi
T
F |-

= Suppose we inject a sinusoid into a circuit that has a loop gain magnitude of
1 and a phase shift of -180° at the sinusoid’s frequency

» Together with the minus sign at the summing node, the original signal v, with
the same amplitude and phase will return at v,

= We can close the loop and it will then sustain an everlasting oscillation, even
with v, removed - This is indicative of closed-loop poles on the jw axis
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IT(o)l [dB]

-1

ZT(jo) [deq]

-2000
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Bode Plot of T (s) for Three-Pole Example (T, = 8)
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[T(o)l [dB]

[deg]

3-100

ZT(

-2000
10

B. Murmann

Bode Plot of T (s) for Three-Pole Example (T, = 2)

o

10

Phase Margin

olo
p1
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Definition of Stability Margins

[T(jw)| dBA
1
M= o)
Gain margin ‘ (J(D)‘ w=0180
0 O | ~  Typically want GM > 3...5
oy w (log scale) ypically wan -
]
Phase[T(jo)] i { |
|
(O
0 — - -
L w (log seale)  |PM =180° + Phase[ T(jo) ]
=G = I I 0=,
|
—180° p———— Typically want PM > 60...70°
—270° - Phase margin
—360° |-
B. Murmann EE101B - Spring 2017 - Chapter 15 9
Another Look At Our TLC272 Example (A¢,=10)
107 i
Vpp=5V wp1,c, = 200kHz
106 - R =10 kQ ’
= Ta =25°C
£ _ 105 0°
) 1
58 D 0= 2= |—=0316
.3_: © 4 ° w 2 10
6 g 10 \ 30 P
23 \ Nivo -
2 E 443 o £
3 < 10 \ \ 60° =
% % 102 — 90° g
° N : ) o o
_';g e e [ NS & PM =180°—100° = 80
z 101 120° _
Large phase margin « Low Q
1 \\ 150°
0.1 A 4 180°
10 100 1k 10k 100k o 1My 10M

B. Murmann

f - Frequency — Hz
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Another Look At Our TLC272 Example (A¢=1)

107 T
Vpp=5V wp1,cL = 2MHz
106 - R_L=10kQ
= Ta =25°C
£ _ 105 0°
F AN 0= [2=
£E% L, ) = =
ag 10 \ 30° Wp2
E T-J. \ \AVD &
2 E 403 60° =
% < \ \ s
e g) 3 ~ o o o
28 ., N— 1\ , = PM = 180° — 135° =45
LR 10 Y 90 =
> Phase Shift
(=] \
z 10 120° _ _
\ N1 Small phase margin < High Q
1 \b 150°
0.1 180°
10 100 1k 10k 100k 1M, 10 M
f — Frequency - Hz Op2
B. Murmann EE101B - Spring 2017 - Chapter 15 1"
Detailed View of Second Order Crossover
10
m
S,
= 0
3
=
=
-10
10
0
o)
(0]
S,
=z -100F |
=
[ L
N D
-200 L L
-1 0 1
10 10 10
olo
p1
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Relationship Between Parameters

= We can find the relationship between w,, and w,; using

To ~ Wy1 =1

Jwy Jwy . Jwy,
1+ 85 1+
< +“)P1>< +“’p2> qu< +“’v2>

2 2
1 1
o (Lu) Z 2y Dy (Pw
Wy 2 4 Wp2

* Once we know w,,, we can easily compute the phase margin

(‘)u
PM = 180° — 90° — arctan <—>
(l)pz

B. Murmann EE101B - Spring 2017 - Chapter 15

Resulting Relationship Between Phase Margin and Q

Wp2/ Wy Q Wy / Wy1 PM(°)  w34p/®u1

10 0.316 0.995 84.3 1.1

» Well-designed second order systems have phase margins between 65
and 76 degrees (or higher)
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Higher Order Systems

jw

s-plane

» The majority of practical opamp circuits have a dominant pole and a
non-dominant pole past the loop’s unity gain frequency

* |n addition, there are usually several poles (LHP) and zeros (LHP and
RHP) beyond the second pole (inside the opamp, board parasitics, etc.)

= Despite these extra poles/zeros, we can usually still approximate the
system as second order

— The extra poles/zeros mainly affect the phase margin and don’t have
much bearing on w,,

B. Murmann EE101B - Spring 2017 - Chapter 15 15

= The equivalent non-dominant pole frequency is given by the frequency
at which the overall phase shift of the loop (with all poles and zeros
included) is -135°

= This approximation is particularly convenient for interpreting circuit
simulation results

= Some rules of thumb
— A LHP pole or RHP zero 10x past w, steals about 5.5° of PM
— A LHP pole or RHP zero 5x past w,, steals about 11° of PM
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Frequency Compensation

* Frequency compensation refers to the means by which the frequency
response of the loop gain is altered to ensure adequate phase margin
* Frequency compensation schemes can be categorized into three groups
— Internal compensation
 Alter the frequency response of the opamp
— External compensation
+ Alter the frequency response of the feedback network
— Or alter both!

= Our example opamp (TLC272) is internally compensated to ensure
reasonable phase margin in the worst case (unity gain feedback)

* |n some cases, we may still want to add external compensation to
improve the phase margin
— We’'ll look at two examples, many more scenarios/options exist
— See chapter 7 of “Opamps for Everyone”
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TLC272 Schematic

Vbp

Yy

ouT

» C, and R; take care of the opamp’s internal frequency compensation

— These components are sized such that the opamp has a dominant
pole and a non-dominant pole beyond unity crossover

— This is studied in detail in EE114
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Motivation for External Compensation

= Say we want to design an inverting amplifier with a gain of -2 using the
TLC 272, and we want to have a step response with no overshoot

107 T
Vpp=5V
106 [~ R =10 kQ
= Tp =25°C
R. E 105 0°
Vin § c
a g 104 AN 30°
83 \ AvD
2% 103 \\\ 60°
%é 102 S~ 90°
= - @
'r;>° Phase Shift \\
R1 z 101 120°
Acpy=—5=-2
R 1 ™ 150°
2 Y
0.1 180°
Rz 1 10 100 1k 10k 100k 1M 10M
T(S) = R + R G(S) = §G(S) f - Frequency - Hz
1 2
PM = 180° — 117° = 63°
T =1 = [G(s)=3 .
But, we need at least 76° to
eliminate any overshoot
B. Murmann EE101B - Spring 2017 - Chapter 15

Phase Shift

Possible Solution: Lead Compensation

C.
Il
1
YW
Vin R2 R1
_W_ Vout
R,
T(s) = ————G(s) = K(5)G(s)
R1||E+ R,
K(s) _ R2 _ RZ ) 1 + SR1CC
Ri . p  Ri+Ry 1+sRlIR)C,
1 + SR1CC 2
1 3
For R, = 2R,: le_RlC p1=—R1C
(5 c
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Bode Plot of K(s) for R, = 2R,

O ”””””””””” T T 1T r T T T T I L R e = -
| | | | | [ | | i o
d | [

|K(j)| [dB]

Z/K(jw) [deg]

coR1CC
* The feedback network gives us a phase lead that improves the PM
= |f we size C, such that w, = 0.25/R,C., we get the extra 13° we need
21
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But, How About the Closed-Loop Gain?

Ce
[|
[
W
Vin R2 R1
_W_ Vout
1
Rillsz
Acpi(s) = — ste = —&;
R, R, 1+ sR,C,
In our example: wy, = 0.25/R.C, = 4w,
1%c

= Conclusion: No big deal, we get another closed-loop pole way past the
original -3dB corner (which is about 1.28w,,)

= We’'ll sacrifice a little bit of bandwidth, but we have our desired response
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Another Example

R;
YWW

—\N\/‘T Vout

1
Rollse
T(s) = 1—pG(s) = K(s)G(s)
R2||E+R1
K(s) = R, 1

R1 + Rz . 1+ S(RlllRZ)Cp

= Bad news: The extra pole in the loop may reduce the phase margin

B. Murmann EE101B - Spring 2017 - Chapter 15
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Simple Remedy

Cy
||
[

W

Ry

—\/\N‘T Vout

1
Roll o
p
T(s) = — —G(s) = K(5)G(s)
Ry|| ==+ Ry|| =~
2llse+ Rl
R,
K(s) = L+ 5RaGy __fR if R.C, =R,C
R2 R1 R2+R1 1%1 2%p

T+ sR,C, T 1+ sR.C;
= If C, is not exactly know, this requires some tweaking...

B. Murmann EE101B - Spring 2017 - Chapter 15
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Summary

» Phase margin is the most widely used “proxy” for quantifying the stability
margin of a feedback system

First order system
— Trivial; the phase margin is approximately 90°

Second order system

— There is a one-to-one mapping between phase margin and the Q of
the closed-loop poles

— A maximally flat response requires a phase margin of 65°
— A critically damped response requires a phase margin of 76°

Higher orders systems
— Are typically approximated as second order systems

— The extra high-frequency poles and zeros reduce the phase margin;
this can be captured via an equivalent shift of the second pole to a
lower frequency

B. Murmann EE101B - Spring 2017 - Chapter 15 25




Chapter 16

Oscillators

Boris Murmann

Stanford University

References:
Maloberti, Chapter 14, Section 14.3
Texas Instruments, Design of Op Amp Sine Wave Oscillators
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Motivation
AP~ Frequency o Digital-to-Analog
Amplification trans|ation Filtering conversion
® H\ o
Transducers TA'COS(‘”*t) L
Cables Dlgltal_
Processing
¢ B-cos(m,t)
® H\
e Frequenc - Analog-to-digital
Amplification tranqslatior){ Fittering con%/ersio%

» Most electronic systems require oscillators
— Radios (above example), watches, microprocessor systems, etc.
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How to Build an Oscillator?

= Key to all forms of oscillators is feedback

* The stability issues that bothered us in designing amplifiers are here
being used to create steady-state oscillations

0 A Vout

(no input) -

= Barkhausen criterion (1921):

A oscillator circuit will sustain steady-state
oscillations at frequencies for which its gain around
the loop is equal to unity in magnitude and the
overall phase shift around the loop is 0° or an
integer multiple of 360°.

- T=AF must have 180° degrees of phase shift
(plus integer multiple of 360°)

B. Murmann EE101B - Spring 2017 - Chapter 16 3

Phase Shift Oscillator

Figure 7. Buffered phase-shift oscillator

k €
= 10n 0k
25V I :[10 n
1/4 TLV2474 1/4 TLV2474 1/4 TLV2474 =
R 1 «—— Need 180 degrees of phase
T(s) = F____ - shift from this term to enable
R; (1 +sRC)3 oscillation

= As we already know, the poles land on the jw axis for R;/RG = 8

= The Barkhausen criterion is met at this point
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Figure 2. Phase plot of RC sections

0
—
T
-45 Q\ T
™~
\\‘“\ Ll 1RC section
z -90 \\
2 NN
g N S R I DS ARA T
= N M~ 2 RC sections
T
z N
g 225 N S !
£ N e SR 3 RC sections
& am ™ 1
N
315 P |
i 4 RC sections
—
-360
0.01 0.1 1 10 100
Normalized Frequency
w/RC

» The oscillation frequency is determined by the point where the total
phase shift of the RC sections is -180°
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Wien Bridge Oscillator

c——
R4
R 2
- Vout
X +
“iT° 3
= = = Need 0 degrees of phase
shift from this term to enable
/ oscillation
R{+R SRC R{+R
T(s) = ——L 2 = ———2K(s)
R, 1+ 3sRC + s2R2(C? R,
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O ! ! ! ! o ]
g : : | | i | | | [
=10 S NS — —__
3 | - i [ | ) | [
c I i i i i i i [ i i I i i i i
X
10" 10° 10’
oRC
100
()]
(0]
5,
s
=
% | | | [ | | | L ————
_100 . : : : L 1\0 : : : R ;
10 10 10

oRC

= The Barkhausen criterion is met when

Ri+ R,
—=2=3 R, = 2R,
R,
B. Murmann EE101B - Spring 2017 - Chapter 16

The Startup Problem

» Barkhausen is met during steady-state, i.e. when the circuit is oscillating
— But how does it get into steady-state?

= For an oscillator to start up, it turns out that we need to push the closed
loop poles into the RHP, to enable a growing envelope

— The seed for this oscillation comes from any tiny “kick” applied to the
circuit, e.g. turning on the power or thermal noise in the circuit

V[voutl]

2.5Y
2.0V
1.5V
1.0v+
0.5+
0.0V~
-0.5Y
-1.0v
-1.5Y

-2.0V-

-2.5¥ T T
Oms 50ms 100ms
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Amplitude Limiting

» The waveform grows until nonlinearities begin to reduce the loop gain
» The steady state amplitude is determined by the point where the large
signal loop gain is unity, satisfying the Barkhausen criterion

|Large-Signal Loop Gain|

Initilal Gain > 1

Amplitude

Oscillation \
Amplitude

B. Murmann EE101B - Spring 2017 - Chapter 16 9

s-Domain Perspective

jw
Steady-State

e X\X Startup

» This plot must be taken with a grain of salt, because we are dealing with
a nonlinear system...
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Startup with R, = 2.1R,

36V ¥Y[voutl)

3.0V
2.4V
1.8V

1.2V
0.6+
0.0V
-0.6¥—
-1.2v+
-1.8v+
-2.4Y¥+ U

-3.0v+ U J
-3.6V T T T T T T T T T
Oms 20ms 40ms 60ms 80ms 100ms 120ms 140ms 160ms 180ms 200ms

Steady-State Waveform

15V ¥Y[woutl)

2.8V
2.1V
1.4V
0.7V
0.0V
-0.7v¥+
-1.4¥—
-2.1V¥+

-2.8V+

-3.5¥ T T T T T
158ms 162ms 166ms 170ms 174ms 178ms

= Opamp is clipping (its supply voltage is +/-5V)




Startup with R, = 3R,

16V ¥[woutl)

3.0V
2.4V
1.8V
1.2V
0.6V
0.0V
-0.6¥—
-1.2V+
-1.8V+
-2.4¥—
-3.0¥+

-3.6¥ T T
Oms 20ms A0ms

= Startup is much faster (why?)

= Opamp clips hard; output looks more like a square wave

Startup with R, = 3R,

VY[voutl] Yvpl

3.6V
3.0V
2.4y
1.8V
1.2V
0.6V
0.0V
-0.6¥+
-1.2¥+
-1.8V+
-2.4¥—
-3.0V¥+

-3.6¥ T T T T T T T T T
Oms Ams 8ms 12ms 16ms 20ms 24ms 28ms 32ms 36ms 40ms

» The waveform at the positive input of the opamp looks somewhat nicer
— Why?




Need for Proper Amplitude Limiting

» We want the oscillator to start up reasonably fast and reliably

We do not want the amplitude to be defined by the opamp’s “random”

clipping behavior, which may not be reproducible

Practical Wien Bridge oscillators incorporate a well-defined mechanism

for amplitude limiting

Examples

— Back-to-back diodes
— Automatic gain control (AGC) loop
— Adding a light bulb (!) to the feedback network

B. Murmann

EE101B - Spring 2017 - Chapter 16

B. Murmann

Amplitude Limiting with Diodes

5kQ

18kQ

Vout

10kQ

I——MW
iH|

O
WA
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Startup with Diodes

10V VY[vout2) VYvp2)

-4y —
-6V~

-8Y—

-1ov T T T T T T T
Oms 20ms 40ms 60ms 80ms 100ms 120ms 140ms

(Opamp supplies increased to +/-15V; so that the opamp does not clip)

B. Murmann EE101B - Spring 2017 - Chapter 16 17

Figure 5. Wien-bridge oscillator with AGC

Vour

= Yields a lower distortion sinusoid than the diode-based circuit
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HP200A

= First HP product

=2 Y = William Hewlett's MS thesis
4 J -

Licth

VY
=
L.
Ll
)

Vout

http://en.wikipedia.org/wiki’lHP200A

As the oscillation
grows, R, heats up
until it becomes
equal to R¢/2
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More on Oscillators
» Ring Oscillator
= |C Oscillator
= Crystal Oscillator
= Relaxation Oscillator
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Ring Oscillator

Out

[Maloberti]

= |n principle, not too different from a phase shift oscillator

= Use an odd number of stages (180° phase shift); remaining phase shift
comes from RC delay
— With an even number of stages, there is no inversion around the loop

at DC and the circuit is simply a latch > more later

» Practical implementations often don’t use explicit RC, but rely on the
resistance and capacitance of the MOSFETs
— Oscillation frequency is somewhat harder to predict
— Can scale frequency down by using more inverters
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Ideal Parallel LC Circuit (“LC Tank”)

+
1 L Y(s)
oL é sC
o) CP
s o
0~ L
Y(s) = ¥ > T =y(07) > 1 L1 {%} = u(t)cos(wyt)
sL+<¢ s’ +1c ST T W
1

y () = y(07)u(t)cos(wot) wo = Jic

= A non-zero initial condition will suffice to create an everlasting oscillation
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Quality Factor of Inductors and Capacitors

= Unfortunately real inductors and capacitors dissipate energy

» The “quality factor” for these components is defined as

0=2 Peak energy stored _ Emax

- Energy dissipated per cycle  Egjss

» For an inductor, the losses are well-modeled using a series resistor

Z=R+jwlL 1
J Emax = ELl%wx
v \ E Py:..T 1 i2 R 2m
_JWY\_\/V\/\_ L= . = — R
diss diss > lmax a)
i(t)
wlL Im(Z)
Q=—F5=
R Re(Z)
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= For a capacitor, the losses are typically modeled using a parallel resistor

1 2
+ Emax = Ecvmax
vty == C % R »
- jvmax 2n
Egiss = PaissT = R : Z
y 1 c — WCR = Im(Y)
=gt/ Qc = wlR =22y

» |n practice, inductor losses tend to be much more significant than
capacitor losses, so we will only consider the former in our analysis
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LC Tank with Inductor Losses

c== |:> L§ R, S c—

= Working with a series resistance can be annoying in a parallel circuit

» |tis therefore common to approximate the losses with a parallel resistor

joLR,  joLR, (R,—joL)

Zs =Ry + joL )= P _ .
Ry +jwlL Ry +jwL (R, — jwL)
0 _ oL w?L?R, iy wLR}
ST R, TRZ+ w2 RI+ 0212
_ R
Cp oL
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v
R wl—
Zs=Rs+jwl Zp: Rzp +J 2(1) L
p p
—w2L2+1 —w2L2+1
R wLQ?
P . p

Z, = +
PTE+1 T2+

= Assuming @, >> 1, the imaginary parts are approximately equal and

R, = RsQ;

= Also note that R RQZ Q2
__p s p==—g=>Qp55Qs
wL wL Qs

» Finally, note that since the quality factor is frequency dependent, the
above approximation holds only at one single frequency

— This is OK for analyzing narrow-band circuits, like oscillators
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Summary on Parallel to Series Conversion

o2
Le-Lp
1+IE312
Re=Rg (1+Q ) & 1
Fs=FR
Rp EJJLS 3 P z
Q= _ 1+0Q
UJLP RS
i 2
1+Q
Cs=Cp =
QZ - 0
2
CP=CS1 @2: Rp=Rg (1+Q ) @% 1
+
F==R
1 3 P z
8= wCpRp= — 1+ d
UJCSRS o

http://wcalc.sourceforge.net/cgi-bin/parallel_rl.cgi
http://wcalc.sourceforge.net/cgi-bin/parallel_rc.cgi

Lp—LS

Back to Our Circuit

Rp§ sL§ i:: Y(s)

a decaying sinusoid

s+a
L1 {m} = u(t)e_atcos(a)ot)

Analyzing this circuit with some initial condition (as we did before) yields




Eliminating R,

-R,
”
+
Active % g e
R sL —— Y(s
Circuit P sC (s)
= Basic implementation:
Vop
L R L R
1 Il
L) ]
VouH o c c 0 Vout—
. ¥
1’:|| II:‘ 2
[Maloberti]
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Y
It It
Vc:~ut+ O | 1 O Vout -
Om M1 My g
Ut = Vgs2 — Vgs1
It = GmVgs1 —1t= ImVgs2 = Vgs2 = ~Vgs1
v, 1 1 2
R=—=—— — (— = —
Ut Im  Im Im
B. Murmann EE101B - Spring 2017 - Chapter 16 30




Amplitude Limiting

= For proper startup, the net resistance must be negative initially

= As the amplitude grows, the negative resistance shrinks in magnitude
and becomes equal to —R, in steady-state

Initially: R < -R,

Steady State: R =-R,

Amplitude
Oscillation \
Amplitude
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Other Architectures (Many More Exist)

>

» [~
_“!:l Cl_ﬂ

o &
L IF 2 ﬁ L.W._ L:ICI

- - e ) ) L1
Armstrong Colpitts

+0

=  Hartley

(Biasing details omitted)

* These architectures can be analyzed using feedback theory or using a
negative resistance approach

* The two analysis methods are complementary; sometimes one is more
convenient/intuitive than the other
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Quartz Crystals

» Quartz shows piezoelectric behavior: Applying a voltage induces a
deformation (a fraction of um) and vice versa

= A properly cut crystal has a mechanical resonance with a very precisely
defined frequency and low drift (a few ppm/°C)

= Main application is in wristwatches, clocking for digital integrated circuits,
and frequency generation for radio transmitters and receivers
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Electrical Equivalent

Cl:? Typical values:
. C, = 3pF
o— —0 L, = 0.25H

+ r
o\ Gzt
c, L R, R, = 500

= Key: The quality factor of the series RLC network is extremely high, on
the order of 10* to 108

= The circuit exhibits a “series resonance” and a “parallel resonance,”
which are very close to one another (within a small fraction of a percent)

R
(s) Y ! ® ’61+C°~w<1+cl>
Z(s) = Wg = p: = Wg T~
sC, (sz + s& + wg) VLG L1CoCy Co

Ly
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log |Z| /) Inductive region

~ R,

arg Z

9001_“ 'r—ﬁ

| \

B. Murmann EE101B - Spring 2017 - Chapter 16 35
Example: Operation at the Series Resonance
LT1056
AN43 F33
Figure 33. Bridge-Based Crystal Oscillator
http://cds.linear.com/docs/en/application-note/an4 3f.pdf
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Example: Pierce Oscillator

= Operates the crystal in its inductive region

» Main advantage of this configuration is its simplicity, robustness, and the

ability to “pull” the frequency slightly (via C, and C, = C,)

= R (large resistor) serves to bias the inverter in its linear region

~180°

T T /
1 1 T

Helps
Figure 3: Pierce-Gate Showing Internal — provide extra
Input and Output Capacitances - phase shift if
needed

http://www.crystek.com/documents/appnotes/Pierce-Gatelntroduction.pdf
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- P — N AA——
l_| l_' | >° "_| I—l ? Crystal Equivalent

3 N v .
R E> '_I>_W*

1
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Relaxation Oscillator

R
2 R
b V12 o

RSl

[Maloberti] (a)

out

Vs € — T —)':
= — Voo
< T >
VoutA i
— To |e—
(b)
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555 Timer

Trigger (2

Output (3)— Guoe! —| F/F

Reset (s >—|
Vref

i—jﬁﬂj)])ischarge

}-<6 )Threshold

_Q)Control 10a 10Kao
Voltage

Vee

Block Diagram Of 555 Timer

B. Murmann

R1
1Ko

~"D1
Red

C1l 1+

~AD2
1ODuFI

Green

R2
1Ko

http://www.allaboutcircuits.com/vol_6/chpt_8/3.html
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Chapter 17

Filters

Boris Murmann

Stanford University

Reference: Analog Devices, Linear Circuit Design Handbook, Chapter 8
Texas Instruments, Op Amps for Everyone

B. Murmann EE101B - Spring 2017 - Chapter 17
Motivation
AP~ Frequency - Digital-to-Analog
Amplification trans|ation Filtering conversion
® —\ o
Transducers TA'COS(°°1t) L
Cables Dlgltal_
Processing
¢ B-cos(wat)
® T\
e Frequenc — Analog-to-digital
Amplification tranqslatior){ Fittering con%/ersio%

= Filters are used in many systems, for a variety of purposes

— Frequency band selection in radios, removal of noise or unwanted
interference (e.g. 60Hz notch filter), smoothing of signals, ...

B. Murmann EE101B - Spring 2017 - Chapter 17




Filter Types

Lowpass Highpass Bandpass Band-reject
(Notch) All-pass

‘H“(ja))‘ H (jw), H(jw) H(jw) \H(.j(u)‘
X N\ X —~_ %
o == == 2 e
—— H—}
Phase shaping

Provide frequency selectivity
or equalization

B. Murmann EE101B - Spring 2017 - Chapter 17 3

The Filter Approximation Problem

= |deal Filter = Practical filter

— Brick-wall characteristic — Ripple in either or both the
— Flat magnitude response passband and stopband

in the passband — Limited attenuation in the
— Infinite attenuation in the stopband

stopband

|H(o)| IHGo)l
A A
Passband Stopband \
» (D L ()
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Filter Design

» |deal filters are non-causal or otherwise impractical
= No global optimization techniques known

» |n practice, chose from several known solutions
— Butterworth, Elliptic, Bessel, ...

= The overall goal of filter design is to approximate the ideal response by
one that implements a reasonable compromise between filter complexity
(number of poles and zeros) and approximation error

= Filter design, in general, requires a compromise between magnitude
response, phase response, step response, complexity, etc.

» |tis common to base a filter design on a lowpass prototype
— Then “transform” into highpass or bandpass (more later)

B. Murmann EE101B - Spring 2017 - Chapter 17

Lowpass Filter Template

|H(jo)| Passband
3

Ripple
Maximum/ v .
minimum pmax - Transition
passband  emin - band
gain
Stopband
gain

©p Os

= Specifications are fully defined by A, i, Apmna Ass ©p, ©

B. Murmann EE101B - Spring 2017 - Chapter 17




Re-Cap: Second Order Lowpass Response

|H(jo)| [dB]

» Magnitude response is “maximally flat” (no peaking) for Q = \/%

B. Murmann EE101B - Spring 2017 - Chapter 17 7
Pole Locations for Q > 0.5
Jjw
J@o
PLx
\\‘(‘JO |
\\ Wo
L g Y = acos (ﬂ) = acos !
_%o wo 20
20
D2 )(
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L L e e | et S
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> : : : > h : : > 2 : :
o ! ! ! ® B ! : T ; : !
o O %t 1 % Op i R =2 ) AR SR F—
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1 el X
6 4 2 0 6 -4 2 0 6 -4 2 0
Real X 105 Real X 105 Real X 105
1
—_— 00 — 600
B. Murmann EE101B - Spring 2017 - Chapter 17 9
Improvements

» A maximally flat response is great, but how can we make the roll-off
steeper?
= Let’s look at
— Imaginary zeros
— Increasing the filter order
— High-Q poles
— High-Q poles and imaginary zeros

B. Murmann EE101B - Spring 2017 - Chapter 17 10
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f [HZ]

B. Murmann

= Steeper roll-off at the expense of reduced stopband rejection



Adding Another Real Pole

0

1

10°
f [Hz]

-40
10

[ap] epnjubepn

= As expected, steeper roll-off, but transition is not all that sharp

= Can fix this issue by increasing the Q of H,(s)!

13
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B. Murmann

Utilizing Peaking in H,(s)

N
/
o

) —
~ - + A/
H *
: n 7QP @ 7 el
—~ 3 ~
n ~—
= + +
H A ~
I I I
DIO ©
r - -

10°
f [HZ]

[ap] epnyiubep

= Win-win improvement

— Passband flat, roll-off steeper

14
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nth Order Generalization

= Stephen Butterworth showed in 1930 that the magnitude response of an
nt order maximally flat lowpass filter is given by

1

H(joo) = _
1+ (D]

®p
= This magnitude response is monotonically decreasing and satisfies

d*|H(joo)|

ok =0 for 1<k £2n-1
(O]

=0

* The corresponding pole locations can be determined using

2 1 2 j(2k=1)n
H(s) =H(s)-H(-s)=——— -s
H) =H(s)-HE-s) v —=(-1)""=e " k=123..n
—-S 2
e
®p
B. Murmann EE101B - Spring 2017 - Chapter 17 15

Pole Locations

* The poles lie equally spaced (in angle) on a circle in the s-plane
centered at the origin with radius mp

= The LHP roots are taken to be the poles of H(s), while those in the RHP
are regarded as the poles of H(-s)

0)P—1
T i T e N e T B B
T X o o
0.5~ toftedi ] 05} pedian - A 105t .
‘ ‘ X ‘
2 . n=1 \ n=2 ; |n=3 ; n=4
Soxo o Poxe e |
E i | i
3 : A : X
0.5 - “0.5[ ik 405 4 0B 1
N I X\i | \\\\\i i N \i
4 X.. X
o B Tt ] e e M| i e s
-1 0.5 0 1 0.5 0 1 0.5 0 1 0.5 0
Real Real Real Real
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Magnitude Response and Coefficients

http://en.wikipedia.org/wiki/Butterworth_filter 2}
%\—m L Op = 1
3
- 0t
n Denominator Polynomial ol
1 (s+1)
2 s2+1.4142s+1 | | |
3 (S+ 1)(32 +s+ 1) —lo .01 0.1 1 . 10 100
wirad &
4 (s2+0.7654s + 1)(s2 + 1.8478s + 1)
5 (s+1)(s2+0.6180s+ 1)(s2 + 1.6180s + 1)
6 (s2+0.5176s+ 1)(s2+ 1.4142s + 1)(s2 + 1.9319s + 1)
7 (s+1)(s2+0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)
8  (s2+0.3902s+ 1)(s2+ 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)
B. Murmann EE101B - Spring 2017 - Chapter 17 17
A Closer Look at n=4
4
2 oo A H(s) = H,(s)-H,(s)
_. 0 | P 1
o 3 - H(s)= 2
Y e i S S
g 2 | ¥ 1+ + [j
2 4 } 0pQpy | Op4
) R T
<§u ----- H,(s), Q1=0.541, 0, =1 H,(s) 1
-6 _ _ =
......... H,(s), Q,2=1.307, 0,,=1 2 1 s s 2
8| ——H,(s)H(s) + o
LA ®p,Qpy | Op,
-10 ‘
10" 107

o [rad/sec]

1 1

] B = = P P
i G B e e
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Increasing Qp,

10
)
g ‘
° |
3 )
2 ‘ |
I H1(6), Qp1=0541 0p =11 AL
o el H,(s), Q.2=3, o,=1 \“ r
——H_(s)H(s)
-10 ‘ o
10" 10° o

o [rad/sec]

= Helps make the roll-off steeper, but introduces peaking

= We can try to alleviate this problem this by reducing wp,

B. Murmann EE101B - Spring 2017 - Chapter 17

Increased Qp,, Reduced wp,

10 i
o
S,
(0]
©
2
-E :
c ! \ 1
: | \
=l = \ |
ol Hi(s), Qp1=0.841, 0p,=07) 3 1|
B _ \
........ H,(s), Qu2=3, 0,=1 ‘\I
—H,(s)H,(s) X
-10 ‘ :
10" 10° 10

o [rad/sec]

= This may not a bad choice of we can tolerate some peaking or ripple

B. Murmann EE101B - Spring 2017 - Chapter 17
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Comparison with Original Butterworth

Magnitude [dB]

10
107

10°

o [rad/sec]

= How can we optimize this situation, i.e. minimize the transition band for a
given tolerable peaking (or “ripple”) in the passband?

B. Murmann EE101B - Spring 2017 - Chapter 17 21
Chebyshev1 Filter Approximation

» Fortunately someone has already figure this out!

* The “Chebyshev1” filter approximation minimizes the error between the
idealized response and the actual filter, with the passband ripple as a
parameter (1dB for examples below)

1”’4‘””””*‘”’: ’’’’ 1”’4‘””””%’: <! 1”’4”””””’:::/)(* 1””3””””*1”’;—’*’)6

1 I e A
o i i i X
0.5 --4-74--mmp-mmmma] 0.5 --4-77---=m-mmme 05011y 0.5t T
¥ i X i
S O fn=2] 0 fn=3] X O n=4}— O n=5] %
E L L L o
A : A AN X A 3
0.5 0] R 0.5F-- 4 -0.5F -5
0.5 R 0.5 i 0.5 i i 3 .
L x SRR R i T | s M o 2 AL . S o
-1 -05 0 -1 05 0 -1 05 0 -1 05 0
Real Real Real Real
22
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Elliptic (Cauer) Filter Approximation

= The Elliptic filter approximation combines our previous ideas and adds
imaginary zeros to sharpen the transition band

= This approximation has the passband ripple and stopband attenuation as a
parameter (1dB and 20dB, respectively, for example below)

Imaginary

B. Murmann EE101B - Spring 2017 - Chapter 17 23

Chebyshev2 Filter Approximation

= No ripple in the passband, but finite stopband attenuation and ripple due to
imaginary zeros

» This approximation takes the stopband attenuation as a parameter (20 dB in
the example below)

3Lt 3L ) WS B R | SRR

0 o

20 20 ] Y S R | S S

0

| IV o)

g X

o Vo :

= 1] S

g B

= Ab-ios x:f:,»,Xé

i L9

n=>5|

| Bpbe e

1 05 0 4 056 0 -1 056 0 -1 05 0
Real Real Real Real

B. Murmann
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Matlab Design Example

wp=2*pi*le6; % Passband edge
ws=2*pi*2e6; % Stopband edge

0
Rp=1; % Passband ripple
Rs=40; % Stopband attenuation
10+
% Determine required order and synthesize o
kel
[N, wp] = ellipord(wp, ws, Rp, Rs, 's'); o -20t
o
[z, p, k] = ellip(N, Rp, Rs, wp, 's'); -03
c
<))
S 30+
sys = zpk(z, p, k); =
f = logspace(4, 7, 1000);
[mag, phase] = bode(sys, 2*pi*f); 40+
db = 20*1ogl0 (reshape(mag, 1, length(f)));
figure (1) -50
semilogx (£, db, 'linewidth',6 2); 10
B. Murmann EE101B - Spring 2017 - Chapter 17

10° 10°
Frequency [Hz]
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10

Filter Order for R,=1dB, R,;=40dB

Required Order

— Butterworth

Elliptic i
Chebyshev 1 & 2

= Why not always use an Elliptic filter?

8 9 10

— ltis certainly the best choice if we consider the magnitude response only
— But, there may be constraints on the step response; more later...

B. Murmann EE101B - Spring 2017 - Chapter 17
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Matlab Design Example — Elliptic Filter

wp=2*pi*le6; % Passband edge
ws=2*pi*2e6; % Stopband edge 0
Rp=1; % Passband ripple
Rs=40; % Stopband attenuation
10+ ]
% Determine required order and synthesize o
©
[N, wp] = ellipord(wp, ws, Rp, Rs, 's'); o -20t 1
e}
k] = ellip (N, R R 's"); =
[z, p, k] = ellip(N, Rp, Rs, wp, 's') 2 Very sharp cutoff!
(@)
o 30 ]
sys = zpk(z, p, k); =
f = logspace(4, 7, 1000);
[mag, phase] = bode(sys, 2*pi*f); 40+
db = 20*1ogl0 (reshape(mag, 1, length(f)));
figure (1) -50 .
. A ) 4 5 6
semilogx (£, db, 'linewidth',6 2); 10 10 10 10
Frequency [Hz]
B. Murmann EE101B - Spring 2017 - Chapter 17 27

Step Response of Design Example

Time [usec]

= Overshoot and other forms of pulse deformation can be problematic
— Consider e.g. oscilloscopes, pulse-based data links, etc.

» The pulse deformation is mostly due to the fact that different frequency
components pass the filter with different time delays
— This is called phase distortion

» Let’s first have a look at the phase response of our filter

B. Murmann EE101B - Spring 2017 - Chapter 17
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Phase Response of Design Example

— 0

m

S

° -20

=

S -40

©

=

-60 \
10* 10°

@ 0

g | [ ) | ; R |

> =100 R R U R "
= _200,,,,,,,,,‘,,,,,‘,,,‘,,,‘, Rapid phase |1 0 ]
s :
7 : b : change due to a | Phase jumps |
§ SB00 A A high Q pole pair |

: R R : L] ‘
10* 10° 10° 10’
Frequency [Hz]
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Phase Jumps due to Imaginary Zeros

(-5 (=) () - (%) - (-5
1—— 1-—— = 1+—2: 1+ 2 = 1——2
+]wZ —] W, (O Wy Wy

\ J
Y

Complex conjugate pair on the
imaginary axis

" 1_60_2 00 w=w,
w?2) |180° w > w,

= As seen on the previous slide, the phase jumps occur at the frequencies
of the zeros

B. Murmann EE101B - Spring 2017 - Chapter 17 30




Phase Distortion (1)

= Consider a filter with transfer function

H(jo) = H(jeo)| €1

= Apply two sine waves at different frequencies

Vour(t) = A Hioy)[sin (et + §(w1)) + Az [H(jo ) sin(wat + d(w,))
= AqH(jooy) Sin((’% {t Ao )D + A, [H(joo, )| sin {602 {t + He2) )D

1 3
Phase delay t, Phase delay tg,
B. Murmann EE101B - Spring 2017 - Chapter 17 31

Phase Distortion (2)

= Assuming that the difference between |H(jo,)| and |H(jw,)| is small, the
“shape” of the time-domain output signal will be preserved as long as

olov) o) _

4 )

* This condition is satisfied for

dw)=T -o T = constant

» Afilter with this characteristic is called “linear phase”

B. Murmann EE101B - Spring 2017 - Chapter 17 32




Delay with Linear Phase

(e.9. ;=12 & = 204)

t
Linear
* Phase > (94 = 1/2)
Filter ! t
0 4 Wy OV 4 U
o _% o (02=244=m)
b oo o=20> {11 /\ t
™N } } i /’Vl‘\ /’U
a9 ®4 3
B. Murmann EE101B - Spring 2017 - Chapter 17 33
Delay with Nonlinear Phase
0 o
o v O
_%
¢1 N \‘\ aw
0= 2001 D —
b2 * t t
| ®1 @
-4— unmatched
¢(;) " 0(w;) '
4 87

» Phase distortion occurs whenever the phase is nonlinear, i.e. the
derivative of the phase is not constant

= The (negative) derivative of the phase is also called “group delay” or

= Note that for a linear phase filter, we have 1, = 14 = const.

B. Murmann EE101B - Spring 2017 - Chapter 17 34




B. Murmann

Bessel Filter Approximation

Optimized for maximally

flat group delay

Poles only, no zeros

Poles are relatively low Q \

Poor magnitude roll-off \

BESSEL POLE LOCATIONS

/ :

3|

3|= 3N

Figure 1. Bessel Pole Locations

n = number of poles

EE101B - Spring 2017 - Chapter 17
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Comparison: Bessel vs. Chebyshev1

=20 |

Magnitude (dB)

-40

-60

— 4th Order Chebychev 1
— 4th Order Bessel

= Lowpass filters with 100
kHz passband

= Both filters are 4th order
with the same -3 dB
frequency

Chebyshev |

10"

B. Murmann

10°
Frequency [Hz]

10

EE101B - Spring 2017 - Chapter 17

= Passband ripple of 1dB for

36




Phase and Group Delay

0~ 14
-50 \ 12
oy
—_ @
o' 100 \ g 10
: ~ 5
S -150 41 order Bessel o 8 4 order
ﬂ o Chebyshev 1
% 200 ] g 6
= (O]
_ 41 order Bessel
a -250 41 order Shebyshev 1 4
-300 27
3304 50 100 150 200 10 100 1000
Frequency [kHz] Frequency [kHz]
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Step Response
14
1271
4 grder Bessel
o ! 7/
o
2 o8l 4™ order
a Chebyshev 1
E o6l
<L
04r
02r
0 . . .
0 5 . 10 15 20
Time (usec)
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Summary

»= We can either get a sharp roll-off in the frequency domain or a well-
behaved step response

— Not both at the same time

= Elliptic filters offer the steepest magnitude roll-off, but have the worst

step response

» Bessel filters have a maximally flat group decay and hence the best step
response; but they suffer from a very poor magnitude roll-off

= A Butterworth filter lies somewhere in-between; i.e. reasonable

compromise between roll-off and ringing in the step response

B. Murmann EE101B - Spring 2017 - Chapter 17 39
aNase ANALOG FILTER WIZARD s
ADIHome » Analog Fiter Wizard » Specifications. Save
Type Specifications Component Selection [
LOW-PASS
Passband View: | Magnitude(dB) v
10
Gain 0f[dB ~ Passband region
3B 10k| Hz 1 3
Gain = 0dB 2
o passband ripple =0.48d8
Stopband 1 a8 dowin
-40 dB 40k | Hz -10
154
Filter Response g 0
— 3
Fewest Fastest % o
Stages Settling @
= 30
354
3rd order Chebyshev 0.48 dB 0B o
(2 stages) 40
. 5]
Pick trade-off
504
here, the tool
-56 1 3rd order Chebyshev 0.48 dB
does the - (2 stages) Stopband region
reSt' " 1k 1E:k 1EI‘EIK 400k
Frequency(Hz)
http://www.analog.com/designtools/en/filterwizard/#/specifications
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Lowpass to Highpass Transformation

717" 3-zeros at origin

" 2-zeros at origin

1 jo
S~ L.P. unit circle H.P.
Sur x| e
g—————° > T
- | /! ‘\Z \
3-zeros at o x| Qx}
(e.g. Butterworth n=3) )
L.P. HP. ...
* X
§ ; : > KBy
2-zeros at 1" (e.g. Arbitrary n=2) -
X (x;

The s-domain poles and zeros simply become inverted. As shown by the examples, zeros at
infinity move to the origin, and finite-valued poles become |1/pole, | in magnitude and become
conjugates (flips between quadrant Il & 1ll). The mapping boundary is the normalized unit
circle (o, of the response).

B. Murmann EE101B - Spring 2017 - Chapter 17 41
Lowpass to Bandpass Transformation
(5r)
Sip ) S . fo weyn. ¢ , :
SBP=2_LUPJ£ l_kz_a) zZ—Z’i/ where | a = i Q" Sw=fif2s & = £, £
Lcircle
unit circle */ 2a
q AN
L L BP. fxli
L ; > f ;
) /" (e.g. “Narrowband’n=3) p
Y

For a “narrowband” approximation, the s-domain poles and zeros simply become replicated at
+jm with a smaller unit circle of radius 1/2a. To realize a wideband filter, use a cascade of
highpass and lowpass filters.

B. Murmann

EE101B - Spring 2017 - Chapter 17
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Notes on Filter Transformations

» This used to be a very important skill

* In the “old days” (before widespread use of computer tools) there were
books filled with filter coefficients for lowpass prototypes

» As a designer, you then had to go and transform the filter into whichever
other type you wanted

= Nowadays, we will directly synthesize the filter type we want
— Using Matlab, Analog Filter Wizard, etc.

B. Murmann EE101B - Spring 2017 - Chapter 17 43

Filter Implementation Options

Analog

/\

Passive Active

AN AN

Electro- Switched Q-Enhanced
LC  MEMS Acoustic  RC Capacitor Gm-C LC

Digital
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Filter Implementation Options

= |t is possible to build arbitrary analog filters using RLC circuits
— Example: “Ladder Filters”

Vin Vout

|

= While this looks OK at first, we will typically want to avoid using inductors
— Often big, bulky, expensive

» |t turns out that we can also synthesize arbitrary filters without inductors,
but with the help of active circuits, like opamps

= Many options exist, we'll look at two basic examples
— State-space synthesis using opamps
— Sallen-Key filters

B. Murmann EE101B - Spring 2017 - Chapter 17 45

Starting Point: Passive LC Lowpass Filter

R L

Vin —1— C Vout

1
_ SC _ 1 _ 1
H(s) = 1 _1+sRC+52LC_ S 52
— + R+ sL 14 — + ——
sC 00Q (*)02
© _ 1 1L
0=7c  UTRIC
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Opamp-Based Integrator

C
|
1l
R
Vin—"V\VN—
— Vout
Vour(t) = = [t
C
|
I
R
VinJ\/\/\/—"—D—"— Vout V t(S)Z_LV' (s)
oui SRC n
-1/R y
Vin 4 E Vout
B. Murmann EE101B - Spring 2017 - Chapter 17 47
State-Space Filter Synthesis
State variables
(integrator outputs)
R +VL- 1. . 1
~ " vc(t)=5jlc(t)dt /L(t)=zij(t)dt
Vin - |Cl VC Vout 1 1
T N Vc(S)=E/c(S) IL(S):S_LVL(S)
1 1
Vc = EIC = EIL = Vout
1 1
I = EVL = I(Vin LR =V,)
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Block Diagram

Vout

= Looks promising, but the problem with this realization is that the first
integrator takes a voltage at the input and produces a current at the
output
— We need the opposite if we want to realize the circuit with an opamp
integrator

B. Murmann EE101B - Spring 2017 - Chapter 17 49

Modified (Equivalent) Block Diagrams

Vout

Vout

Choice of R, is arbitrary,
we can simply make it
equal to R

B. Murmann EE101B - Spring 2017 - Chapter 17 50




Implementation

Ry« Ry Ry«
-Vin 4\/\/\,—0—D—0—/\/\/\,—0—D—0—/\/\/\,—1
A1 A2

_D—o—vout
A3

_ Vout(s) _ -1
Vin(s) 1+ sRC+s2LC

H(s)

» One remaining issue is that the transfer function is inverted
— We could fix that (if needed) using a fourth op-amp

B. Murmann EE101B - Spring 2017 - Chapter 17

Biquads

» Biquads are fine-tuned versions of the state-space filter that we derived

» They allow us to implement arbitrary second order transfer functions with

two poles and two zeros

» We can cascade biquads to realize filters of arbitrary order

W.J. Kerwin, L.P. Huelsman, RW

M Cl c Newcomb, "State-Variable Synthesis
R | for Insensitive Integrated Circuit
Vo ARAN | R Transfer Functions," IEEE JSSC,
v - Vaur Var o vol.2, no.3, pp. 87-92, Sep. 1967.
R:EE R; = -
4
1 R1R2 +R1R3 +R2R3
Wo = — =
E _ QD _ K RC 2R R3
i Vi, s st P 2Ry R3 _ R
wol " wyt R{Ry +R{R3 +RyR3 ~ R1Q
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Highpass and Bandpass Output

» An interesting feature of some biquads is that they provide additional
highpass and bandpass outputs for “free”

R
o VWV
T T t=RC
Ry R
A A'A'l‘L . + Vip
e % A =
R;:: Rs £
>
2,2 1
st -ST _
Hup(s)=—————  Hep(s)=—————  Hip(s)= 2
S S S S 145 s
1+ +— 1+ +— Q
wpQp  wp opQp  wp 0plp  wp
B. Murmann EE101B - Spring 2017 - Chapter 17 53
General Biquad
HP
LP
BP
GENERAL
2
bzs + b1S + bo )
HGENERAL (S) = > Implements arbitrary poles
14 S + S and zeros
0Q w3

B. Murmann
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Sallen-Key Lowpass Filter

= Single opamp

= Poles only, no zeros

Vout

= Similar circuits exist for HP, BP, etc.

B. Murmann
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H(s) = >
s, st

1+

1

o= —
D
JRICGIRY &

w

_ D
p=—"7 1 1K
RO R0l Rp(y

State-Space Biquad or Sallen-Key?

= Suppose we wanted to realize a second-order filter with poles only
— Should we use a Biquad or Sallen-Key realization?

From a complexity perspective, we would obviously go for Sallen-Key

But, the Sallen-Key circuit comes with a few potential disadvantages that
may (or may not be) be a problem

— Sensitivity to parasitic capacitance; this is less of an issue in a state-

space circuit due its virtual ground nodes

— Undesired tradeoff between component spread and sensitivity to

component inaccuracy

— Increased sensitivity to component inaccuracy for high-Q poles

B. Murmann

Let’'s take a closer look...
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Definition of Sensitivity

The sensitivity of any variable y to any parameter x is defined as

SY = lim (Ay/yjzz lim &Y X%
Ax—0\AX/ X ) yAa—>0AX y OX

» In order to relate fractional changes in y to fractional changes in
X we can then write

ﬂ:s)}(/g
y X
+ Example
sy=10 ooy .20y
x y

« Common sense: sensitivity is a first order approximation,
accurate only for “small” errors

B. Murmann EE101B - Spring 2017 - Chapter 17
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Parameter Variations of Discrete Components

» The best we can do on a printed circuit board
— Metal film resistors are ~0.1% inaccurate, 5 ppm/°C

— COG dielectric capacitors, 2% inaccurate, very small temperature
dependence

= Other, cheaper components show larger variations

» Bottom line: RC products can easily vary by a few percent

B. Murmann EE101B - Spring 2017 - Chapter 17
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Sensitivity to Component Inaccuracy for a Sallen-Key LPF

O _ Q% _ Q0 _ QW _ _
Sy =Sg =S¢ =S¢ =

Op = ——
] \/R1C1R2C2 1 R,C,

Q% _ e _ !
SpP =-Sg7 =--+Qp

2 RC,
®
%=1 71c s =S¥ = Liq,| [Ny R
+ + 1 2 R,C, VRC,
R1C1 RZC1 RZCZ
RC
S& =Q,G [

= Sensitivity depends on Qp and “component spread” i.e. the ratios of the
resistors and capacitors, respectively
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Example

= Want to design a Sallen-Key filter with Qp=10

= Choice 1: AllR and C are the same = G =3 -(1/Qp) = 2.9

— Very nice from the perspective of component spread, but bad for
sensitivity, e.g.

Sqr = —%+QP =9.5

» Choice 2: Reduce sensitivity by accepting large component spread
— Can show that G=1 is a good choice

See e.g. http://www.maxim-ic.com/appnotes.cfm/an_pk/738

Note: The expression for S is incorrect this application note (R; and R, should be
interchanged in this expression to match the result on the previous slide)
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= For G=1, we have

_ Wp
Qe = 1 1
7.,,_7
RC, R,
o1, R o for R, =R,

RT2TR+R,

« Unfortunately, in this case

Sb=4Q2=400 for Q.=10

2

« Bottom line: The Sallen-Key realization suffers from a strong
tradeoff between sensitivity and component spread
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Case Studies

AC RESPONSES (dB)

Second Order, G=1, All 's 1%, All C's 5% 7th Order Chebyshev, 0.05dB Ripple, 8kHz 3-dB Freq.
: ] ] 50
8
5 45
Original Filter: Equal C's and Equal R's
4 40 -
2 ]| E s H
JE— 1] w |
| || w C
0 Improved Filter: Unity Gain, Equal R's E 30 Equ” Equal Fisslatocs {d
N o
-2 - & -
& 25 |
4 E
Unity Gain, Equal Resistors
20
&
- 15
-0 10
102 10% 104 102 10% 104
Frequency (Hz) FREQUENCY (Hz)

MAXIM APPLICATION NOTE 738
Minimizing Component-Variation Sensitivity in Single Op Amp Filters
http://www.maxim-ic.com/appnotes.cfm/an_pk/738/
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Summary

Practical filter design is based on choosing a proper filter template
(Butterworth, Bessel, etc.) and mapping the resulting poles and zeros
into hardware

While we can in principle build arbitrary filters using passive RLC

circuits, we typically want to avoid inductors and instead use active

circuits to achieve the desired mapping

Sallen-Key implementations

— Low complexity - Good for board level design

— Undesired tradeoffs between pole Q, component spread and
sensitivity

State-space Biquads

— Are known to be less sensitive, at the expense of increased
complexity > This is OK for integrated circuits that anyway contain
millions (or billions!) of transistors




Chapter 18

Circuit Simulation

Boris Murmann

Stanford University
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SPICE

» SPICE stands for Simulation Program with Integrated Circuit Emphasis

» SPICE simulates the behavior of circuits by numerically solving the
pertaining set of equations

— Really just a gigantic calculator
» The original version of SPICE originated at UC Berkeley in the 1970s

» |Information about the history of SPICE can be found at
— http://www.coe.berkeley.edu/labnotes/0502/history.html
— http://www.ecircuitcenter.com/SpiceTopics/History.htm

» SPICE webpage at UC Berkeley
— http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE

» Dozens of different versions available today
— PSpice, HSpice, Eldo, Spectre, LTSpice, NGSpice, ICircuit, ...

» |n this class, we will use LTSpice
— Download at www.linear.com/Itspice
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o

LTSpice Window

LTspice IV - wienraw - oEdE
Fle View PlotSettings Smultion Tools Window Help
Be E P F0QAQAR BRI EBE tbon o8 o
 wenzee] 1 wenrow
w wienraw [olle ()
24 Vivoutl)
3.0v+
2.v.
1.8V
12v]
0.6v.
0.0V
0.6v]
1.2V
1.8V
2.4v
3.0V
e e Tome o 20 2o
£ wien.asc S
Simulation
Command
RRRRR
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= SPICE won'’t “think” for you
— It's really just a tool for crunching the numbers much faster than you can

= How to properly use SPICE?
— First, design the circuit using “your head”

» Understand how the circuit works, what is important, what is a first
order effect, second order effect, etc.

* Use hand calculations, computer programs like Excel or MATLAB, to
find initial component values and performance estimates

— Simulate your hand design with SPICE and inspect the result

* If your prediction and SPICE’s answer differ, question your hand
calculations and question SPICE

— Perform final tweaks with SPICE

+ SPICE can help you take into account effects that you can’t analyze
with simple hand analysis (e.g. high frequency poles)

= How not to use SPICE?
— Guess some random component sizes and simulate in SPICE
— lterate until the circuit somehow does what you want
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SPICE Monkey

[Courtesy Isaac Martinez]

B. Murmann EE101B - Spring 2017 - Chapter 18 5

Structure of a Circuit Simulator

Simulation
Command

Simulation
Results

Complete Simulation

Netlist Engine
Simulation
Log File

[Maloberti, Chapter 1]

Netlist from
Schematic
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Basic Analysis Modes
= OP Analysis

— Compute the DC operating point of a circuit
= DC Analysis

— Similar to operating point analysis, but we can sweep certain
parameters. For example, sweep the input voltage to find the large

signal transfer characteristic. Capacitors are open circuits, inductors
are shorts.

= AC Analysis

— Computes the frequency response of a circuit based on its operating

point parameters. The circuit is linearized at the operating point in the
same way we do in this in hand analysis

» Transient Analysis

— This is analogous to building the circuit in the lab and observing the
signals of interest over time on an oscilloscope.
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Example 1 (OP)
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Netlist

Rl vl v2 1
R2 v2 v3 2
R4 v O 4
I1 0 v1 1
R3v2 O 3
.op

.backanno
.end

» For more details on SPICE netlist syntax, refer to
http://www.ecircuitcenter.com/Basics.htm
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Result

—-- Operating Point ---

V(vl) 3 voltage
V(va) 2 voltage
V(v3) 1.33333 voltage
I(1I1) 1 device current
I(R3) O.oo6e0T device current
I(R4) 0.333333 device current
I(RZ) 0.333333 device current
I(R1) 1 device current
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Under the Hood

» |n this example, SPICE simply solves a linear system of equations
— Think Gaussian elimination, done numerically

Vi =V
0=—1I, +— - 2 vi Rl v R2
1 VoV VY
Vo—Vi Vp V-V mwl o1 2
0 = — FoAa N < R3 R4
V R1V I;g RZ :\I \T/) \>3 >'4
o Vs I l |
R, Ry 1
S .0p
1 1 0
o -5 1 -1
Ry R,
1 1 1 1 1 51 H IR I‘;l 1]
- - —_ J— —_— 21 = 0 2 21 — 0
1 S L 0 —-= = (L7
0 —— — 4+ — 2 4
R, Ry Ryl
B. Murmann EE101B - Spring 2017 - Chapter 18 1
This Should Not Work...
0=—I +1, 0=-1+2
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But it Does!

LT * C\Users\murmann'Box Sync\teaching\EE101B\ee101b_spring_2014\ltspice‘Draft1.asc

| —-- Operating Point -—-—-

Vi(vZ): 4 voltage
V(v3): 2.66667 voltage
Vi(vwl): -le+012 voltage
I(IZ2): 2 device_current
I(I1): 1 device_current
I(R3): 1.33333 device_current
I(R4): 0.666667 device_current
I(R2): 0.6666867 device_current

= -1 teravolts at node V1

= What's going on?

B. Murmann EE101B - Spring 2017 - Chapter 18 13
iy Control Panel “
m Operation ci' Hacks! W Intemet
Eﬂ Metlist Options icf Waveforms

6 Compression / Save Defauts | & SPICE T Drafting Options
Default Integration Method

—~ . Gmin: |1e-012 | ——t——p
(_) trapezoidal
®) modified trap Abstol: | 1e-012
O Gear Reltol: [0.001
Default DC solve strategy Chagtol: | 1e-014
[] Noopiter Trol[: |1
Skip Gmin Steppi
[ Siap Gmin Stepping Valtol: [1e-006
Engine
Sstol: | 0.001
Solver["]: | MNomal W o
MinDetaGmin: |0.0001
Max threads: 4

Accept 3K4 as 3.4K]]

Matrix Compiler: | object code W
No Bypass[]

[*] Setting remembered between program invocations.

| Reset to Default Values

QK Cancel Help

B. Murmann

The tool automatically inserts a
conductance of 1pS at each node;
this helps the tool to “converge” even
when there are “floating” nodes

= Key take-home

— Numerical tools behave
“funny” when you ask them
dumb questions

— Garbage in — garbage out

= |f something strange comes out
of SPICE, chances are that you
have made a mistake, and the
tool is just trying to do its best...
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Example 2 (OP)

LT = C\Users\murmann\Box Sync\teaching\EE101B\ee101b_...
R1 | --— Operating Point ---—
vl A/ v2

AV Vivl): 2.81048 voltage

|1 1k D1 VI(vZ): 0.620829 voltage
e \ > R2 I{D1): 0.00218054 device_current
‘/ % \ < \/ I(Il): 0.005 device_current
\ e I(RZ2): 0.00281046 device_current
h 1 k 1 N4148 I{R1}: 0.00218954 device current

5m -

.op

» This is a nonlinear circuit, so linear algebra alone won’t do the trick

* How does SPICE get the answer?

B. Murmann EE101B - Spring 2017 - Chapter 18 15

= We can still describe the circuit in matrix format
_ V. 5m
2m 1m [ 1] _
= V,
—1m 1m ][V, _ (eW - 1)
» And we can perform Gaussian elimination to make the conductance
matrix triangular
[Zm ~1m [Vl] _ .
0 05mll2l | (7% — 1) + 25m

= Next steps
— Solve the transcendental equation in V,
— Then back substitute as usual to get V,
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Solving the Transcendental Equation

V2

0.5m -V, = —I (eVT - 1) +25m  25m—05m-V, = (e“//_zr —~ 1)

Ip

h

2.5mA

> V2
2.5mA/0.5mS

=5V

= We need to find the intersect of the two curves

» SPICE does this using Newton-Raphson iterations

B. Murmann EE101B - Spring 2017 - Chapter 18 17

(e - 1)
f(V2)=25m—05mV2—IS eVr — 1

v ooy L (Vo)
2n+1 — V2n ™
’ ' f’(VZ,n)

fV2) 4

Initial guess
2.5mA V20
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(e - 1)
f(V2)=25m_05mV2_IS eVt —1

T | (Vo)
2n+1 — V2n
’ ' f’(VZ,n)

fV2) 4

2.5mA

(e - 1)
f(V2)=25m—05mV2—Is eVr — 1

v ooy L (Vo)
2n+1 — V2n
’ = (Vo)

fV2) 4

2.5mA




= |f the function f is well behaved, we can get arbitrarily close to the true

solution of the transcendental equation

— But we obviously want to stop at some point

Control Panel

m Operation &r Hacks! W Intemst
EEH Metlist Options ix Waveforms
é: Compression / Save Defauts | B SPICE T Drafting Options

Default Integration Method

—~ X Gmin: | 1e-012
() trapezoidal
(®) modified trap Abstol: | 1e-012
O Gear Rettol: [0.001
Default DC solve strategy Chatol: |1e-074
[ Moopiter Tital[*): [1
[ Skip Gmin Stepping Votol: 1006
Engine
Sstol: |0.001
Solver["]: | MNormal Y] °
MinDeltaGmin: | 0.0001
Max threads: 4

Accept 3K4 as 3 4K

Matrix Compiler: | object code v
No Bypass[]

[*] Setting remembered between program invocations

Reset to Default Values

oK Cancel Help

The Newton-Raphson
iterations end when these error
tolerances are met

See SPICE manual or
advanced books if you are
curious about what these
settings mean

If the simulation does not
converge, changing these
settings may help
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Example 3 (DC)
o = LTspice IV - Example2_dcasc - o IEl
—Bb""ﬁ ‘PYM-‘ i@u G;\l?\i_é i—Ep‘%%‘ IBREMRAOE LB L3FXYDHOD Axop
« Example2_doasc | ¥ Example2_ dcraw
< Example2_dc.asc fola e | & Example2_dcraw = @ =]
L Vive) v
vi R v2 1
I 1K D1 |
R2 XZ 3.0V
1k 1N4148 [
5m
% .dc 1 010m 0.01m
» |n this example, the input source is swept and essentially an operating
point analysis is performed in each step
— Result from previous step comes in handy as initial guess for
Newton-Raphson iterations
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smuow  mep

e mew cwosmungs swmweusn vos e
BE R 74000 aR B BT sROA S|

Example 4 (AC)

D

4 Exampled_ac asc | % Exampied_ac asc

i Example3_ac.asc =SSR
1 E— Viv3) "
5B @
0d8-] Lag
5dB-] Lop
10dB .
15dB-
|--45°
20d8-]
25dB- [
3048 ¥
35dB-{ a
W] T e | g1e
1548 . , e
10Hz 100Hz 1KHz 10KHz 100KHz
£ Example3_ac.asc o ==
YT7 .ac dec 100 10 100k
x= 51112THe y = 13,1328, 5.125°
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What Happens During AC Analysis?

= Again just linear algebra, as in the operating point analysis with linear

elements (example 1)

= But, this time with complex numbers, and with w as a parameter

— —— 0 _
R, R, . 1 111
1 1 1 1 1 1l [h 1 =
—— —4+—4+—  —— |In|=]0 6
R R R R R ||| o )
0 ! LI ’ 0 ~7 3
R, R, M

* The statement “.ac dec 100 10 100k’ tells SPICE to
— Perform a logarithmix sweep in frequency with 100 points per decade
— Startat 10 Hz and end at 100 kHz

— Means that the tool solves 100-4 = 400 complex matrix equations to
generate the plot on the previous slide

B. Murmann
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N R

3
—+ jw - 100u
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Example 5 (TRAN)
e = —
vin R vout
VIN 1k c1
::1n .tran 10u
SINE(0 1 1meg 0 0 90)
T | 7 7
wor) | [\ [\ [\ [} [\ [\ [ [\ [\ [
vl | [ [ [ [ [ [ [\ n [ [
[N [ oA [ [ [\ [ [ [ [ /
P R b e B
nnnn \ \ \ Vo \ \ o \ Vo \ Vo
/ \ / \ \ ] / \ ] \ o/ \ ] \ /
i ] \ L / \ L / \ L / ]
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Specifying Initial Conditions

= Unless we specify an initial condition, Spice assumes that the initial voltage
across the capacitor is the same as the applied input at t=0 (see previous slide)

- . R1
vin vout
VIN 1k c1
::1n .tran 10u
SINE(0 1 1meg 0 0 90) .IC V(vout)=-1
ol [ [\ \ [\ [\ [\ [} [\ [
\ [ ] [ ' / [ [ [\ [ /
\ [ [ [ [ [ [ [ / /
. [ [ O N O 2 S I N I Za o N
ot L VY A O [N [N 7 T VN W g T T 5 D W 5 I I g
onl ) [ Vo Vo] o Vo Vo Vo
el L] \ o/ \ o Vo Vo \ \ \ Vo
wl N1 \ ] \ \ ] / / \ ] \ ] \ /
Ops \ 1ps 2pus 3ps / als \ 5ps Bps 7ns / Bls \
o EE101B - Spring 2017 - Chapter 18
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Example 6 (TRAN)

P& ET 40 R0ARBIBRY DN OB LD EIFTONOD Aa op
< Bt s |, Examplot sanraw
-+, Bamples tranasc foo ks
: R2 R1
vin vout
VIN 100 D1 1k c1
::1 . .tran 5u

SINE(0 2 1meg 0 0 90) Thss IC V(vout)=-1
15 Bamples ransaw i SE=]
o\ \
- — Ei—- —— B -
. \ \ / \ \ / \
. \ / Ve W= U /
. / \ \ \ \ /
: \ / \ / /
1 / /
. J N/ /) Y
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Under the Hood of Transient Analysis

» Transient analysis is the most complex among the analysis types we
have discussed

* The simulator solves the circuit’s system of nonlinear differential
equations numerically and at discrete time instances

— Think Newton-Raphson, but with numerical integration in time to take
the behavior of energy storage elements into account

20V V(vin) V(vout) V(n001)

oy \ Plot Settings - Mark Data Points

1.2v \\ - /

The simulator chooses a f/

small time step when the W

waveforms change quickly /f

0.8V / )
- N i

-1.2v

1.6V \\\\a%‘rw//f

2.0V \\%w/

0.0us 0.5us 1.0ps

0.8V -

0.4v

0.0V

-0.4v
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Transient Analysis Convergence Problems

= Non-convergence during transient analysis is usually related to extreme
derivatives or discontinuities, often caused by bad component models or
unreasonable circuits

FH Y ARAAR (B BT s a o8|/ i o
&_tran_convergence.ase | ¥ trn_convergenceraw |
¥ tran_convergence.aw s [@=]
Vivl) V(n001)
.
" B’
LTspice IV =
1.01000pV——— ST
Analysis: Time step too small; time = 5e-016, timestep = 1.2207e-021:
_l trouble with d-instance d1
.
0.00f: 0.05¢: 0.10f] OK 0.40f: 0.45¢: 0.50f;
£ tran 9 eel=]
itrl vi
s1
o i MySwitch 1 1 sz
T PULSE(0 -2 0 1f 1f 1n 2n) Ve W 1 P
1Kk
~
.model MySwitch SW(Ron=1f Roff=100T Vt=1) .tran 10n
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Simulating MOSFET Circuits
vds
W=20u
L=1u \
VDS
M1 +
=
vgs MyNMOS _
5
VGS
1.5

.MODEL MyNMOS NMOS (KP=50u VT0=0.5) ——
.dc VDS 050.01VGS 150.5 —

B. Murmann EE101B - Spring 2017 - Chapter 18

MOSFET parameters

Two-dimensional DC sweep
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l

B. Murmann

Name

Vto

Ep

Gamma

Fhi

Lambda

Rd

Chd

Chbs

Is

Pb

Level 1 MOSFET Model

Description

Zero-bias threshold
voltage

Transconductance
parameter

Bulk threshold
parameter

Surface inwversion
potential
Channel-length

modulation (level 1
and 2 only)

Drain ohmic
resistance

Source chmic
resistance

Zero-bias B-D
junction capacitance
Zero-bias B-S
junction capacitance

Bulk junction
saturation current

Bulk dicde emissicn
coefficient

Bulk junction
potential

Units
v

n/vE

Vg

/v

Defanlt

Example

a 1.0

Ze-5 3e-5

0. 0.37

0.6 0.65

0. 0.0z

le-14 le-15

http://Itwiki.org/L TspiceHelp/LTspiceHelp/M _MOSFET.htm
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cgso

Cgdo

Cgbo

Rsh

ol

M

Cisw

Mjsw

Tox

Nsub

Gate-source overlap
capacitance per meter
channel width

Gate-drain overlap
capacitance per meter
channel width

Gate-bulk overlap
capacitance per meter
channel width

Drain and source
diffusion sheet
resistance

Zero-bias bulk
junction bottom
capacitance per
square meter of
junction area

Bulk junction bottom
grading coefficient

Zero-bias bulk
junction sidewall
capacitance per meter
of junction perimeter
Bulk junction
sidewall grading
coefficient

Bulk junction
saturation current
per sguare-meter of
junction area

Oxide thickness

Substrate doping

F/m

F/m

F/m

F/m?®

F/m

A/m

m

1/cm®

EE101B - Spring 2017 - Chapter 18

a. 4e-11

a. 4e-11

0. Ze-10

.50 level 1
.33 level 2,3

0. le-8

le-7 le-7
a. 4els
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DC Sweep Results

1d[M1)

11mA

T0mA—

ImA-

8mA—

7mA-

GmA—

SmA—

4mA-

ImA—

2mA—
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5.0¥
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Emi

Setting LAMBDA = 0.1

1d[M1)

bma;

T4mA—

12mA—

10mA—

8mA—

GmA—

4mA-

2mA—

OmA—
o.ov

Ip

2

1
1Cox Vs — Vrn)?(1 + AVps)

EE101B - Spring 2017 - Chapter 18
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Example: CS Stage

vdd
RD
10k
vout
VDD
_ vin
S VIN
.dc VIN 0 5 0.01
1 :tf V(vout) VIN

>

;0p

.MODEL MyNMOS NMOS (KP=50u VT0=0.5)

B. Murmann EE101B - Spring 2017 - Chapter 18 35
Log File (OP Analysis)
Instance "ml": Length shorter than recommended for a level 1 MOSFET.
Direct Newton iteration for .op point succeeded.
Semiconductor Device Operating Points:
--- MOSFET Transistors ---
Name : ml
Model: mynmos
Id: 1.25e-04
vgs: 1.00e+00
Vds: 3.75e+00
Vbs: 0.00e+00 |:> Can compare these numbers to hand analysis
Vth: 5.00e-01
Vdsat: 5.00e-01
Gm: 5.00e-04
Gds: 0.00e+00
Gmb : 0.00e+00
Cbd: 0.00e+00
Cbs: 0.00e+00
Cgsov: 0.00e+00
Cgdov: 0.00e+00
Cgbov: 0.00e+00
Cgs: 0.00e+00
Cgd: 0.00e+00
Cgb: 0.00e+00
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TF Analysis Output

» Computes the small-signal gain and port impedances at the circuit’s
operating point

--- Transfer Function ---

Transfer_ function: -5 transfer
vin#Input_impedance: le+020 impedance
output_impedance_at_V(vout): 10000 impedance

DC Sweep Output

5.0V VY[vouli]

4.5V
4.0V
3.5V
3.0v+
2.5Y+
2.0¥+
1.5+
1.0¥+
0.5Y—

0.ov 1.0V 2.0V J.0v 4.0v h.ov




Transient and AC Simulation Example

vdd
.tran 300u RD
;ac dec 100 1k 100meg 10k
» vout
VDD
I M1
. =
— vin MyNMOS
S VIN c1
1n
SINE(1 0.1 10k)
AC1
N
.MODEL MyNMOS NMOS (KP=50u VT0=0.5)
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Transient Analysis Output
Input amplitude set to 100 mV Input amplitude setto 1 V
s.0v Y[vout] Vivin] s.0v Ylvout] V(vin]
ey T~ e T T A 1.0v-]
“'m;us 3I]‘|.ls B[Ilus Q[II|.15 12[‘||.15 15[‘I|.ls IB[IIus 21[‘||.15 24[‘I|15 27[‘I|.ls 300ps “'m;us 3an B[I‘|.ls Q[II|.ls 12[‘I|.ls 15I‘]|.ls IE[|I|.ls 21[‘I|.ls 24[‘||.15 27[‘I|.ls 30
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AC Analysis Output

AC Input amplitude set to 100 mV (-20 dBV)

0dB Vivoul) 180°
8dB  ° Liz1e
-16dB-| Lyg2r
24dB-|
53
-32dB-|
F1aae
-404B-|
SELS
-48dB-|
26
-56dB—
Fiize
-64dB-|
-72dB o8
-80dB-| e
-88dB T T s et Fa
1KHz 10KHz 100KHz 1MHz 10MHz 100MHz

DC Gain = -6dBV — (-20dBV) = 14dB

AC Input amplitude setto 1 V (0 dBV)

DC Gain = 14dBV — 0dBV = 14dB

16dB Yivouy 180°
8B ; Lare
0B g2
-8dB-| L1530
168 F1aae
2448 135
-32dB- RES
-A0dB- L
188 Fos
56dB L g
54dB . . LTSS . el 900
1KHz 10KHz 100KHz 1MHz 10MHz 100MHz

AC Input amplitude set to 1 kV (60 dBV)

80dB Yivout] 180°
72dB Fi7re
64dB-| | 162
56dB-

H153°
48dB-|

F144°
40dB-|

-135°
32dB-|

F126°
24dB-|

117
16dB-
8dB-| -108°
0dB-{ - oage
-8dB T T e fmemmammr crmererd- 90°

1KHz 10KHz 100KHz 1MHz 10MHz 100MHz

DC Gain = 74dBV - 60dBV = 14dB

= Key Point: AC simulations are based on a linear circuit model; it does
not matter which value we use for the AC input amplitude

= May as well set it to 1, in which case plotting the output is equivalent to

plotting the circuit’s transfer function




Chapter 19
A/D and D/A Conversion

Boris Murmann

Stanford University

References:
Maloberti, Chapter 7
Analog Devices, The Data Conversion Handbook, Chapter 3
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Motivation

Amplification [ IUENTY  Fifering Digital to-Analog

® H\ =
Transducers TA'COS(°°1t) L
Cables Dlgltal_
Processing
¢ B-cos(wat)

® H\

Ampifcaton SRS Filerng  A3eg g

* |n almost all modern electronic systems, the information of interest is
processed and/or stored in the digital domain

= This means that most systems need data converters (A/D and D/A)
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Data Converter Applications (1)

= Consumer electronics
— Audio, TV, Video
— Digital Cameras
— Automotive control
— Appliances
— Toys

= Communications
— Mobile Phones
— Wireless Base Stations
— Routers
— Cable Tuners
— Satellite Receivers

B. Murmann EE101B - Spring 2017- Chapter 19 3

Data Converter Applications (2)

= Computing and Control
— Storage media
— Sound Cards
— Data acquisition cards

» |nstrumentation

— Lab bench equipment A
Semiconductor test equipment
Scientific equipment
Medical equipment

B. Murmann EE101B - Spring 2017- Chapter 19 4




The Data Conversion Problem

Analog
World

» Real world analog signals
— Continuous time, continuous amplitude

= Digital abstraction
— Discrete time, discrete amplitude

= Two problems
— How to discretize in time and amplitude
» A/D conversion

— How to "undescretize" in time and amplitude

* D/A conversion

B. Murmann EE101B - Spring 2017- Chapter 19

/\/ <:> 2,7,0, 15, 27...

Digital
World

(&)

Overview

Digital
Analo
A/D noe jl ¥ I’_,_r Out
. — — ——>
Conversion 27015
Anti-alias Sampling Quantization
Filtering
Digital A'c‘)a';’g
u
DIA_ o L e i A RN
Conversion 2.7,0,15, .. - /\/
DAC Analog Reconstruction
Hold Filtering

= We'll fist look at these building blocks from a functional, "black box"

perspective

= Look at implementations later
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Uniform Sampling and Quantization

Analog Signal = Most common way of performing A/D
°® Discrete time, discrete conversion
amplitude representation . . .
— Sample signal uniformly in time
2 A — Quantize signal uniformly in amplitude
3 o o o [ ) o o
= » Questions
E )l ° & o @ o — How fast do we need to sample to
: o o /o o o \o preserve the information
A — How can we reconstruct the signal
°© ® o o o @ back into analog form?
o o o o o o — How much "noise" is added due to
amplitude quantization?
® oo ¢ 9 ° ° + We will at first ignore amplitude
o quantization and come back to this
< Time
e later...
T =1/f,
B. Murmann EE101B - Spring 2017- Chapter 19 7
Sampling a Sinusoid
1
© fy = —=1000kHz
3 T
2 s
ol
g fyg = 101kHz

Time

f;
Vig (t) = cos(2n-f, -t) |:> Vsig (M) = cos[Zn-f-n]

B. Murmann
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fsiy changed to 899 kHz

¢ ) ; ‘
o fy = i =1000kHz
2 Ts
é—
Z g@:=899kHz
) f \ |

Time

899

vsig(n)zcos[zn-ﬁ.nj:cos 271-[——1]n =Cos(2n. 101 '”j
1000 1000 1000

B. Murmann

EE101B - Spring 2017- Chapter 19

fiiy changed to 1101 kHz

® j A
1
g fy =—=1000kHz
% S
g fyig =1101kHz
’ ) |

Vsig (M) = cos(2n

B. Murmann

Time

1101 1101 101
. ~nj=cos 2n-| ——-1|n =cos(2n'—~nj
1000 1000

1000
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Consequence

Amplitude
A
Continuous A
Time
4 4 4 4 >
0 fsig fg 2f, .. f
Discrete
Time
>
0 0.5 f/f

S

= The frequencies f; and N-f;+ f (N integer), are indistinguishable in the
discrete time domain (after sampling)

= See EE102B for a rigorous mathematical treatment

B. Murmann EE101B - Spring 2017- Chapter 19

Nyquist Sampling Theorem

» |n order to prevent “aliasing” we need

f.

sig,max

s
2

= The sampling rate fs=2-f ., is called the Nyquist rate

= Two possibilities
— Sample fast enough to cover all spectral components, including
unwanted ones outside band of interest
— Limit f through filtering - “anti-alias filter”

sig,max
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Brick Wall Anti-Alias Filter

Amplitude Filter
A
Continuous
Time T
4 2 4+ 2 -
0 fg 2f f
A
Discrete
Time T
>
0 0.5 f/f
B. Murmann EE101B - Spring 2017- Chapter 19 13
Practical Anti-Alias Filter
Parasitic
Tone
Continuous 1 tAttenuation
Time \\
~ >
fs/2 fS-B fS f
Discrete
Time

0.5

\/

fif

S

* Need to sample faster than Nyquist rate to get good attenuation

— "Oversampling"

B. Murmann
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The Reconstruction Problem

Analog signal x(t)

® Discrete time representation x(n) = As long as we sample fast enough,

v 4 x(n) contains all information about x(t)
E .
é - fs > 2'fsig,max
a [ ]
g y = How to reconstruct x(t) from x(n)?
= One can show that ideal reconstruction
'Y requires convolution with a sinc pulse
[ .
— Not practical
— See EE102B for the math
T >
[P Time
T =1If,
B. Murmann EE101B - Spring 2017- Chapter 19 15
Zero-Order Hold Reconstruction
Analog signal x(t) » The most practical way of
®  Discrete time representation x(n) reconstructing the continuous time
Zero order hold approximation signal is to simply "hold" the discrete
time values

= |t turns out that this causes sinc

Amplitude

shaped replicas of the signal

— spectrum at multiples of f,
— Again, see EE102B for the math
r— = These unwanted spectral
components are removed/attenuated
using a reconstruction (or
— smoothing) filter
>
g Time
T =1/,

B. Murmann
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Example from EE102B

Sinc

Signal
Spectrum
I

0

w;
2

7210 — Order Hold Outpir [X (jo) = |H, (jea)- X, (jo)

A
Distorted Spectrum
/ Unwanted replicas

: T N /

. : : e . 0
-20, 3o, -, 2 4] 9 o, 3o, 20,
2 2 2 2
B. Murmann EE101B - Spring 2017- Chapter 19 17
Zero — Order Hold Output |X' (jev) = |H  (jeo))- |X§ (jm)‘
A
: e S | : = —0
-2 -2 -, 2 0 o, o, o2 20,
2 : 2 2 : 2 )
nnnnn wohon Filter 17 {3l
Reconstruction Filter |H {jo)
1 . .
[\ M Magical Filter!
t + t 1 t + + — )
-2, 20 -, o 0 “, @, et 20,
2 2 2 2
Reconstructed Signal X', (JC)) = X(jm)
4
Perfect Signal Spectrum
} } } } 1 } } } —
-2 7 -, o 0 @, o3 7% 26,
2 : 2 2 : 2 )

B. Murmann
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Time Domain Example with “Nonideal” Filter

Signal after
; . : : i : : : : second-order
| | : | | | | : Butterworth filter

B. Murmann EE101B - Spring 2017- Chapter 19

How to Improve the Reconstruction

» Use a steeper filter
— This provides stronger attenuation for the unwanted replicas

= Oversample the signal

— This increases the spacing between the replicas and the wanted
band so that the given filter will provide more attenuation

— Furthermore, this reduces the effect of “sinc” distortion to the spectral
shape (see slide 17)
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Recap

AD Analog _M _M D(igittal
In u
Conversion /\/_> jl - I'JI .

2,7,0,15, ...
Anti-alias Sampling Quantization
Filtering
Digital _M _M A'g’":’g
u
biA o e A 1 e LN
Conversion 5 7 ¢ 15, .. e /\/
DAC Analog Reconstruction
Hold Filtering

= Next, look at
— Transfer functions of quantizer and DAC
— Impact of quantization error

B. Murmann EE101B - Spring 2017- Chapter 19 21

Ideal DAC Transfer Function

= Essentially a digitally controlled voltage, current or charge source

= A DAC does not introduce a quantization error

A‘an

G
A §

/
b4

el
7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!
‘
|

e |

[
‘

|

|

|

‘

000 001 010 011 100
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Ideal ADC Transfer Characteristic

111
110
101
100
011
010
001 !

000 . >
“Decision Levels”

= The inputs are mapped onto the nearest discrete output level

» Mathematically equivalent to rounding

B. Murmann EE101B - Spring 2017- Chapter 19 23

[Volts]

"0 0.2 0.4 0.6 0.8 1 ) 0.2 0.4 0.6 0.8 1

Quantizing a Sine Wave

e Ol

Time [arbitrary units] Time [arbitrary units]

= The introduced error is a very complicated signal that is hard to describe
analytically
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Quantization Error Histogram

= Sinusoidal input signal with f;,=101Hz, sampled at f;=1000Hz
= 8-bit quantizer

Mean=0.000LSB, Var=1.034LSB?%/12
120 T T T T T T T T T

100} |— - p— _—
80f--

60f-

Count

40F-—-

20}

-%.6 05 -04 -03 -02-01 0 01 02 03 04 05 0;6
eq/A

= Distribution is "almost" uniform
= Can approximate average error power by integrating uniform distribution

B. Murmann EE101B - Spring 2017- Chapter 19 25

Statistical Model of Quantization Error

= Assumption: e,(x) has a uniform probability density

= This approximation holds reasonably well in practice when
— Signal spans large number of quantization steps
— Signal is "sufficiently active"
— Quantizer does not overload

ple,) — €
4 Mean €y = queq =0
1/A ~A/2
—AI2 Al2 o _ +A/2, 2 2
. 2 eq A
Variance es = j —de, =—
q q
~A/2 A 12
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Signal-to-Quantization-Noise Ratio

= A B-bit ADC has 2B quantization levels

= Assuming uniform e, and a full-scale sinusoidal signal, we have

1(2A]
I:)sig 2 2 2B
SQNR = = 5 =1.5x2" =6.02B+1.76 dB
gnoise Aﬁ
12
B (Number of Bits) SQNR
8 50 dB
12 74 dB
16 98 dB
20 122 dB
B. Murmann EE101B - Spring 2017- Chapter 19 27

Circuit Implementation

= D/A conversion
— Thermometer DACs
— Binary weighted DACs

= A/D conversion
— Flash
— Successive approximation
— Single slope
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[Maloberti]

-—a by by =
av. AD L= b, | Digital Signals | b, =— D/A VA
V. —H b1 b1 — \Y t
in —a b, by =— ou
(a) Dout Din (b)
Dout
111 out
110 o
101 .
| |
100 | ! A i |
011 L T
| | 0 ! 1
010 Loy S
001 oo A0
000 L L > p D.
“Decision Levels” 000 001 010 011 100
B. Murmann EE101B - Spring 2017- Chapter 19 29

The Data Conversion is Timed by a Clock Signal

Sampled-data times

o Clock e

S

[Maloberti]

"\ A/D |p=mn

Vin Dout

* |In an ADC, the clock defines the sampling instant

* |n a DAC, the clock defines the update instant of the output voltage
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Resistor String DAC

“One-hot decoder”

VREF
"]
5, 3-TO-8 3-BIT
°© DECODER [“° DIGITAL
. INPUT
, < O
g |
", et
— TO
SWITCHES ANALOG
OUTPUT

> \—< CIRCA 1920

N SWITCHES WERE
RELAYS OR VACUUM TUBES

[Data Conversion Handbook]

= Switches are implemented using MOSFETs
— Either off of operating in the triode region
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Decimal Binary One-hot

1 001 00000010

5 101 00100000

7 111 10000000
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Similar Idea Using Currents — Thermometer Current Steering DAC

/ S'x
sor (0 (070 1L

; +TO
| SWITCHES

o
L L o QUTPUT OUTPUT

3-BIT .
DIGITAL [Data Conversion Handbook]

INPUT

» For a “single ended” output, OUTPUT can be grounded

* The output can be fed to a resistor or the virtual ground of an opamp
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Decimal Binary Thermometer

3 011 0000111

5 101 0011111

7 111 1111111
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Eliminating the Encoder

. [Maloberti]
s
N
| W
i~
| N
|
Tree of Switches —0 Vyut
S~ |
~ ]
A
_ 3 !
! | BN No encoder, but lots
NSl of switches
) bp Dy
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Binary Weighted Resistor DAC

Vrer—o R Vour
l||—db
VRrer 3 2R r_ R
—o | bo .. bs € {0,1}
|
b2
— 2R
e a8 | Vesr (bs bz by bo
VOUT:_ —t =+ —+—=
1=, . 2 \1 272478
VRer —o 8R \r
|

bo
% 8R

» No encoder, but component spread becomes large for high resolution
— Think about a 16-bit version of the above circuit
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R-2R DAC

Vrer—o 2R Vour
] b3 .
VRreF —o 2R
l||—d -
b
2 % R
VReF —o 2R

N
X
W\
pe

N
Pyl

= Analyze using successive application of Thevenin

» Let’'s look at the LSB as an example
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Vrer—o 2R Vour
] bs
R
VRrerF —o 2R
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VOUT

Vrer/16

B. Murmann EE101B - Spring 2017- Chapter 19 39

Binary Weighted Current Steering DAC

| 112 /4 118

[Data Conversion Handbook]

MSB LSB

IOUT

= Similar to binary weighted resistor DAC

= There is no current steering equivalent for the R-2R architecture
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Summary on DACs

= DACs can be built in lots of different ways; we just looked at a few

= Architectural choices are often driven by the need to limit complexity or
component spread

= What we haven’t covered

Switched capacitor DACs

Opamp-based circuits

Segmentation (combining binary and thermometer sections)

Nonidealities

B. Murmann EE101B - Spring 2017- Chapter 19 41
Flash ADC
Viet  Vin [Maloberti]
o 15
“ DOUt %Hu
111 V19 > ’
110 % Ry
101 i V19 Z1°
100 | Ry
011 | | Viy(13) >_ " | pecober [* ="
| : : Thermometric | 0 _.bzggpnzll
| to 1 f—an,
010 | : : : Ry >_ 1 binary code o }—ap,
| | V(12 —
001 | i : : : Vin ™ % Dout
000 ' L > Ry
“Decision Levels” : i |
A |
. V(1) >_ !
deal voltage |, _ L vy > W
comparator: ? 0, ifV, <V_ Fu T

Clock

= Decision levels are generated by a resistor ladder and a bank of voltage
comparators compares the input against these levels
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Basic Latch-Based Voltage Comparator

Circuit model during ¢,

. Vop G = Grn +
P m = 9mnN mp
Y B | ; b [~
'Gm
t=0 = Vop(5) - Von(5)
AMP] prz | CL
T ]
ViPo—o0 o 4\ © Vop G
é €L ——= m -
VINo—6™~o— o Vo ~
1
vl Yo T2 meog P =0
N1 N2 — g s N
Rl
— Vyp (t = 0)
0 =sC(, (Vop( ) — opf) + G Von(s)
¢1: Set up initial conditions Vo (t = 0)
$2: Enable positive feedback 0 =sC, (Von(s) - On—> + Gy Vo (5)
s
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Vyy (E = 0)
0=sC, (Vop(s) - Opf) + G Von (s)
Vot =10
0=sC, (Von(s) — %) + G Vop ()
( ) Define:
SCL vop t = 0
V,(s) =—(V () ———
on( ) G ( op( ) S Vod(s) = Vop(s) — Von(s)
C
SCL D, (t = 0) T= _L
Vop(s) = = 2= (von () = G
m S
Voa(s) = stVoq(s) + tveq(t = 0)
T
Vod(s) = vod(t = 0) 1—s1 RHP Pole

Voa(£) = Vo (t = 0)et/"

B. Murmann EE101B - Spring 2017- Chapter 19

The differential output grows
exponentially, with the sign of
the initial condition

44




Typical Waveforms

Nodes vgp and vg, for initial vop of 1mV, 1V, 1nV and 1pV

2.0

. [ L L [
- / / j
e /o /
S P —

N N PN
N } M

AP A

03—¢, goes high

-.25
1.8 2.35 2.9 3.45 4.0

time (ns)

» This is the fastest possible way to detect the polarity of a signal
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SAR ADC
Successive
Approximation
Register
Vino— =
> Vour
“Sample and Hold”
or
“Track and Hold”
A [Maloberti]
Input Value

gl, \

ol DAC search path

o

>

i i i ] .

L
0000 1000 0100 0110 0111 0101
Time and Code
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Alternative View

ASSUME X =45
TEST

ISX>327? YES 3 RETAIN32 3 1

IS X > (32 +16) 2 NO 3 REJECT163 0

HHH  isx=e2+92 YES 3 RETAINS > 1

HH  sxzp2++42 YES > RETAINA > 1

[0 ISX>(32+8+4+2)? NO 3 REJECT2 3 0

O YES 3 RETAIN1 2 1

ISX=(32+8+4+2+1)?

TOTALS:  X=32+8+4+1 = 45,5 = 101101,

[Data Conversion Handbook]

B. Murmann EE101B - Spring 2017- Chapter 19
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Basic Track and Hold Circuit

vclock
v L - vout
VDD 2z

@ :
P4
= VIN >

PULSE(0 5 0 1n 1n 5u 10u) ) s o1

T SINE(1.5 1 35k) 100p

é i
.MODEL MyNMOS NMOS (KP=50u VT0=0.5)
.tran 50u

B. Murmann EE101B - Spring 2017- Chapter 19
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5.5V
5.0V

Waveforms

V(vclock)

4.5V

4.0V

3.5V

3.0V

2.5V

2.0v

1.5V

1.0v

0.5V

0.0v
-0.5V
2.6V
2.4V

V(vin) V(vout)

2.2V
2.0V //

1.8V //

1.6V

_|

N\
rack \ [ Hold N\

1.4V

T

1.2v

1.0V

AN N

0.8V
0.6V

0.4V
Ops Sus

B. Murmann

10ps 15us 20us 25ps 30us 35us 40us 45us

EE101B - Spring 2017- Chapter 19

50ps

49

= Many different implementations exist; below is the simplest variant

Single-Slope ADC

» Main idea is to count the number of clock cycles it takes to discharge the
sampled signal with a current source

ANALOG |

INPUT &

DIGITAL

. COUNTER | CUTPUT
CK 0
R

[

TIMER e

B. Murmann

AND
CONTROL

0sc.

EE101B - Spring 2017- Chapter 19
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Comparison

Clock Cycles
Per Conversion

Complexity

SAR ~B Medium

B = number of bits

B. Murmann EE101B - Spring 2017- Chapter 19
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Summary on ADCs

»= ADCs can be built in lots of different ways; we just looked at a few

» The choice of architecture is often driven by a reasonable tradeoff
between complexity and speed

= What we haven’t covered
— Oversampling ADCs (Delta-sigma ADCs)
— Pipeline ADCs
— Time interleaving
— Nonidealities

B. Murmann EE101B - Spring 2017- Chapter 19
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Maximum Input Frequency

Performance of State-of-the-Art ADCs

T T
14* @ Time-Interleaved
10 (S « Flash i
A Pipeline
@ 1>
~~~~~~~ @ SAR
s | VoUW VR BE.. @ A % Other
— 100 € T4 oA AT @ G AT
N AKX Tl A A A TS
L ~
£
10° |
<
H B
e Oy *
. m %0 0 o oo
10 * A- \ \
20 30 40 50 6 70 90 100 110 120
SNDRhf [dB]
Signal to Noise and Distortion Ratio
B. Murmann, "ADC Performance Survey 1997-2014," [Online]. Available:
http://www.stanford.edu/~murmann/adcsurvey.html.
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Chapter 20

Summary

Boris Murmann

Stanford University
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Modern Circuits Are Complex

Hearing aid
Audio “shoe” or “boot”m

Wireless receiver ——>q

Wireless
microphone

Hearing aid
with wireless "

@
) audio receiver ////(/

3

XTAL _ VCC VDD (g

ilh £ 4+

PROM Ve Power
PFLASH Management
PRAM | DSP K=} (I EEPROM ‘
DRAM e GPIO |
DROM 12C GND in
DMA K=} K=4{Scheduler| SPI T .
< I > |
- Signal H
v 7 7 | | gnal z SRC/I2S
J Y Digital Audio I/O =
\K Radio | Sk sre 1 Die ol :
&PLC ) Analog Audio Out H

[El-Hoiydi, 2014 International Solid-State Circuits Conference (ISSCC)]
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Managing Complexity: Block Abstraction

Digital
Processing

Frequency -
Amplification translation Filtering D'gét;i'\;[gggilm
(optional)
R -~
Physical
signals:
RF, electrcial, Transducers Transmit (or Actuation) Path
ultrasonic, Cables
mgfﬁgﬁ'&m Receive (or Sense) Path
chemical, ...
& \ D
Frequency Analog-to-digital
Amplification translation Filtering nalog-to-digi
P (optional) conversion

= Almost any meaningful electronic mixed-signal system can be
represented by this generic block diagram

B. Murmann EE101B - Spring 2016 - Chapter 20

Managing Complexity: Hierarchical Abstraction

WWplh e

1
Analog : Digital
1
Mixed-Signal Systems

1

Filters, Data Converters : Microprocessors
1
1
1

EE101B Operational Amplifiers 1 Arithmetic Blocks
Playground I
1
1
1
1

Elementary Transistor Stages Logic Gates

Device Modeling

Device Physics
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Topics Covered in This Course

» Modeling and analysis of analog gain stages
— MOSFET operation
— Biasing
— Small-signal analysis
— Two-port models

» Laplace transform for circuit designers
— Frequency response
— Step response

» Opamp-based feedback circuits
— Basic analysis
— Stability and frequency compensation
— Oscillators
— Analog filters

= Circuit simulation

= A/D and D/A conversion

B. Murmann EE101B - Spring 2016 - Chapter 20 5

Main Objective: Build up a Solid Toolkit

= MOSFET modeling
— MOSFET physics are very complicated
— Used the simplest possible model to minimize
complexity while retaining most important effects
= Small-signal approximation

— Electronic circuits are not perfectly linear, but using
a linear model greatly simplifies their analysis

— Use large-signal equations to find bias point

— Linearize all components at the operating point

— Continue analysis with linear small-signal model
» Can use linear tricks, like superposition

* Apply known results as much as possible; do
not blindly grind through KCL/KVL!

= Two-port modeling
— Creates an additional level of abstraction
— Lets us think about cascading multiple stages
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= Energy storage elements
— Basic intuition
« Cis anopen at DC, short at high frequencies
* Lis ashort at DC, open at high frequencies

— Nodal equations become differential equations with
L and/or C present

» But writing/solving differential equations for
circuit analysis is tedious and cumbersome
» LTI system analysis, Fourier transform, H(jo)
— A step in the right direction

— Recognize that system is fully described by
impulse response; convolution with impulse
response gives output

— Convolution in the time domain > Multiplication in
the frequency domain

— Eigenfunction e/t
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» Laplace transform, H(s)
“The” analysis tool for electrical engineers
— Eigenfunction et

— Lets us describe arbitrary linear systems, even
unstable ones (e.g. oscillators during start-up)

— System is fully described by the location of poles
and zeros in the s-plane
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» Laplace transform of components
- Z,=1/sC,Z =sL
— Model initial conditions using independent sources
in series or parallel
» Using Laplace to find the step response

— Set input to 1/s, multiply with H(s), use inverse
Laplace transform to find time domain output

— Often requires partial fraction expansion

» Using Laplace to find the frequency response
— Set s =jo = Fourier transform
— Evaluate magnitude and phase, create a Bode plot
— Understand asymptotes in Bode plot

» What happens at low/high frequencies when
certain components become open/short

— Understand impact of real LHP/RHP zeros and
LHP poles on phase and magnitude
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= Second order systems

— The “bread and butter” system model; applicable to
many different circuits

— Qfactor is a proxy that tells us whether the system
rings (time domain) or peaks (frequency domain)
= Filter design

— Place poles and zeros “strategically” in the s-plane
to meet certain objectives, e.g.

* Maximally flat response (Butterworth)

» Steepest possible roll-off (Elliptic)

+ Maximally flat group delay (Bessel)

— Desired when wave-shape of time domain signal
is important

— Unfortunately it is impossible to get a sharp roll-off

and well-behaved step response; one must pick a
trade-off
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= Basic op-amp circuit analysis

— Find ideal closed-loop transfer function by
assuming ideal opamp model (infinite gain, virtual
ground)

— Then find loop gain (T) to quantify deviation from
ideality

T
AcL = Acvigeal T 7

» Frequency response of opamp circuits
— Single-pole opamp
* Closed-loop BW is equal to unity gain frequency
of T(jo) > fagp = fuq
— Two-pole opamp
* Closed-loop BW is still approximately equal to

f,1, but exact value depends on position of
second pole (which must occur beyond f,)

— More than two poles = approximate with two pole
model
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= Stability of feedback circuits
— Most general criterion is BIBO (somewhat useless)

— For a loop consisting of stable LTI systems, we can
apply the Bode criterion

* Phase margin, gain margin
— First order system has 90° phase margin (boring)
— Second order system has a one-to-one mapping of
phase margin and Q of closed loop poles
* Frequency compensation

— Tweak a feedback circuit to adjust/improve its
phase margin

— Most off the shelf opamps are already properly
compensated

» Dominant pole plus other poles beyond f,
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= Oscillators

— What bothers us in amplifiers is great for building
oscillators

— Barkhausen criterion

— Roughly speaking, poles are initially in the right half
plane, then snap onto the jo axis > steady-state
oscillations

— Covered phase shift, Wien, LC and xtal oscillators

= Data converters
— ADC: Sampling and quantization
— DAC: Zero-order hold reconstruction
— Both typically require filters
* Anti-aliasing and image rejection
— Many different architectures exist to meet different

points objectives in the speed/complexity trade-off
space
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= Circuit simulation

— Circuit simulator is nothing but a powerful
numerical solver

— OP, DC, AC, TRAN analysis are very similar to the
way we look at/analyze circuits by hand

— Garbage in - garbage out

= The coolest hand analysis tools ever
— OCTC analysis

» Provides a first order (conservative) BW
estimate using divide and conquer

* Must know potential pitfalls
— Blackman’s impedance formula

* Quickly compute the input/output impedances
of a feedback circuit

B. Murmann EE101B - Spring 2016 - Chapter 20 14




Where to Go From Here?

Autumn Winter Spring
Sophomore EE 101A EE 101B
Circuits | Circuits Il _|
EE 114 EE 214B
Analog IC | Analog IC II Integrated (IC) Analog
EE 122A EE 133 Board-Level Analog
Analog Lab Analog Comm. Lab
Junior
Senior EE 124 EE 122B Neuro-Bio Electronics
Co-term Neuro-Bio Bio-Instruments
EE 153 EE 254 Power Electronics
Power Electronics Adv. Power Electr.
EE 118_ Eng. 105 Mechatronics
Mechatronics Feedback Controls
EE 271 EE 313 Digital Circuits
Digital IC Digital Memory
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The Evolution of a Circuit Designer...
£
EE101A,B EE114/214A EE214B EE313
EE122A/B EE271 EE314A,B
EE133 EE254 EE315
EE153
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