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Chapter 1

Introduction

EE101B - Spring 2017 - Chapter 1 1

B. Murmann

Circuits are Everywhere!
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Everything Has Sensors Today
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The Beginning

Transistor
Bardeen, Brattain, Shockley, 1948

Integrated Circuit
Kilby, 1958
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Moore’s Law

� In 1965, Gordon Moore predicted exponential growth in the number of 
transistors per integrated circuit 
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… And He was Right
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http://en.wikipedia.org/wiki/Moore's_law
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A Gigantic (Economic) Feedback Loop

Science

+ Constraints
Engineering/
Design Mill

State-of-the-Art

Time

Leverage 
Mechanism

$$$
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State-of-the-Art Semiconductor Fab

Intel’s “Fab 32” (Chandler, Arizona) ~ $3 Billion
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45nm Technology (Intel)

Steve Cowden
THE OREGONIAN

July 2007
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Transistors Have Become Cheap
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[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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Can Afford to Have Lots of Transistors
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[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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Result: Increasingly Sophisticated Applications

[Walden Rhines, Mentor]
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Drivers
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[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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IoT Trend
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[Tsai, 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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[Kim, 2015 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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State-of-the-Art Microprocessor
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[Rusu, 2014 International Solid-State Circuits Conference (ISSCC)]

Intel “Ivytown” Processor
15 Cores (64-bit)
22nm Technology
4.31 Billion Transistors
Clock Rate 1.4-3.8 GHz
Power Dissipation 40-150W
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High-Speed Interconnect
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[Morita (Sony), 2014 International Solid-State Circuits Conference (ISSCC)]

600 Gb/s optical 
chip-chip interface

Think about it:
600 Gb/s ~ 20 DVDs 
per second!
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High Speed Wireless Interconnect
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[Saigusa (Toshiba), 2014 International Solid-State Circuits Conference (ISSCC)]

2 Gb/s link

60GHz CMOS Wireless Transceiver
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Hearing Aid with Wireless Receiver
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[El-Hoiydi, 2014 International Solid-State Circuits Conference (ISSCC)]
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CERN CMS Experiment
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[Heijne (CERN), 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]
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[Heijne (CERN), 2014 International Solid-State Circuits Conference (ISSCC), Keynote Talk]

A huge sea of amplifiers and A/D converters!
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MEMS Gyroscope

� Proof mass oscillates ~10μm

� Rotation causes sub picometer displacement in 
sense direction

� Chip resolves a ∆C of 10-20 F in a BW of 1 Hz

� Corresponding displacement is 10-14 m, which is the 
classical radius of an electron (!)

Frame

Proof
Mass

S
e
n
s
e

Drive

Clockwise rotation

S
e
ns

e

Drive

http://www.analog.com/library/analogDialogue/archives/37-03/gyro.html

Coriolis force
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Circuit Designers must be Broad!

EE101B - Spring 2017 - Chapter 1 22
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Learning All of This Takes Time!
The Evolution of a Circuit Designer

EE101A,B EE114/214A EE214B EE314A,B
EE315
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Managing Complexity: Hierarchical Abstraction
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Device Physics

Device Modeling

Elementary Transistor Stages Logic Gates

Operational Amplifiers Arithmetic Blocks

Filters, Data Converters Microprocessors

Mixed-Signal Systems

DigitalAnalog

EE101B
Playground
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Managing Complexity: Block Abstraction

� Almost any meaningful electronic mixed-signal system can be 
represented by this generic block diagram
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  A/D

Frequency 
translation 
(optional)

FilteringAmplification
Analog-to-digital 

conversion

 D/A

Frequency 
translation 
(optional)

FilteringAmplification Digital-to-Analog 
conversion

Digital 
Processing

Transducers 
Cables

...

Physical 
signals:

RF, electrcial, 
ultrasonic, 

optical, 
mechanical,
chemical, ...

Transmit (or Actuation) Path

Receive (or Sense) Path

B. Murmann

EE101B Lab

� Key aspect: “Signal conditioning” � manipulate the analog signal in 
such a way that it meets the requirements of the next stage or the 
connected transducer
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 D/A
Digital 

Processing

Photo
diodes

Optical

Speaker

Your phone

Audio
jack

Transmitter

Receiver
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Final Lab Output
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TransmitterReceiver

“Experience is what you get when you don’t get what you wanted.”

(Aaron Buchwald)

B. Murmann

Integrated Circuit Design vs. Discrete Circuit Design

� Avoid using resistors and inductors, use as 
many MOSFET transistors as needed (within 
reasonable limits)

� Available capacitors are in the range of 
10 fF–100 pF

� The critical parameters in transistors can be 
made to match to within 1%, but vary by more 
than 30% for different fabrication runs.

� Capacitors of similar size can match to within 
0.1%, but vary by more than 10% for different 
fabrication runs.

EE101B - Spring 2017 - Chapter 1 28

� Limit the component count below say 100 elements 
to achieve a small board area

� Available resistors can be chosen in the range of 
1Ω–10 MΩ

� Available capacitors are in the range of 1 pF–10 mF

� All resistor are within 1–10% of their nominal values

� The utility of discrete transistors is limited. Use 
MOSFETs primarily as switches (power 
management). Usually prefer Opamps over discrete 
transistors. Sometimes use bipolar junction 
transistors if Opamps can’t do the job.  

Apples vs. Oranges
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Positioning of EE101B

� EE101B is not an IC design class

– Continue with EE114 to learn circuit design techniques specific to 
integrated circuits

� EE101B is focused on the “common denominator” concepts for general 
circuit design

– Most of the material forms the prerequisite for IC design but is also 
more broadly applicable 
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Many Possible Flows for Circuits-Oriented Students 

EE 101A
Circuits I 

Autumn Winter Spring

EE 101B
Circuits II

EE 114
Analog IC I

Sophomore 

EE 214B
Analog IC II

EE 122A
Analog Lab

EE 133
Analog Comm. Lab

Junior
Senior
Co-term

EE 254
Adv. Power Electr.

EE 153
Power Electronics

EE 118
Mechatronics

Eng. 105
Feedback Controls

EE 271
Digital IC

EE 313
Digital Memory

Integrated (IC) Analog

Board-Level Analog

Power Electronics

Mechatronics

Digital Circuits

EE 122B
Bio-Instruments

EE 124
Neuro-Bio 

Neuro-Bio Electronics

EE101B - Spring 2017 - Chapter 1 30
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Course Topics

� Modeling and analysis of analog gain stages

– Two-port models

– MOSFET operation

– Biasing

– Small-signal analysis

� Laplace transform for circuit designers

– Frequency response

– Step response

� Opamp-based feedback circuits

– Stability and frequency compensation

– Oscillators

– Analog filters

� Circuit simulation

� Analog-to-digital conversion

EE101B - Spring 2017 - Chapter 1 31

Lab preparation

B. Murmann

Textbook/Reference Material

� No required textbook!

� Use E40/EE101A-type textbooks when in doubt about fundamentals (on 
reserve in engineering library)

– Ulaby and Maharbiz, “Circuits,” 2nd ed.

– Hambley, “Electrical Engineering: Principles and Applications,” 6th ed.

– Custom textbook from EE101A/Winter 2017

� Use EE114 textbook for introduction to gain stages

– Murmann, “Analysis and Design of Elementary MOS Amplifier 
Stages”

– Selected sections/chapters will be provided online

� Use various online resources and lecture notes for the more advanced 
topics

EE101B - Spring 2017 - Chapter 1 32
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Prerequisites

� EE101A (required)

– Kirchhoff’s laws, superposition, Norton and Thevenin, PN junction, 
MOSFET I-V law, small-signal modeling, MOSFET single-stage 
amplifiers, energy storage elements

� EE102A (required)

– LTI systems, sinusoids and complex exponentials, impulse response, 
convolution, frequency response, Fourier series, Fourier transform 

� CME102 (recommended)

– First- and second-order linear ODEs and their application to RLC 
circuits, transient and steady-state response, Laplace transform and 
its properties

EE101B - Spring 2017 - Chapter 1 33
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Assignments

� Homework (20%)

– Lowest homework score will be dropped

– Handed out on Wednesdays, due following Wednesday at 5pm

– We will collect the submitted homeworks from the gray collection box 
near Allen 208 at ~9am on Thursdays

� Lab (20%)

– 8% pre-lab

– 12% lab

� Midterm Exam (20%)

� Final Exam (40%)

EE101B - Spring 2017 - Chapter 1 34
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Honor Code

� Please remember that you are bound by the honor code

– We will trust you not to cheat 

– We will try not to tempt you

� But if you are found cheating it is very serious

– There is a formal hearing

– You can be thrown out of Stanford

� Save yourself a huge hassle and be honest

� For more info

– http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/pdf/honorcode.pdf

EE101B - Spring 2017 - Chapter 1 35
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Logistics

� Instructor

– Boris Murmann, Allen 208

� Administrative Assistant

– Ann Guerra, Allen 207

� Teaching assistants

– TBD

� Web pages: 

– https://canvas.stanford.edu/courses/62873

• Check regularly for office hours, etc.

– https://piazza.com/stanford/spring2017/ee101b/home

• For discussions

� This is a “paperless” course

– All required materials provided on coursework page

� Discussion session

– TBD

EE101B - Spring 2017 - Chapter 1 36
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Lab Organization

� Lab meetings

– Lab 1: Transistor characterization

– Lab 2: Amplifier

– Lab 3: Multistage amplifier

– Lab 4: LED Driver

– Lab 5: Opamp stability

– Lab 6: Receiver & complete optical link

� Lab location

– TBD

� You must sign up for a lab section during week 1, by Friday, April 7

– Details to be announced

EE101B - Spring 2017 - Chapter 1 37
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Boris Murmann

Stanford University

Chapter 2

Two-Ports

EE101B - Spring 2017 - Chapter 2 1

Reading: Murmann, Section 1-3

B. Murmann

Motivation: EE101B Lab Project

� Key aspect: “Signal conditioning” � manipulate the analog signal in 

such a way that it meets the requirements of the next stage or the 

connected transducer

EE101B - Spring 2017 - Chapter 2 2
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Model of Audio Jack

EE101B - Spring 2017 - Chapter 2 3

~10 mV peak

~300 Ω

B. Murmann

Transmit Photodiode

EE101B - Spring 2017 - Chapter 2 4
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Model of Transmit Photodiode
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rD ~ 0 Ω

+

VF ~1.5 V

-

IF

Emitted IR light proportional to IF

B. Murmann

Small-Signal Model of Transmit Photodiode

EE101B - Spring 2017 - Chapter 2 6

rD ~ 0 Ω

if

Want if ~1 mA peak for light modulation
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How to Drive the Photodiode?

EE101B - Spring 2017 - Chapter 2 7

?

rD ~ 0 Ω

if
~ 1mA peakvs

~10 mV peak

~300 Ω

B. Murmann

Solution

EE101B - Spring 2017 - Chapter 2 8

rD ~ 0 Ω

if
~ 1mA peakvs

~10 mV peak

~300 Ω

+

vin

-

Gmvin

Transconductance amplifier

�� = −
��

��
= −

1
�
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= −100
��� = −����� = −����
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How We Will Realize This Circuit in The Lab

EE101B - Spring 2017 - Chapter 2 9

vs

Biasing Voltage Gain ~20 Voltage Gain ~1

“Level Shift”

Gm ~ 5mS

B. Murmann

Small-Signal Model of Lab Circuit
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vs

Rs

+

vin1

-

+
-

Rout1

Av1vin1

+

vin2

-

+
-

Rout2

Av2vin2

+

vin3

-

Gm3vin3
RL

Audio jack
Common Source 

Voltage Amplifier

Common Drain 

Voltage Buffer
LED Driver LED

Voltage Amplifier Voltage Amplifier Transconductance Amplifier
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How a Circuit Designer Thinks About this Problem
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Rs

vs RL

Gmvin

+

vin

-

vs

vs

Rs

+

vin1

-

+
-

Rout1

Av1vin1

+

vin2

-

+
-

Rout2

Av2vin2

+

vin3

-

Gm3vin3
RL

Overall Objective

Chosen Implementation

Model of Implementation

B. Murmann

What we Need to Master

� Know the four types of two-port amplifiers

– Voltage, current, transconductance, transresistance

� Know how to model arbitrary amplifier stages using two-port models

– How to find the model parameters?

� Know how to work out cascade transfer functions

– What is the overall transfer function of a chain of two-ports?

EE101B - Spring 2017 - Chapter 2 12
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General Amplifier Two-Port

EE101B - Spring 2017 - Chapter 2 13

Currents defined to flow into the respective port

(somewhat arbitrary)

B. Murmann EE101B - Spring 2017 - Chapter 2 14

Voltage Amplifier Model

Current Amplifier Model

Transconductance Amplifier Model

Transresistance Amplifier Model

VCVS

CCCS

VCCS

CCVS
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Overall Transfer Function of a Voltage Amplifier

EE101B - Spring 2017 - Chapter 2 15
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B. Murmann

Why Not Model this as a Transconductance Amplifier?

� We can definitely do this! 

� The two circuits below are equivalent

– Thevenin � Norton

EE101B - Spring 2017 - Chapter 2 16
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� Furthermore, using appropriate Norton/Thevenin transformations at the 

input, we could just as well describe this circuit using a current amplifier 

or transresistance amplifier two-port

– The four models can be parameterized to be exactly equivalent

� So then, why bother with four different models?

� The model we choose depends on the design intent

– Is the input signal represented by a current or a voltage?

– Is the output signal represented by a current or a voltage?

EE101B - Spring 2017 - Chapter 2 17
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How can We Tell?

� Obviously, both the input and output port may carry both a voltage and 

current, so what do you mean?

EE101B - Spring 2017 - Chapter 2 18

��
� =

����

��
=

���

��� + ��
⋅ �� ⋅

��

�� + ����

If Rin << Rs, then the input voltage gets “destroyed” � the input is really the current

If RL << Rout, then the output voltage gets “destroyed” � the output is really the current

iin iout
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Another Example

EE101B - Spring 2017 - Chapter 2 19
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How to Calculate the Model Parameters of Arbitrary Circuits?
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Step 1: Compute gain value
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How to Calculate the Model Parameters of Arbitrary Circuits?

� RL and RS must be connected while applying the test source at the 

opposite port when the circuit is “bilateral” � beyond the scope of what 

we will discuss here (if you are interested, read Murmann, Example 1-3)

EE101B - Spring 2017 - Chapter 2 21

Step 2: Compute input and output 

resistances (or impedances)

B. Murmann

Example (Unilateral Circuit)

EE101B - Spring 2017 - Chapter 2 22

What are Gm, Rin and Rout?
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Cascading Stages – A Simple Example

� Simply the product of individual transfer functions

� Solve using divide and conquer
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Rout1

Ai1∙iin

Rin1

iin
vin2

Rout2

Gm2∙vin2
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vout
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What We Haven’t Covered

� Intricacies of bilateral two-ports

– We won’t deal with these (much) in EE101B

� How to get to the small-signal model of a circuit

– That’s what we’ll review next

� How to incorporate capacitors, inductors

– We’ll deal with this later in the quarter

EE101B - Spring 2017 - Chapter 2 24
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Boris Murmann

Stanford University

Chapter 3

MOSFET Modeling

EE101B - Spring 2017 - Chapter 3 1

Reading: Murmann, Section 2-1

B. Murmann

Motivation: Lab Transmitter Circuit

� How to model MOSFETs for our needs?

EE101B - Spring 2017 - Chapter 3 2
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Field Effect Transistors Come in Many Shapes and Sizes

EE101B - Spring 2017 - Chapter 3 3

Power 

MOSFET

JFET

B. Murmann

Field Effect Transistors Come in Many Shapes and Sizes

� In integrated circuits, the FETs are built as planar structures

� CMOS (Complementary Metal-Oxide-Semiconductor) technology 

features both n- and p-channel transistors

EE101B - Spring 2017 - Chapter 3 4
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State of the Art

EE101B - Spring 2017 - Chapter 3 5

MOSFET with a gate length of 28nm

Current development: Shift from planar 

technology to 3D “FinFet” (or “TriGate”) 

transistors

B. Murmann

MOSFET Modeling in EE101B

� Focus on the “bare minimum” fundamentals

� Will neglect many effects that can play a significant role in IC design

– But have no bearing at all on the type of circuits we build in the lab

� Effects we will not take into account

– Channel length modulation, backgate effect

• See EE114

– Drain induced barrier lowering, velocity saturation, mobility 

degradation, short channel effect, reverse short channel effect, 

subthreshold conduction, …

• See EE216, EE214B

EE101B - Spring 2017 - Chapter 3 6
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Structure of an Integrated (Planar) MOSFET

EE101B - Spring 2017 - Chapter 3 7
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Basic MOS Operation (1)

� With zero voltage at the gate, device is "off“

– Back-to-back reverse biased pn junctions

EE101B - Spring 2017 - Chapter 3

0V VD (>0V)
0V

0V

8



B. Murmann

Basic MOS Operation (2)

� With a positive gate bias applied, electrons are pulled toward the 

positive gate electrode

� Given a large enough bias, the electrons start to "invert" the surface 

(p→n); a conductive channel forms

– Threshold voltage, VTn

EE101B - Spring 2017 - Chapter 3

>0

9
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Basic Operation (3)

� If we now apply a positive drain voltage, current will flow

� How can we calculate this current as a function of VGS, VDS?

EE101B - Spring 2017 - Chapter 3

>0

VDS>0

ID=?

10
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Assumptions

EE101B - Spring 2017 - Chapter 3

>0

VDS>0

11

1)The current is controlled by the mobile charge in the channel

2)Gradual channel approximation - the vertical field sets channel charge, so 
we can approximate the mobile charge through the voltage difference 
between the gate and the channel

3)The carrier velocity is proportional to the lateral field (ν = µE). This is 
equivalent to Ohm's law: velocity (current) is proportional to E-field 
(voltage)

B. Murmann

First Order IV Characteristics (1)

� What we know:

EE101B - Spring 2017 - Chapter 3

[ ]n ox GS TnQ (y) C V V(y) V= − −

D nI Q v W= ⋅ ⋅

nv E= µ ⋅

[ ]D ox GS Tn nI C V V(y) V E W∴ = − − ⋅µ ⋅ ⋅

12
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First Order IV Characteristics (2)

� For VDS/2 << VGS-VTn, this looks a lot like a linear resistor: I=1/R × V

� Lets plot this IV relationship...
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dV(y)
E

dy
=[ ]D ox GS Tn nI C V V(y) V E W= − − ⋅µ ⋅ ⋅

[ ]D n ox GS TnI dy W C V V(y) V dV= µ − − ⋅

[ ]
DSVL

D n ox GS Tn

0 0

I dy W C V V(y) V dV= µ − − ⋅∫ ∫

( ) DS
D n ox GS Tn DS

VW
I C V V V

L 2

 
= µ − − ⋅ 

 
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Plot of First Order IV Curves

� Something is wrong here...

– Current should never decrease with increasing VDS

� What happens when VDS>VGS-VTn?

– VGD = VGS-VDS becomes less than VTn, i.e. no more channel or "pinch off"

EE101B - Spring 2017 - Chapter 3

I D

VDS

VGS-VTn

14



B. Murmann

Progression of Channel Profile

EE101B - Spring 2017 - Chapter 3 15

n
+

n
+

S D
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VDS = 0

n
+
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S D
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0 < VDS < VGS - VTn

n
+

n
+

S D

G

VDS = VGS - VTn

n
+

n
+

S D

G

VDS > VGS - VTn

Qn(L) = 0

Qn(L-∆L) = 0

∆L

“Pinch-off”

Pinch-off point 

moves to L-∆L

B. Murmann

Modified Plot and Equations
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( ) DS
D n ox GS Tn DS

VW
I C V V V

L 2

 
= µ − − ⋅ 

 
Triode:

Saturation:

(neglecting ∆L)
( ) 2GS Tn

D n ox GS Tn GS Tn n ox GS Tn

(V V )W 1 W
I C V V (V V ) C (V V )

L 2 2 L

− 
= µ − − ⋅ − = µ − 

 
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Dsat GS TnV V V= −
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“Drain Characteristic”
Plot of ID versus VDS with VGS as a parameter

“Transfer Characteristic”
Plot of ID versus VGS in saturation (fixed VDS)

B. Murmann

Channel Length Modulation (∆L = f[VDS])

EE101B - Spring 2017 - Chapter 3 18

( )2

D n ox GS Tn DS

1 W
I C (V V ) 1 V

2 L
≅ µ − + λIn saturation: We won’t worry 

about this in 

EE101B
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Backgate Effect

� If the bulk is not connected to the same potential as the source (as 

assumed previously), the threshold voltage becomes a function of VSB

� But, in EE101B, we will always connect the source to the bulk � VSB = 0

EE101B - Spring 2017 - Chapter 3 19

We won’t worry 

about this in 

EE101B

B. Murmann

First-Order MOS Model Summary

� For notational convenience, we define VOV = VGS – VTn

– “Gate overdrive voltage”

EE101B - Spring 2017 - Chapter 3 20

≅

"VCCS“ with 

quadratic control law
≅
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EE101B Model Shortcomings to be Aware of

� We are neglecting channel length modulation, backgate effect

� For VGS < VTn, the transistor is not 100% off, but carries a small current 

that scales exponentially with VGS

� For short channels (say L < 0.5µm), various correction terms due to high 

electric fields must be included in the model

� For small values of VOV, the physics are much more complicated than 

advertised. For the square law to hold, we require VOV > 150mV.

� None of these issues will impair the kinds of circuits/experiments that we 

consider in EE101B

– Take EE116, EE216, EE214B if you are interested…
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Which Parameters Can We Control?

� Since we deal only with board level design in EE101B, it makes sense to 

lump together all the parameters that we cannot change, anyway. Define:
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IC Design
(For a given, fixed fabrication process)

Board level design
(For a given component, e.g. CD4007)

µ No No

Cox No No

W, L Yes No

VTn No (small changes possible via 

back-gate effect, or choice of L)

No (small changes possible via 

back-gate effect)

ox

W
K C

L
= µ
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P-Channel MOSFET

� ID, VGS, VDS, and VTp are all negative � confusing algebra

� Solution: “Think positive,” i.e. run right hand side of the IV equations 

will all positive numbers and know that the end result for ID is negative 
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( ) ( ) ( ) ( )

= − − −

 = − − − − − − − 

DS
D p GS Tp DS

D p

V
I K (V V )V

2

I K 3V 1V 1V 1V [ ]

− = − − ⋅

− = − − ⋅

SD
D p SG Tp SD

D p

V
I K (V V ) V

2

I K 3V 1V 1V 1V



B. Murmann

Boris Murmann

Stanford University

Chapter 4

The Common-Source Stage
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Reading: Murmann, Section 2-2; Pre-lab 2

B. Murmann

Common-Source Stage
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Triode

Saturation

���� = ��� − ��	�

���� = ��� − 1
2 � �
� − ��� �	�In saturation:
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Load Line Perspective

EE101B - Spring 2017 - Chapter 4 3

B. Murmann

Example

� What is the required VIN?

� Does the transistor operate in saturation or in the triode region?
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��� = 5 �
	� = 10 �Ω

� = 500 ��
�� , ��� = 1.5�

����   ���� = 2.5 �
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Biasing and Small-Signal Analysis

� The input is decomposed into a DC bias component (VIN) and a small-

signal AC component (vin); same for drain current and output voltage
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�
� = �
� + � � !� = �� + !" ���� = ���� + �#$%
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���� = ��� − 1
2 � �
� − ��� �	� It must also hold for the total quantities

���� + &'() = ��� − 1
2 � �
� + � � − ��� �	�

���� = ��� − 1
2 � �
� − ��� �	� This equation must hold for the DC quantities

(in saturation)

What we want to know

�#$% = ��� − 1
2 � �
� + � � − ��� �	� − ��� + 1

2 � �
� − ��� �	�

� + * � − �� = 2�* + *�

�#$% = − 1
2 �	� 2 �
� − ��� � � + � ��

� = �
� − ��� * = � �
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�#$% = −�	� �
� − ��� � � 1 + � �2 �
� − ���

�#$% = −�	���+� � 1 + � �2��+

Small-signal approximation: � � ≪ 2��+

�- = �#$%� � = −���+	�

Linear amplifier model:

Valid if: (1) device operates in saturation, (2) vin << 2VOV

B. Murmann

Lab Transmitter Circuit
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vs~10mV

VOV ≅ 500mV

� The small signal approximation is valid for the CS stage realized by M1
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Alternative Approach
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. / = . � + .0 �
1! / − � + .0′ �

2! / − � � + ⋯
Taylor expansion of a 

differentiable function 

around point a:

For our circuit: ���� = ���� + 4�����
� 5
-678+67

�
� − �
�

���� − ���� = 4�����
� 5
-678+67

�
� − �
�

�#$% = 4�����
� 5
-678+67

� �

�- = �#$%� � = 4�����
� 5
-678+67

B. Murmann

� Exactly the same result as before

� However, the issue with both approaches we’ve used so far is that we 

first have to write out  the large signal transfer function

– This can get tedious for larger circuits

� Much more elegant: Instead of differentiating the large signal transfer 

function, “differentiate” (linearize) each component in the circuit
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�- = �#$%� � = 4�����
� 5
-678+67

= 4
4�
� ��� − 1

2 � �
� − ��� �	� -678+67

�- = �#$%� � = −� �
� − ��� 	� -678+67

�- = �#$%� � = −� �
� − ��� 	� = −���+	�
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Why Should This Work?

� No matter how nonlinear or complex a circuit is, it has to obey KCL and 

KVL. For each node, all of the DC bias currents and all incremental 

currents have to sum to zero:
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0 = �9 + �� + �: + ⋯
� In general, the incremental currents can be arbitrary (nonlinear) 

functions of the incremental node voltages (around the operating point)

!; = .;(�9, ��, �:, … )
� If all excursions are small, we can approximate them via the total 

differential, where all derivatives are evaluated at the operating point (Q) 

and KCL will still hold in the limit sense 

4!; = ?.;?�95
@

4�9 + ?.;?��5
@

4�� + ?.;?�:5
@

4�: + ⋯

0 = !9 + !� + !: + ⋯

A 4!; ≅ A !; = 0
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4�; = ?C;?!9 5
@

4!9 + ?C;?!� 5
@

4!� + ?C;?!: 5
@

4!: + ⋯

� We can argue exactly the same way for KCL and express small voltage 

excursions around the operating point via a total differential

� The bottom line is that we can differentiate all i-v and v-i relationships to 

predict the circuit behavior for small excursions around the operating 

point

� No worries – this will be much easier than it looks, since f() and g() are 

typically just one dimensional or two-dimensional functions

– We just wrote the full-blown equations above to get a feel for why the 

approach must work in general

A 4�; ≅ A �; = 0
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iD+

vIN

-

RD

+

vOUT

-

VDD

Let’s look at the components one by one…

vDD
iDD

vDD

iDD

�"" = 4���4!�� 5
 DD8
DD

⋅ !""

Small-signal model:

idd

vdd

idd

0

0
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+
vR

-

iR

RD

vR

iR

!F = 4�G4!G 5
 H8
H

⋅ �F = 	� ⋅ �F

Small-signal model:

vr

ir

+
vr

-

ir

RD

The resistor is already assumed to be linear…
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iD = ID + id

+

vDS = VDS + vds

-+

vGS = VGS + vgs

-

iD

ID

VGS vGS

gm

Small-signal model:

id

+

vds

-
+

vgs

-

gm⋅vgs

id

vgs

gm

CI = 4
4�JK

1
2 � �JK − ��� �

-LM8+LM

CI = � �JK − ��� = ���+

4!�4�JK5
-LM8+LM

≜ CI

!" = 4!�4�JK5
-LM8+LM

⋅ �OP
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Complete Model
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Voltage amplifier representation:

�- = �#$%� � = −CI	� 	#$% = 	�
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Other Ways to Compute gm

� Using the drain current equation, we can express gm in terms of other 

variables
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CI = � �JK − ��� = ���+

�� = 1
2 ���+� ��+ = 2���

CI = 2���

CI = 2����+

B. Murmann

Example 1

� Once the gate overdrive and the voltage drop across RD are known, the 

voltage gain is fully defined

– The “K” of the transistor does not matter at all in this situation
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iD+

vIN

-

VDD

RD

+

vOUT

-

+

VR = 3V

-

Transistor is biased such that 

�
� − ��� = ��+ = 1�

�- = −CI	� = − 2����+ 	� = − 2�G��+ = −6

and the resistor is sized to have the 

voltage drop indicated on the left
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Does the Voltage Gain go to Infinity for VOV� 0 ?

Model valid for VOV ≥ 150 mV

2/VOV

Actual MOSFET
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Example 2

� What is the required VIN, what is VOV?

� What is the small-signal voltage gain?
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iD+

vIN

-

VDD

RD

+

vOUT

-

Given:

� = 0.8 S�
�� ��� = 1�

��� = 5� ���� = 3�
	� = 20�Ω
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PMOS CS Stage

ID
+

VIN

-

VDD

RD

+

VOUT

-

VOUT [V]

VIN [V]

VDD - |VTp |

A

B

C

D

1

3

5

1 3 5

VIN + |VTp |
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− = −
2

D p SG Tp

1
I K (V V )

2
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Small-Signal Equivalence to NMOS Circuit

+

vout

-

+

vin

-

gm vsg

RD

+

vsg

-
id

(a)

+

vout

-

+

vin

- gm vsg

RD

-

vsg

+

id

(b)

+

vout

-

+

vin

- gm vgs

RD

+

vgs

-

id

(c)
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Conclusion: Think NMOS when it comes to the small-signal model!
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Small-Signal Model Gotchas: Signal Clipping

� Always be aware that the small-signal model does not tell us anything 

about the actual signal swings that the circuit can handle. When in 

doubt, go back to the large-signal model and check.
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vOUT

vIN

vout

vin

vOUT

vIN

vout

vin

Q

Q

B. Murmann

Biasing

� VIN must be set accurately, so that the amplifier operates at the proper bias point
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What Do We Want? — Example Re-Visited
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��� = 5 �
	� = 10 �Ω,

� = 500 ��
�� , ��� = 1.5�

����   ���� = 2.5 �

�
� = ��� + ��+ = ��� + 2��� = 2.5��� = ��� − ����	� = 0.25S�

+

vOUT = VOUT + vout

-

VDD

vin

VIN

RD

Signal

Bias

iD = ID + id

B. Murmann

Possible Solution?
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+

vOUT 

-

VDD = 5V

RDRB

RB

Vin = 2.5V

vin
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The Issue

� The threshold of a MOSFET is never well defined

– CD4007: VTn = 0.7…2.8V (somewhat extreme)

– In modern IC processes, the threshold varies by about ±200mV 

around its nominal value – still a very large range
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http://www.isi.edu/~vernier/EE327/cd4007_intersil_datasheet.pdf
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Replica Biasing Approach
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+

vOUT 

-

VDD = 5V

RDIB

vin

M1M2

VIN

�
� = ���� + 2�U�� = 2.5� ���� = ��� − 1
2 	��9 �
� − ���9 �
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� If K1 = K2 and VTn1 = VTn2:
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���� = ��� − 1
2 	��9 ���� + 2�U�� − ���9

�

���� = ��� − 	��U

� Independent of the transistor parameters!

� In a different context (IC design), this circuit is also called a “current 

mirror,” since ID2 = IB = ID1

– Note that the transistors must carry the same current, since they both 

operate in saturation and have the same VGS

B. Murmann

Key Assumption

� For the replica bias approach to work well, the transistor parameters 

must match

� Luckily, this is the case for transistors in the same package

– Since they were produced on the same wafer, at the same time, 

using the same manufacturing steps

� The close matching of similar components on the same chip is a 

property that is frequency exploited in IC design
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M1

M2
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Residual Mismatch Between Devices in the Same Package

� The threshold mismatch (within a given package) for the MOSFETs we 

are using in the lab should be on the order of 10mV

� The difference between the thresholds can be modeled as shown above 

and essentially shifts the output bias point by –Av⋅∆VTn

– Often not a problem
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+

vOUT 

-

VDD = 5V

RDIB

vin

M1M2

VIN

∆VTn
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Simplified Circuit Without Current Source

� It’s cumbersome to implement a current source in the lab (within the 

scope of what we want to do) � use a resistor instead
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+

vOUT 

-

VDD = 5V

RD

vin

M1M2

VIN

RB
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� Using this circuit, we have (see pre-lab 1)
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�
� = ��� + 1
�	U 1 + 2�	U(��� − ���) − 1

� Ideally, what we wanted is

�
�∗ = ��� + 2���

� Suppose we pick RB such that VIN = VIN* assuming nominal transistor 

parameters. Now, by how much does VIN deviate from VIN* as VTn is 

varied?

� Using the numbers from the previous example: 

VTn = 1.5 V, K = 0.5 mA/V2, VIN* = 2.5 V � RB = 10kΩ

undesired

B. Murmann

� Even though we replaced the current source with a resistor, the circuit is 

still quite robust

– For a ±0.5V change in VTn, VIN deviates only by about 80mV from its 

ideal value
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VTn [V]

VIN [V]

1 1.2 1.4 1.6 1.8
2

2.2

2.4

2.6

2.8

3

Ideal (VIN*)

VIN (replica with RB) 

Garage electronics
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Lab Transmitter Circuit

� The transmitter circuit we’ll use in the lab uses the same biasing approach

� The main difference to the circuit shown previously is that we’ll couple in 

the signal via a capacitor “Cbig”

– This is called “AC coupling” – more analysis to follow later

– The main advantage is that this allows us to apply a ground referenced 

signal (bottom terminal of vs connected to ground)
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vs

B. Murmann

Small-Signal Resistance of a Diode Connected Device 
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VDD = 5V

IB

M2

VIN

gmvt

vt

it

Small-signal model with test voltage source 

rx = ?

WX = �%!% = �%CI�% = 1
CI
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Circuit with RB
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VDD = 5V

RB

M2

VIN rx = ?
WX = 1

CI ||	U
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Circuit with Rbig
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VDD = 5V

RB

M2

VIN

Rbig

rx = ? WX = 1
CI ||	U + 	Z O

Usually Rbig >> than this term
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Chapter 5

The Common Drain Stage

EE101B - Spring 2017 - Chapter 5 1

B. Murmann

Motivation ― Lab Transmitter Circuit
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vs

Common Drain 

Stage

Degenerated 

Common 

Source Stage
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Transistor Configurations

EE101B - Spring 2017 - Chapter 5 3

Not covered in EE101B

B. Murmann

NMOS CD Stage with Ideal Current Bias
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IB

vIN

VDD

vOUT

vin

VIN

In the CD stages that we will 

consider, the bulk is always 

connected to the source.

This is not always possible (or 

even desirable) in IC technology 

(see EE114), but we can 

certainly do this with our 4007 

parts in the lab.
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DC Analysis
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IB

VDD

VOUT

VIN

��� = ��� +
2	


�
= �
������

���� = ��� − ���

�
� = �

 − ����

�
� = �

 − (���−���)

�
� = �

 − (���−��� − ���)

�
� = ��� + �

 + ��� − ���

Transistor operates in saturation unless

��� > �

 + ��� > �
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DC Transfer Characteristic

� As seen from this graph, the circuit performs a “DC level shift”

– Exactly what we will use it for in the lab

� Since the source of the transistor directly “follows” the input, a CD stage 

is commonly called “source follower” 
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0 2 4 6

0

2

4

6

VIN [V]

[V]
VOUT

VIN

VGS
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DC Level Shifting

� With the PMOS version of this circuit we can do the opposite, i.e. shift 

the DC level “up” instead of “down”
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IB

vIN

VDD

vOUT
VGS = VTn + Vov

VIN

VOUT

Input with large DC component

Same signal amplitude, but 

reduced DC component

B. Murmann

DC Analysis With Resistor (Instead of Current Source)
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RB

VDD

VOUT

VIN

��� = ���� + ��� +
2	


�

��� = ���� + ��� +
2����

���

Keep this term small, by 

making RB sufficiently large

2 ⋅ 2�

0.5
!"

�# ⋅ 20$Ω
= 200!�Example:
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DC Transfer Characteristic with Resistor

� Bottom line: If properly designed, the circuit still operates quite similar to 

the version with the current source
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0 2 4 6

0

2

4

6

8

VOUT [V]

VIN [V]

��� = ���� + ��� +
2����

���

Straight line approximation with unity slope
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Small-Signal Analysis

� Trivial for the circuit with current source bias:
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IB

vIN

VDD

vOUT
VGS = VTn + Vov

VIN

VOUT

&'() = &*� ⇒ ", =
&'()

&*�

= 1
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Small-Signal Analysis with Resistor 

� Derive the small-signal voltage gain using the circuit’s small-signal model 
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RB

vIN

VDD

vOUT
VGS = VTn + Vov

VIN

VOUT
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Small-Signal Analysis with Resistor 

� From here, we could simply grind through KCL to get the result, but we 

can gain better intuition by “massaging” the circuit a little bit…
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RB

vin

vout

gmvgs=gm(vin-vout)
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RB

vin

vout

gmvin -gmvout
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RB

vin

vout

gmvin gmvout
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RB

vin

vout

gmvin

1/gm
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Drawn A Bit More Nicely…

� The output resistance of the CD stage is low (since 1/gm is typically just 

a few hundred ohms or less in our circuits) 
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RB

vin vout

gmvin 1/gm
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� Without RB the voltage gain would be exactly unity

– As we already know
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RB

vin vout

1·vin
1/gm+

-
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Final Model
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vin vout

Avvin
Rout+

-

", =
��

�� +
1

./

=
./��

1 + ./��

≅ 1    2
3 ./�� ≫ 1 Example: 2!5 ⋅ 10$Ω = 20

�'() =
1

./

||�� =

1
./

⋅ ��

�� +
1

./

=
1

./

./��

1 + ./��

≅
1

./

    2
3 ./�� ≫ 1
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CD Stage � Source Degenerated CS Stage

� Very similar, except that we take the output at the drain
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RB

vIN

VDD

vOUT

vin

VIN

RS

vIN

vOUT

vin

VIN

RD

VDD

iD
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Small-Signal Analysis
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RS

vIN

vOUT

vin

VIN

RD

VDD

iD

vS

Provided that the transistor 

operates in saturation, we know 

from our CD stage analysis: 

&7 =
./��

1 + ./��

&*�

89 =
&7

��

=
./

1 + ./��

&*� ≅
1

��

&*�

&' = −89�
 = −
./�


1 + ./��

&*� ≅ −
�


��

&*�



B. Murmann

Using the Degenerated CS Stage as a Transconductance Amplifier
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RS

vIN

vin

VIN

VDD

iD

LED :/ =
89

&*�

=
./

1 + ./��

≅
1

��

Gmvin

+

vin

-
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Putting It All Together…
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Rs

vs RL

Gmvin

+

vin

-

vs

vs

Rs

+

vin1

-

+
-

Rout1

Av1vin1

+

vin2

-

+
-

Rout2

Av2vin2

+

vin3

-

Gm3vin3
RL

Overall Objective

Chosen Implementation

Model of Implementation



B. Murmann

Boris Murmann

Stanford University

Chapter 6

RLC & LTI review
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References: E40 or EE101A textbooks (any), EE102A lecture notes
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Capacitor
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[Ulaby & Maharbiz]
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Inductor

EE101B - Spring 2017 - Chapter 6 3

[Ulaby & Maharbiz]
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[Ulaby & Maharbiz]
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RLC Circuit at DC
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V

V = ?

[Ulaby & Maharbiz]
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The Role of L and C in Practical Circuits

� Sometimes your friend, sometimes your foe

– In some circuits we exploit the energy storage nature and add explicit 

L and C to achieve a certain objective

– In some circuits, we are limited by the unwanted presence of L 

and/or C � Parasitic capacitance, parasitic inductance
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Example:

EE101A DC-DC converter
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Example: Microprocessor Power Supply
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“Ldi/dt noise”

[Grochowski et al, “Microarchitectural di/dt Control,” IEEE Design & Test of Computers, May-June 2003] 
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Example: Wire Delay and Gate Delay

EE101B - Spring 2017 - Chapter 6 8

Simple model of a long wire (e.g., on a microprocessor)

Simple model of a digital logic path

(e.g., on a microprocessor)
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(Cheesy) Analysis of Digital Logic Delay
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vI vO
4x

vI vO

VDD

VSS VSS

td

CL

vO(t=0) = 0

iP

VDD/2

�� = ��
���
�	

	
 = ���/2
����	

= 1
2

�����
��

�� ≅ 4(��� + ���) ≅ 8 ⋅ �����

�� ≅ 1
2 ����

�
� ��� − |�!�| "
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� Assuming that we need to accommodate 10 such delays within each 

processor cycle, this leads to a clock speed of
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 = 1
2

�����
��

≅ 1
2

8 ⋅ ��������
1
2 ����

�
� ��� − �!�

"

	
 ≅ 8�"���
� ��� − �!�

" ≅ 8�"
����

	
 ≅ 8 1�# "

100 %#"
�& ⋅ 5�

= 160)&

*+�, ≅ 1
10 ⋅ 160)& = 625-./

Example:
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Microprocessor Clock Speed Over Time
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http://cpudb.stanford.edu

B. Murmann

Example: Analog Filters, Oscillators

EE101B - Spring 2017 - Chapter 6 12

LC Oscillator

Sallen-Key 

Lowpass filter
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Example: Fingerprint Sensor

EE101B - Spring 2017 - Chapter 6 13

[Tartagni, IEEE J. Solid-State Circuits, Jan. 1998]
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What Do We Want to Accomplish?

� For arbitrary systems consisting of R, L, C and controlled sources

– Predict the response to practically relevant signals

• Steps, ramps, sinusoids, stepped sinusoids, …

– Describe the system itself in a compact and insightful way

• Poles and zeros (more later) 

EE101B - Spring 2017 - Chapter 6 14

vin

+
-

vout

t
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Why Sinusoids?

� We can decompose arbitrary periodic signals into sums of sinusoids

– Fourier series, see EE102A
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Example:

[Pauly, EE102A]
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LTI Review: Response of a System (in General)

EE101B - Spring 2017 - Chapter 6 16

[Pauly, EE102A]
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[Pauly, EE102A]
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[Pauly, EE102A]
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[Pauly, EE102A]
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[Pauly, EE102A]
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Impulse Response

EE101B - Spring 2017 - Chapter 6 21

If H is time invariant (true for almost all circuits we deal with in EE101B):

[Pauly, EE102A]
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RC Circuit Impulse Response

EE101B - Spring 2017 - Chapter 6 22

Let Y0=0, and x(t) = δ(t).

Recall that:

[Pauly, EE102A]
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[Pauly, EE102A]

B. Murmann

� H(jω) is the continuous time Fourier transform of h(t)

� The Fourier transform allows us to replace the convolution operation 

by a simple multiplication

� General definition of the continuous time Fourier transform 
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0 12 = 3 * 	 45678�	
9

59
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Computing the System Output Using the Fourier Transform

EE101B - Spring 2017 - Chapter 6 25

[Pauly, EE102A]
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Fourier Transform Pairs

(a ≥ 0)

[Ulaby & Maharbiz]
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[Pauly, EE102A]
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[Pauly, EE102A]
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Important Expressions
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467: = cos 2	 + 1 ⋅ &�>(2	)

cos 2	 = 1
2 467: + 4567:

sin 2	 = 1
21 467: − 4567:

(Note that these expressions clarify the relationship between transform pairs 8, 9, 10)
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Back to Our RC Circuit
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ℎ 	 = 1
B� 45 8

C+ ⋅ D(	) . 12 = 1
B�

1
1

B� + 12
= 1

1 + 12B�(7)

. 12 = 1
1 + 12B� = 1

1 + 2B� " . −12 = . 12

E 2 = ∠. 12 = −GH%	G> 2B�
1 E −2 = −E 2

(even)

(odd)
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� For a complex exponential input, we know
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I 	  = ℱ5L . 12 ⋅ MN 2 − 2O
= ℱ5L . 12O 46P 7Q ⋅ MN 2 − 2O
= . 12O 46P 7Q 467Q8

= . 12O 46[7Q8SP(7Q)]

� How about plain vanilla sine and cosine functions? This is easy to figure 

out, since they are just combinations of two complex exponentials

U 	 = cos 2O	 = 1
2 467Q: + 4567Q:

I 	 = 1
2 . 12O 46[7Q8SP(7Q)] + 1

2 . −12O 46[57Q8SP(57Q)]

I 	 = 1
2 . 12O 46[7Q8SP(7Q)] + 1

2 . 12O 46[5(7Q8SP(7Q)]

I 	 = .(12O) cos[2O	 + E(2O)]

B. Murmann

Bottom Line

� Whichever sinusoidal signal we apply, all we need to do in order to find 

the time domain output is 

– Scale the amplitude by the magnitude of the transfer function

– Shift the argument by the angle of the transfer function

� Consequently, all that we’ll bother to look at in detail is .(12)
– A circuit designer will rarely think about the actual Fourier transform 

of sinusoids in terms of their mathematical representations (delta 

functions on the positive and negative side of the ω axis)

� In addition, a circuit designer will usually not bother to draw two-sided 

spectra or two-sided representations of the frequency response

– One side tells the whole story, due to known symmetries (the 

symmetries noted in our example hold in general) 
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Plotting H(jω)
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Better: Magnitude log-log, angle semilog in degrees

� We can now “see” interesting breakpoints and asymptotes

EE101B - Spring 2017 - Chapter 6 34

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

ωRC

|H
(j
ω

)|

10
-2

10
-1

10
0

10
1

10
2

-100

-50

0

ωRC

∠
H

(j
ω

) 
[d

e
g
]



B. Murmann

Points and Slopes of Interest
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. 12 7V L
C+

= 1
1 + 11 = 1

2 “Corner frequency”

. 12 7≫ L
C+

≅ 1
12B� = 1

2B�
High frequency asymptote, 

10x drop per decade

∠. 12 7V L
C+

= −GH%	G> 1 = −45° Phase shift at corner frequency

∠. 12 7≫ L
C+

≅ −90° Phase shift asymptote at

high frequencies

The transition from small phase shift to nearly 90 degree 

phase shift occurs within about two frequency decades. 
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Magnitude in decibels (dB)

� A logarithmic unit with lots of history

– See http://en.wikipedia.org/wiki/Decibel

� The decibel is used to express the logarithmic ratio between two 

quantities. The base definition is for ratios of power.
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B
Z = 10 logLO
]L
]O

B
Z = 10 logLO
1�

1�� = 60�^

� Since power is proportional to voltage (or current) squared, we have

B
Z = 10 logLO
�L"
�O"

= 20 logLO
�L
�O

B
Z = 20 logLO
1�

1#� = 60�^

� Note that

20 logLO
1
2 = −3.0103�^ ≅ −3�^
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“Bode Plot” (Magnitude in dB)
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Boris Murmann

Stanford University

Chapter 7

The Laplace Transform

EE101B - Spring 2017 - Chapter 7 1

Reading: Smith, Chapter 32 (available on course web under “Reading Material”) 

Reference: Oppenheim and Willsky, Chapter 9

B. Murmann EE101B - Spring 2017 - Chapter 7 2

Pierre-Simon Laplace

Mathematician and Astronomer

1749 – 1827 

Jean Baptiste Joseph Fourier

Mathematician and Physicist

1768 – 1830 
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Limitations of the Fourier Transform

� The Fourier transform is a great tool for describing signals

� However, when it comes to describing and analyzing systems, the 

Fourier transform has a few shortcomings

– It does not handle initial conditions

– It does not converge/exist for certain functions of interest

– It does not lead to a compact representation of system properties

• Poles, zeros, more later…

� The solution to this problem is the Laplace transform, which can be 

viewed as a generalization of the Fourier transform

– Often just advertised as a tool for solving differential equations

• But, it is much more than that for electrical engineers

EE101B - Spring 2017 - Chapter 7 3

B. Murmann EE101B - Spring 2017 - Chapter 7 4

Laplace Transform z Transform

Fourier Transform

Phasor Transform

� = ��

� = ���
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Motivating Example

� Same as analyzed in the previous chapter, but let’s also consider 

negative values for R

– May look strange at first glance, but we can easily build negative R 

with active components (and this is used in oscillators, etc.)
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ℎ 
 = 1
�
 �� �

��
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Fourier Transforms

EE101B - Spring 2017 - Chapter 7 6

ℎ 
 = ���� � �� = � ����� 
 ⋅ ����� �

�

��
= 1
� + ��� ≥ 0

ℎ 
 = ��� � �� = � ���� 
 ⋅ ������

�

��
 ≥ 0

Integral does 

not converge
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(Bilateral) Laplace Transform

� This is really just the Fourier transform of ! 
 ⋅ ��"�
� More commonly written as

EE101B - Spring 2017 - Chapter 7 7

# $,� = � ! 
 ⋅ ��"� ������

�

��

# � = � ! 
 �����

�

��
� = $ + ��

� This integral converges for a much larger class of functions that we are 

interested in

� Let’s have a look at our specific example

B. Murmann

Laplace Transforms

� A Laplace transform always comes with a “region of convergence” (ROC)

– Covered in great detail in EE102B; we’ll just look at this briefly 
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ℎ 
 = ���� � � = � ����� 
 ⋅ ��"�������

�

��
= 1
� + �� ≥ 0

ℎ 
 = ��� � � = � ���� 
 ⋅ ��"�������

�

��
= 1
� + � ≥ 0

Converges for $ > −�

Converges for $ >  
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Region of Convergence
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ℎ 
 = ���� � ≥ 0 ℎ 
 = ���  ≥ 0

$

���-plane

−�

ROC

Fourier transform along 

this line ($ = 0)!

$

���-plane

 

ROC

Fourier transform does 

not exist!
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(Unilateral) Laplace Transform

� The unilateral version of the Laplace transform is most commonly used in 

circuit texts, as it lets us deal with initial conditions 

� Setting the lower integration limit to 0- makes it clear that we are including 

impulses (δ(t)) around t=0

� If ! 
 = 0 for 
 < 0, the Fourier transform still follows from the unilateral 

Laplace transform by substituting � = �� (just like in the more general 

bilateral case)

– In the context of transforming the impulse response of a system, this is 

just requiring that the system is causal

� Unless otherwise noted, we will assume that Laplace transforms in 

EE101B are unilateral

EE101B - Spring 2017 - Chapter 7 10

# � = � ! 
 �����

�

*�
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� Note that just like ����, ��� is also an eigenfunction of LTI systems

EE101B - Spring 2017 - Chapter 7 11

[Pauly, EE102A]

B. Murmann

� �(�) is the Laplace transform of the LTI system’s impulse response, and 

is also called the system transfer function

� We can compute the system output using

EE101B - Spring 2017 - Chapter 7 12

, � = � � ⋅ #(�)
� As before (with the Fourier transform), this saves us from evaluating 

convolution integrals

� If the ROC of � � includes the imaginary axis, then for � = ��, H(s) 

gives us the Fourier transform (frequency response) of the system
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Laplace Domain Framework

EE101B - Spring 2017 - Chapter 7 13

[Modified from Ulaby & Maharbiz]

Gain important insight 

from s-domain 

representation

(poles, zeros)

Apply signal

Apply signal

Get the frequency 

response (Fourier 

transform) by setting 

� = ��
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Laplace transform pairs

[Ulaby & Maharbiz]

1
� 1 − ���� �(
)

Another common pair:

1
� � + �

(follows from 2 and 3)
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[Ulaby & Maharbiz]

Derivative ↔ Multiplication with s

Integral ↔ Division by s

B. Murmann

Proof of Derivative Property

EE101B - Spring 2017 - Chapter 7 16

[Darve, CME102]
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Laplace Transform of Circuits/Circuit Elements

� One way to use the Laplace transform is to write the differential 

equation, translate into an algebraic equation and then solve

– Circuit designers are far too lazy to do this…

� What we’ll do is apply the Laplace transform to each component and 

write KCL/KVL in the Laplace domain
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ℒ ./� 
 = 0 .ℒ /� 
 = 0 .0�(�) = 0KCL

ℒ .1� 
 = 0 .ℒ 1� 
 = 0 .2�(�) = 0KVL

ℒ 1 
 = �/(
)Resistor ℒ 1 
 = � ⋅ ℒ / 
 2 � = � ⋅ 0(�)

B. Murmann

� If 1� 0� = 0, we can define s-domain impedances and admittances, 

similar to (resistance and conductance for a resistor)
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/�(
) = 
 �1�(
)�

Capacitor

ℒ /� 
 = 
 ⋅ ℒ �1�(
)
�


0� � = �
 ⋅ 2� � − 
1�(0�)

Thevenin

0� � = �
 ⋅ 2� � 3� � = 2� �
0� � = 1

�
 ,� � = 1
3 � = �
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[Ulaby & Maharbiz]

B. Murmann

Example
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x(t)

R

+

y(t)

-
C = X(s)

R

+

Y(s)

-

sC
1

s

y(0
-
)

If 4 0� = 0: � � = , �
# � = 1

1 + ��


, � = # �
1
�


� + 1
�


+ 4 0�
� ⋅ �

� + 1
�


= # � + �
4(0�) 1
1 + ��
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Boris Murmann

Stanford University

Chapter 8

Analysis of First Order Circuits Using 

the Laplace Transform

EE101B - Spring 2017 - Chapter 8 1

Reading: Smith, Chapter 32 (available on course web under “Reading Material”) 

Reference: Oppenheim and Willsky, Chapter 9
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Example
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x(t)

R

+

y(t)

-
C = X(s)

R

+

Y(s)

-

sC
1

s

y(0
-
)

If � 0� = 0: � � = � �
� � = 1

1 + ���

� � = � �
1

��
� + 1

��
+ � 0�

� ⋅ �
� + 1

��
= � � + ���(0�) 1

1 + ���



B. Murmann

Let’s Compute…

� The impulse response

� The pole location of the circuit

� The frequency response

� The zero input response with an initial condition

� The step response

� The response to a stepped cosine

EE101B - Spring 2017 - Chapter 8 3

B. Murmann

Impulse Response

� Set initial condition to zero

� Look up Laplace transform of �(�) in the transform pair table

EE101B - Spring 2017 - Chapter 8 4

� � = 1
1 + ��� � � = ℒ � � = 1

� � = � � � � =  1
1 + ��� ⋅ 1 = �(�)

1
� + � ↔ ���� ℎ � = 1

�� �� �
�� (as we already knew…)
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Stability

� In general, a system is said to be stable if every bounded input produces 

a bounded output (BIBO)

� For an LTI system, it can be shown that stability requires the impulse 

response to be absolutely integrable, i.e. � ℎ � �� < ∞ 
� 

– Means that the RC circuit with R>0 is stable, the circuit with R<0 is not

� For a causal LTI system with a rational �(�), this condition is equivalent 

to having all the “poles” of �(�) in the left half of the s-plane

� The poles (!" … !$) are the roots of the denominator polynomial of �(�), 

the zeros (%" … %$) are the roots of the numerator polynomial
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� � = & �
' � = �( + �"� + ⋯ + �*�*

+( + +"� + ⋯ + +$�$ = , � − %" � − %" … (� − %$)
� − !" � − !. … (� − !$)

� � = /
1 − �

%" 1 − �
%. … 1 − �

%* 

1 − �
!"

 1 − �
!.

 … 1 − �
!$

 
/ = �(

+(
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Stability of our RC Circuit
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3D Plot of � � for R>0
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� � = 1
1 + ��� � 0, 12 = 1

1 + (0 + 12)��

Pole

12/��0/��

ROC 

ends here

Red line is the 

frequency 

response
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3D Plot of � � for R<0

� The circuit is unstable and the frequency response is undefined (the 12
axis lies outside the ROC)
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Frequency Response

� If the circuit is stable, the frequency response is simply found by 

evaluating �(�) for � = 12

EE101B - Spring 2017 - Chapter 8 10

� � = 1
1 + ���

� 12 = � � 56789 = 1
1 + 12��

� 12 = 1
1 + 12�� = 1

1 + 2�� .

∠� 12 = −�;<��= 2��



B. Murmann

Bode Plot

� The angular corner frequency coincides with the magnitude of the pole

– This is only the case for a single pole system
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Geometrical Interpretation
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0

12�-plane

! = − 1
��� � = 1
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Bode Plot Construction Rules (For Real Poles and Zeros)

� Identify all the pole frequencies ωpi and ωzi and list them in increasing 

order. Apply the following rules, beginning with the lowest frequency.

� For each zero, the magnitude slope increases by 20 dB/decade, when 

the frequency is greater than the zero frequency.

� For each pole, the magnitude slope decreases by 20 dB/decade when 

the frequency is greater than the pole frequency.

� To plot the phase, we know that each term contributes +45° for a LHP 

zero, and ‒ 45° for a RHP zero at ωzi. A real pole contributes ‒45°. We 

approximate the total ±90° phase shift as a straight line over the interval 

0.1ωi < ω < 10ωi.
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� � = /
1 − �

%" 1 − �
%. … 1 − �

%* 

1 − �
!"

 1 − �
!.

 … 1 − �
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log � 12 = log / + log 1 − 12
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+ ⋯ − log 1 − 12
!"

− ⋯
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Example
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Construct a Bode plot for a system 

with the following parameters:

G = 100 (DC gain)

ωp1 = 10 rad/s

ωp2 = 100 krad/s

LHP zero: ωz1 = 1 krad/s 

RHP zero: ωz2 = 10 Mrad/s
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Computing the Zero Input Response

� Also called the natural response of the circuit
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X(s)

R

+

Y(s)

-

sC
1

s

y(0
-
)

� � = � 0� 1
� + 1

��
ℒ�" 1

� − � = ���

� � = � 0� �� �
��

� � = � � + ���(0�) 1
1 + ���

� The initial condition simply dies out exponentially

– �� is called the time constant of the circuit, often denoted J = ��
� We got the same result by solving the differential equation

– But this time without dealing with differential equations… 

B. Murmann

Computing the Step Response

� We could use ℒ�" "
6 6K� = "

� 1 − ���� to solve, but let’s perform a 

partial fraction expansion to gain some valuable insight
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ℒ L(�) = 1
�

� � = �(�)� � = 1
1 + ��� � � = �M(

� � + �

N � = M(L(�)

� = 1
��

� � = �M(
� � + � = O

� + P
� + � = O � + � + P�

� � + �

X(s)

R

+

Y(s)

-
sC
1
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� This result can be generalized for arbitrary �(�) = O(�)/P(�)
– The steady state component, or “final value” of the step response is 

always M(�(0); the transient part depends on the specifics of �(�)
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� � = �M(
� � + � = O

� + P
� + � = O � + � + P�

� � + �

� = 0: �M( = O � + � O = M(
�

� + �R
67(

= M(�(0) Transfer function at DC

� = −�: �M( = P(−�) P = −M(

� � = M(�(0)
� − M(

� + �

� � = M(� 0 − M(�� �
�� = M( 1 − �� �

��

Steady-state

response

Transient

response
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� J = �� is called the “settling time constant” in this context
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Closely Related: The Final Value Theorem

� If lim�→ �(�) exists, then
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lim�→ �(�) = lim6→( ��(�)

� For the previous example

lim�→ �(�) = lim6→( � ⋅ �M(
� � + � = M(

� This theorem is useful for arbitrary responses (not just the step response)
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Computing the Response to a Stepped Cosine

� This expression is nowhere to be found in the transform pair table

� Must perform a partial fraction expansion
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Partial Fraction Expansion

� Interestingly, note that

EE101B - Spring 2017 - Chapter 8 21

� � = ��
(� − 12()(� + 12()(� + �) = O

� − 12(
+ O∗

� + 12(
+ P

� + �

� = 12(: �12( = O 12( + 12( 12( + � O = �/2
� + 12(

� = −�: �(−�) = P(−� − 12()(−� + 12() P = − �.

�. + 2(.

O = �/2
� + 12(

= 1/2
1 + 12(�� = 1

2 �(12() P = − 1
1 + 2(�� . = − � 12( .

= O � + 12( � + � + O∗ � − 12( � + � + P(� − 12()(� + 12()
(� − 12()(� + 12()(� + �)

B. Murmann

Putting It All Together

� After several time constants, the circuit approaches the steady-state 

response, which is the same response we obtain from the Fourier 

transform (or phasor transform) for everlasting sinusoids
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Example (2(�� =  2)

EE101B - Spring 2017 - Chapter 8 23

-5 0 5 10
-0.5

0

0.5

t/RC

y
(t

)
�66(�)

B. Murmann

More Examples

� Pole, zero and frequency response of

– A first-order RC highpass

– An RC lowpass with extra resistor

– An amplifier circuit with a RHP zero

� Bode plot and asymptotes of parallel and series RC impedance
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First Order RC Highpass
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Bode Plot of the Frequency Response
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RC Lowpass with Extra Resistor
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Figure 3-4
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Bode Plot

� Intuition: At high frequencies, the capacitor becomes a “short” and the 

circuit turns into a resistive voltage divider (ratio ½, no phase shift)
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Amplifier Circuit with a RHP Zero

� In electronic circuits, right half plane zeros are typically caused by some 

sort of feedforward mechanism
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� The circuit goes through a total phase shift of -180 degrees

� At low frequencies, the amplifier is inverting with a gain of 2

� At high frequencies, the amplifier is non-inverting with unity gain
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Circuit Impedances

� Looks capacitive at low frequencies

� Resistive at high frequencies after 

going through a LHP zero
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Example (R = 1kΩ, C = 1nF)
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Boris Murmann

Stanford University

Chapter 9

Analysis of Second Order Circuits Using 

the Laplace Transform

EE101B - Spring 2017 - Chapter 9 1

Reading: Smith, Chapter 32 (available on course web under “Reading Material”) 

Reference: Oppenheim and Willsky, Chapter 9
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Second Order RLC Lowpass

� A common way to parameterize this expression is
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Pole Locations

1 + �
�
� + ��

�
�
= 0

For � < 0.5:          ��,� = − ��
�� 1 ± 1 − 4��

� Distinct real poles
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� Complex conjugate poles X
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Q = 0.25
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Q = 0.5
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Q = 1
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Q = 4
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Bode Plot for Real Poles
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Bode Plot for Complex Poles
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A Closer Look at the Magnitude

� � = 1/ 2 corresponds to a second order Butterworth response, also 

called “maximally flat” second order response

– More about this when we cover filter design
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Computing the Step Response

� First consider distinct real poles and perform a partial fraction expansion
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Partial Fraction Expansion for Distinct Real Poles (Q < 0.5)
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� Consider the special case where |��| >> |��|, i.e. �� is a dominant pole
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, = ���� − �� ≅ −1 � = ���� − �� ≅ 0

0 &
)
 = 1 + ,1234 + �1254 ≅ 1 − 1234

� The step response approaches the same result we saw for a single pole 

system, with a time constant 8 =  −1/��
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Partial Fraction Expansion for Coincident Real Poles (Q = 0.5)
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Step Response for Real Poles

� The critically damped case (Q = 0.5) corresponds to the fastest possible 

settling without overshoot; the case for Q < 0.5 is called overdamped
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Partial Fraction Expansion for Complex Conjugate Poles (Q > 0.5)

� Essentially the same algebra as for district real poles, except that we are 

dealing with complex conjugate roots
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Final Result — Step Response with Complex Poles
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Q = 30

EE101B - Spring 2017 - Chapter 9 19

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

t⋅ω
0

y
(t

)/
V

0

B. Murmann

Percent Overshoot as a Function of Q
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Same Circuit with Negative Resistor

� The real part of the poles becomes positive (poles in the RHP); the 

sinusoid grows exponentially

� We’ll get back to this when we talk about oscillators…
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Stanford University

Chapter 10

CS Stage Frequency Response

EE101B - Spring 2017 - Chapter 10 1

Reading: Murmann, Sections 3-2-1, 3-2-2, 3-3-1, 3-3-3, 3-3-4
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What is the Bandwidth of this Circuit?
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Intrinsic Gate Capacitance of a MOSFET (Triode Region)

1/2Cgc

1/2Cgc
n

+
n

+

Gate (G)

Source (S) Drain (D)
W

L

Channel

Cgctox
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��� = �����
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Transition to Saturation

� The gate-drain capacitance goes to zero due to pinch-off

– The channel charge becomes independent of the drain voltage

� The gate-source capacitance is less than WLCox since one end of the 

inversion charge “triangle” is pinned

– The factor 2/3 comes from the geometry of the triangle 
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Circuit Model with Intrinsic Capacitance

Cgs

gmvgs+

vin

-

+

vout

-

RD

Rsvs
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Extrinsic Capacitances

� Capacitances due to gate overlap and fringe capacitance, as well as 

(reverse biased) drain and source junctions

� These capacitances are classified as “extrinsic” since they are not 

fundamentally required for the MOSFET to function
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MOSFET Model with Extrinsic Capacitances
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Analysis with Extrinsic Capacitances
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� Writing KCL at the circuit’s two nodes and solving for ���
/�� gives
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� Pretty messy!

� Only thing we can see clearly at this point is that the circuit has a RHP 

zero at high frequencies

– What causes this zero?

� Let’s plug in some typical numbers to see what this response looks like 
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Observations

� The circuit has two real poles that are quite far apart

– A low-Q system
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The Dominant Pole Approximation

� If all we want to know about the circuit is it’s 3-dB bandwidth, it is clear 

that both %2 and . are irrelevant

� Given |%�|  >>  |%�|, we can approximate the denominator as follows
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Resulting Bandwidth Estimate

� All we need to estimate the bandwidth of this circuit is b1!

EE101B - Spring 2017 - Chapter 10 13

'@�A,B�
C�D
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2*

1

��

= 692#	.

⇒  '@�A,D�
�DG= 736#	.	 
 �JK�LMNOP,QRSTQU
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� Pretty good, especially given that it is very painful to solve for the exact 

corner frequency

� Important question at this point: Is there an “easy” way to compute ��

without grinding through KCL?

– Yes! We can apply the method of open-circuit time constants (OCTC) 

V55W5 =
736 − 692

736
= −5.9%
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Boris Murmann

Stanford University

Chapter 11

Open-Circuit Time Constant Analysis

EE101B - Spring 2017 - Chapter 11 1

Reading: Murmann, Section 3-4

B. Murmann EE101B - Spring 2017 - Chapter 11

Open-Circuit Time Constant (OCTC) Analysis

� Also called “Zero-Value Time Constant (ZVTC) Analysis”

� Developed in the mid 1960s at MIT

� A step-by-step circuit analysis method that allows us to determine �1 (and 

only �1) without solving for the complete transfer function

� Here's how it works

– Remove all but one capacitor (��)
– Short independent voltage sources

– Remove independent current sources

– Calculate resistance seen by capacitor (���) and compute ��� = �����
– Repeat above steps for all remaining capacitors in the circuit

– The sum of all ��� equals �1

2


 � = � �
1 + ��� + ���� + ���� + ⋯ �� = � ��� ����� ≅ 1

��
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Verification for an Arbitrary Three-Port Network

� Consider a linear active circuit containing only capacitors as energy 

storage elements

� The math can be easily extended to N ports
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� As an example, say we declared port 1 as our input (and �� as an 

independent source) and �� as our output

� How can we find the transfer function �3/�1? 

� One way is to use Cramer’s rule
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�� = det ��det � = Δ�Δ �� =
��� ��� ����� ��� + ��� 0��� ��� 0

���� = %�&' �(&')*+�)
det �

� Key take-home: The denominator of the transfer function is given by the 

determinant of the network matrix

– This means that we should be able to find �� from the determinant of �
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How to find ,�? Expand determinant by each row to find contributions from each �-
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Δ =
��� + ��� ��� ������ ��� + ��� ������ ��� ��� + ���

= ,. + ,�� + ,��� + ,��� = ,.(1 + ��� + ⋯ )

�� = ,�,.
,. = Δ1234254264.

Δ = (��� + ���) ��� + ��� ������ ��� + ��� − ���
��� ������ ��� + ��� + g�� ��� ��� + ������ ���

,� = ��Δ��|254264. + ��Δ��|234264.+��Δ��|234254.

,� = ℎ���� + ℎ����+ℎ����

⇒ ℎ�= Δ��1254264.

B. Murmann

� Finally, note that the terms that multiply the capacitances are really just 

the resistances looking into the respective ports with all capacitors 

removed

� To see this, apply a test current ��, let �� = �� = 0, �� = �� = �� = 0 and 

compute ���  =  ��/��
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�� = <3
<= = �� >33

> 12?4. + �� >55
> 12?4.+�� >66

> 12?4.

�� = Δ�Δ = ��
Δ��Δ Δ� =

�� ��� ���0 ��� + ��� ���0 ��� ��� + ���
= ��Δ��

@� = ���� = Δ��Δ ��� = ���� = Δ��Δ A
2?4.

�� = ����� + ����� + �����
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Application to Our CS Stage Example

� Three capacitors, so we need to run three OCTC calculations
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Cgs
gmvgs

+

vgs

-

+

vout

-

RD

Rs

vs Cdb

Cgd
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Calculation for Cgs
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Cgs
gmvgs

+

vgs

-

+

vout

-

RD

Rs

�BC� = �C�BC
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Calculation for Cdb
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gmvgs

+

vgs

-

+

vout

-

RD

Rs

Cdb

��D� = �E��D
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Calculation for Cgd

� Result is not obvious at first glance

� Must go back to first principles

– Inject a test current, measure voltage
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gmvgs

+

vgs

-

+

vout

-

RD

Rs

Cgd
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gmvgs

+

vgs

-

+

vout

-

RD

Rs

it

+  vt  -

�F = �BC + �E �G�BC + �F = �F�H + �E �G�F�H + �F

�B�� = �F�F = �H + �E + �G�H�E �B�� = (�H+�E + �G�H�E)�B�

“Rleft + Rright + gmRleftRright” 
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Putting it All Together

� Same result we got from the full KCL-based analysis of the CS stage

– But without the pain of doing the full-blown analysis

� Another nice feature of this analysis is that we can inspect the circuit 

nicely for potential bottlenecks

– Using the previous numbers, we see:
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����� ≅ 1
��

�� = � ��� = �C�BC + �C + �E + �G�E�C �B� + �E��D

�G = 1&%, �C = �E = 10,Ω, �BC = 1KL, �B� = ��D = 0.1KL
�BC� = �C�BC = 100N� ��D� = �E��D = 10N� �B�� = (�H+�E + �G�E�H)�B� = 120N�

negligiblesignificant most significant
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A Closer Look at PB�Q
� Even though ��R is relatively small, the associated time constant is the 

largest in the circuit – what’s going on here?

� The issue has to do with the so-called Miller effect
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 Av

 Av

1
��

1
��STUFSCF

UFSCF

VW

U�XF

VW = ��(UFSCF − YZUFSCF) VWUFSCF = �� 1 − YZ = ��ST

VW

�ST = � 1 − YZ

� If YZ is negative, the capacitance is seen “amplified” by 1 + |YZ|
� This effect is studied in much more detail in EE114
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Important Notes on OCTC

� The key advantages of this method are

– It provides a shortcut  for finding the -3dB frequency of a circuit

– It provides us with insight about the limiting time constants!

� Whenever you apply the OCTC method, it is important to remember the 

assumptions for which it is accurate

– The circuit has a dominant pole and no zeros nearby

– The circuit does not have any high-Q complex poles

� Interestingly, when these underlying assumptions are not precisely met, 

it may still be “OK” to work with OCTCs

– See examples on the following slides

� A common pitfall has to do with AC coupling caps or bypass caps

– Meant to be “shorts” at high frequencies, and do not degrade the 

signal bandwidth

– Simply ignore such caps in your OCTC analysis

EE101B - Spring 2017 - Chapter 11 14
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And Finally…

Open Circuit Time 

Constants do not

(necessarily)

correspond to poles!

EE101B - Spring 2017 - Chapter 11 15
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Example: Circuit With Two Identical Poles

� Exact calculation of the -3dB frequency
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R

C Cvs

+

vo

-

R

+

vx

-

gmvx

�� �
�C � = − �G�

1 + ��� �
1
2 = 1

1 + (������)�

���� = 2 − 1
�� = 0.64

��
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� On the other hand, running an OCTC analysis gives

EE101B - Spring 2017 - Chapter 11 17

���� ≅ 1
∑ � = 1

�� + �� = 0.5
��

_))�) = 0.5 − 0.64
0.5 = −22%

� Observations

– The OCTC result is conservative; the actual bandwidth is somewhat 

larger. This tends to hold in general, and engineers like this!

� Note that in this example the OCTCs correspond to the pole frequencies 

(the circuit has two poles at -1/RC)

– This is rarely the case in more interesting circuits

– In any circuit with a capacitive loop, the OCTCs do not correspond to 

the pole frequencies

B. Murmann

Example: Circuit with Capacitive Loop

� The time constants do not correspond to the poles

� The OCTC bandwidth estimate (0.167/RC) is again somewhat lower 

than the actual bandwidth (~0.18/RC)
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� � = �� = �� + �� +  � + � + �G�� � = 6��

�G� = 2

�� = 3 �� �

1 + ��� + ���� = 0 ⇒ K�,�= − 1
�� 1 ± 2

3 K� ≅ − 0.18
��
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Example: Miserable Failure of OCTC
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R

vs

+

vout

-

R

B. Murmann

Example: Common-Drain Stage

EE101B - Spring 2017 - Chapter 11 20

RB

VDD

vOUT

Ri

vIN
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Handy Formulas

RS

RD

RG

Rgs

Rgd

Rds
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��C = �E + �H1 + �G�H

�BC = �c + �H1 + �G�H

�B� = �c + �E + �G�c�E

�G = �G1 + �G�H

(Note: These expressions neglect finite ro and backgate effect)
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Example: Coupling Capacitor

EE101B - Spring 2017 - Chapter 11 22

vs
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Chapter 12

Basic Analysis of Opamp Circuits
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References:

Ulaby & Maharbiz, Chapter 4

“Op Amps for Everyone” by Texas Instruments, Chapter 3

B. Murmann EE101B - Spring 2017 - Chapter 12 2

(Electromechanical Design, Nov. 1965)
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Motivation

� We know how to build basic gain 

stages

� But, none of the circuits we have 

looked at so far have “precisely” 

controlled characteristics

� Parameters like gm are not well 

defined and cause large 

variability

� This can be a problem for many 

applications

– Let’s look at an example
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vs

VS

Rs

vOUT

VDD

RD

+

vIN

-

�� = −����

B. Murmann EE101B - Spring 2017 - Chapter 12 4

http://www.phantomscales.com/ohaus/valor1000.php
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“Wheatstone Bridge”

Precisely 

regulated 

reference 

voltage

� + Δ�

� =
� + Δ�

2�
−
� − Δ�

2�
�
�� =

Δ�

�
�
��

�
��

� − Δ� � + Δ�

� − Δ�

− +

http://www.allaboutcircuits.com/vol_1/chpt_9/7.html
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Typical Readout Circuit

EE101B - Spring 2017 - Chapter 12 6

http://www.planetanalog.com/document.asp?doc_id=527950

“Instrumentation Amplifier”

Signal Conditioning Front-End



B. Murmann

Bio Instrumentation Amplifier IC

EE101B - Spring 2017 - Chapter 12 7

[Denison et al., A 2uW 100 nV/rt-Hz Chopper-

Stabilized Instrumentation Amplifier for Chronic 

Measurement of Neural Field Potentials]

B. Murmann

Fifth Order Lowpass Filter

EE101B - Spring 2017 - Chapter 12 8

[S. Chatterjee et al., “0.5-V analog circuit techniques 

and their application in OTA and filter design”]
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Typical (Discrete) Operational Amplifier

EE101B - Spring 2017 - Chapter 12 9

B. Murmann

Key Characteristics

� Huge input 

impedance ~1012Ω

� Small output 

impedance ~300Ω

EE101B - Spring 2017 - Chapter 12 10

Large DC gain ~20,000
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Equivalent Circuit for Low-Frequency, Small-Signal Analysis

EE101B - Spring 2017 - Chapter 12 11

[Ulaby & Maharbiz]

B. Murmann

Large Signal Transfer Characteristic 

EE101B - Spring 2017 - Chapter 12 12

[Ulaby & Maharbiz]
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First Circuit Example

EE101B - Spring 2017 - Chapter 12 13

KCL at Node a:

KCL at Node b:

= 4.999975

[Ulaby & Maharbiz]
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Ideal Op-Amp Approximation

� The previous analysis was far too messy to give any meaningful insight

� Idealizing the op-amp makes our life much easier, and lest us quickly 

derive the first order behavior of any op-amp circuit 
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+

0V

-

[Ulaby & Maharbiz]
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Example Re-Visited

EE101B - Spring 2017 - Chapter 12 15

0

21

=+
−

R

v

R

vv non

so v
R

RR
v

2

21
+

=

spn vvv ==

KCL  at node ��:

� =
��

��
=
80�Ω + 20kΩ

20�Ω
= 5

[Ulaby & Maharbiz]
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Laundry List of Basic Topologies

� Non-inverting amplifier (previous example)

� Inverting amplifier

� Summing amplifier

� Differencing amplifier

� Unity gain buffer

� Instrumentation amplifier

� Integrator

� Differentiator

� …

EE101B - Spring 2017 - Chapter 12 16
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Inverting Amplifier

EE101B - Spring 2017 - Chapter 12 17

0== pn vv

[Ulaby & Maharbiz]

B. Murmann EE101B - Spring 2017 - Chapter 12 18
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Advanced Version!

EE101B - Spring 2017 - Chapter 12 19

B. Murmann

Summing Amplifier (Inverting)

EE101B - Spring 2017 - Chapter 12 20

�� = −
��

��
�� +

��

��
��

[Ulaby & Maharbiz]
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Difference Amplifier

EE101B - Spring 2017 - Chapter 12 21

[Ulaby & Maharbiz]
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Unity Gain Buffer

EE101B - Spring 2017 - Chapter 12 22

[Ulaby & Maharbiz]
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Instrumentation Amplifier

EE101B - Spring 2017 - Chapter 12 23

������ �	
��⊳��	 

d�ff	�	
⊳��� �����f�	�

( )
12

2

321

5

4 vv
R

RRR

R

R
vo −







 ++








=

[Ulaby & Maharbiz]
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Tricky Feedback Networks

EE101B - Spring 2017 - Chapter 12 24

[Op Amps for Everyone, TI]
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Integrator and Differentiator

� Integrators are a fundamental building block for filters

– More later
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C

R

Vout

Vin

R

C

Vout

Vin

����

�� 
= −

1

"�#

����

�� 
= −"�#
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First Order Active Lowpass Filter

EE101B - Spring 2017 - Chapter 12 26

����

�� 
= −

1
1
�$

+ "#$

�%
= −

�$

�%

1

1 + "�$#$

[Op Amps for Everyone, TI]
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Cool Tricks: Eliminating “Crossover Distortion” 

EE101B - Spring 2017 - Chapter 12 27

http://en.wikipedia.org/wiki/Crossover_distortion
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Feedback Analysis of Opamp Circuits
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References:

“Op Amps for Everyone” by Texas Instruments, Chapter 6

Maloberti, Chapter 12 (see e-book link under reading material)
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Back to Our Example

EE101B - Spring 2017 - Chapter 13 2

KCL at Node a:

KCL at Node b:

= 4.999975

[Ulaby & Maharbiz]

Gain Errror: � = 4.999975 − 5
5 = −5 ⋅ 10�
 = −5 ���
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Motivation

� The analysis on the previous page is correct

– But it is very tedious and does not provide any interesting 

engineering insight

� In the following treatment, we will look at a more systematic way to 

analyze the effect of finite gain for this specific example

– The circuit is interpreted as a feedback system

� Then, we generalize this approach for use in arbitrary opamp feedback 

circuits

EE101B - Spring 2017 - Chapter 13 3

B. Murmann EE101B - Spring 2017 - Chapter 13

Circuits with Negative Feedback

� First proposed by Harold S. Black, 1927

4

���� = �(��� − �����)

��� = ����
���

= �
1 + �� = 1

�
�

1 + � � = ��

����
 →" 

= 1
� = ���#

� Key result: When loop gain (�) is large, the closed loop gain (���) 

approaches the ideal closed loop gain (�$%&), which is equal to 1/�

A

F

Σ

-

vin vout

Always a positive quantity for 

negative feedback
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� = �(
����

= )*||)�
)*||)� + ),

≅ )*
)* + ),

Identification of . and /

EE101B - Spring 2017 - Chapter 13 5

A

F

Σ

-

vin vout

vf

ve

� = ����
��

= 0 ), + )*||)�
), + )*||)� + )�

≅ 0

G(vp-vn)

Key point: In typical opamp 

circuits, )1 and )2 are negligible 

compared to the resistances 

used in the feedback network
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Better: Think Directly in Terms of Loop Gain

EE101B - Spring 2017 - Chapter 13 6

Σ

-

vout

vt

+

vr

-

A

F

� = �� = − �3
��

Minus sign due to “-” at 

summing node
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X X
vtvr

� = − �3
��

= 0 )*||)�
)*||)� + ), + )�

≅ 10
 205Ω
205Ω + 805Ω = 200,000

G(vp-vn)

Note: To find the loop gain, 

it is best to break the loop 

at the opamp’s voltage 

controlled voltage source.

This approach preserves all 

of the node impedances in 

the circuit.

(Exact value: 199,600, above approximation has 0.2% error)
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Closed-Loop Gain Calculation

� Note that we already know ���# from the ideal opamp analysis

– Infinite opamp gain automatically implies infinite loop gain

EE101B - Spring 2017 - Chapter 13 8

��� = ���#
�

1 + � ≅ ���# 1 − 1
�

��� = 5 ⋅ 200,000 
1 + 200,000 = 4.999975

� Same result as before, except that we did not have to go through a 

painful nodal analysis

� ≅
���# 1 − 1

� − A:;<

A:;<
= − 1

T

� ≅ 1
200,000 = 5���
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What if the Opamp Gain Changes?

� Double the gain:

9

��� = 5 ⋅ 200,000 
1 + 200,000 = 4.999975

��� = 5 ⋅ 100,000 
1 + 100,000 = 4.999950

� Cut the gain in half:

��� = 5 ⋅ 400,000 
1 + 400,000 = 4.999988

� The closed-loop gain is immune to large variations in opamp gain

� The voltage gain of the overall circuit is primarily defined by the divider 

ratio of the resistive feedback

– A quantity that we can control very precisely

B. Murmann EE101B - Spring 2017 - Chapter 13

Inverting Configuration

� It is not immediately clear how to map this circuit into 
the block diagram representation

– Both resistors affect the input and feedback path

– Electronic components are not unidirectional, as 
assumed in the block diagram (which has no 
notion of impedance)

� We can still try to make this work using 
superposition…

10

G

R1

R2

F

A
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Superposition

11

⇒ � 

⇒ −�� 

A

F

A

F

B. Murmann EE101B - Spring 2017 - Chapter 13 12

G

G

� = − ),
), + )*

0

−�� = − )*
), + )*

0

(Note: Same loop gain as non-inverting circuit!)

R1

R2

R1

R2
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Result

� From the KCL analysis with infinite amplifier gain we already knew ���#, 
and this has to be equal to 1/� in the assumed representation

� Beyond that, all we need to know is the loop gain to compute the 

deviation from ideality

– We do not really need to know what � is… 
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� = ��
� =

)*
), + )*

0

− ),
), + )*

0 
= − )*

),
= 1

���#
� = − ),

), + )*
0

A

F

Σ

-

vin vout
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Comparison
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R2

vout

vin

R1

G

R2

vout

vin

R1

G

A=T/FΣ

-

vin vout

F=1/ACLI 

� = )*
), + )*

0 � = )*
), + )*

0

���# = − ),
)*

���# = ), + )*
),

Model valid for 

both topologies:
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Methodology for Opamp Circuit Analysis

� Find ���# using nodal analysis, assuming infinite opamp gain

– Often this is done by inspection, or simply by remembering the result

� Find the loop gain to compute the deviation term

– This is usually straightforward, especially when there are ideal 

breakpoints that do not alter the impedance loading around the loop

– The best breakpoint for a voltage amplifier is right at the controlled 

voltage source (see example on slide 7)

� Done!
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��� = ����
���

= ���#
�

1 + �
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Advanced Analysis Frameworks

� Return ratio analysis

– Proposed by Bode

– Very similar to the flow we have followed, except that it includes 

extensions to handle feedforward through the feedback network

• Relevant when the forward amplifier has high output impedance

• Not significant in the examples we consider in EE101B

� Two-port analysis

– Proposed by Black

– Map the feedback network onto one of four topologies

• Voltage-voltage, voltage-current, current-voltage, current-current 

feedback; depending on what the desired input/output quantities are

• Model the feedback network as an ideal two-port and absorb 

impedance loading effects into ?
– In my opinion, an overkill for gaining basic intuition about feedback…

– Have a look at Maloberti, Chapter 12, if you are interested
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B. Murmann

Feedback and Port Impedances

� Feedback not only helps desensitize the circuit to amplifier gain 

variations, it also lets us control/improve the port impedances

� We can calculate the port impedances of arbitrary feedback circuits 

using "Blackman's Impedance Formula"

– Based on loop gain calculations

– Extremely useful and easy to use 
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@A�3� = @A�3�B ⋅ 1 +  � �2CD EF2CDGH
1 + �(�2CD 2�GI)

� @A�3�B is the port impedance with the loop’s gain element set to zero

� �(�2CD EF2CDGH) is the loop gain with the port under consideration shorted

� �(�2CD 2�GI) is the loop gain with the port under consideration open

B. Murmann

Example: Input Resistance of Non-Inverting Configuration

� To find )��B set the amplifier 

gain to zero

EE101B - Spring 2017 - Chapter 13 18

)�� = )� ⋅
1 + 0 )*

)* + ),
1 + 0 ≅ )� ⋅ 200,000

Rin = ?
)��B ≅ )�

� To find �(�2CD EF2CDGH) we 

short �� to ground and find T

� �2CD EF2CDGH ≅ 0 )*
)* + ),

� To find �(�2CD 2�GI) we leave 

�� floating and find T

� �2CD 2�GI = 0

Increased by loop gain � huge

G(vp-vn)

Intuition: Think Miller effect!



B. Murmann

Example: Output Resistance of Non-Inverting Configuration

� To find )���B set the amplifier 

gain to zero

EE101B - Spring 2017 - Chapter 13 19

)��� = )� ⋅ 1 + 0
1 + 0 )*

)* + ),

≅ )�
200,000

)���B ≅ )�

� To find �(�2CD EF2CDGH) we 

short �2 to ground and find T

� �2CD EF2CDGH = 0

� To find �(�2CD 2�GI) we leave 

�2 open and find T

� �2CD 2�GI ≅ 0 )*
)* + ),

Decreased by loop gain � tiny

Rout = ?

G(vp-vn)
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Frequency Response of Opamp Circuits
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References:

“Op Amps for Everyone” by Texas Instruments, Chapter 6

Maloberti, Chapter 12 (see e-book link under reading material)
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Opamp Feedback Circuit Model

� Find � by analyzing the circuit with an infinite gain opamp. This yields � = 1/����, where �	
� is the ideal closed-loop gain.

� Find the loop gain T by injecting a test signal at a suitable breakpoint. � = −��/��, the ratio between return voltage and injected test voltage.

� The closed loop behavior is fully defined once � and � are known. We 

often do not care what � is, but we can compute it using � = �/�. 

EE101B - Spring 2017 - Chapter 14 2

A

F

Σ

-

vin vout

T=AF

��� = ������� = 1
�

�
1 + � = �

1 + �
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Basic Examples

EE101B - Spring 2017 - Chapter 14 3

R2

vout

vin

R1

G

R2

vout

vin

R1

G

� = ���� + �� �

���� = − ����
���� = �� + ����

� = ����� = − ���� + �� � � = ����� = �

� = ���� + �� �(same!)
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Frequency Response of a TLC272 Opamp

� At first glance, this amplifier 

seems to have two LHP 

poles

– One at low frequencies

– One at high frequencies

EE101B - Spring 2017 - Chapter 14 4

� Let’s start by modeling only 

the dominant pole (at low 

frequencies)

� � = ��
1 − ��� 1 − ���

G0

ωp1 ωp2



B. Murmann

Loop Gain

� For both of the above circuit examples, we now have

EE101B - Spring 2017 - Chapter 14 5

� � = ���� + �� � � = ���� + ��
��

1 − ���

� � = ��
1 − ���

� �0 is the DC loop gain
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Closed Loop Gain

EE101B - Spring 2017 - Chapter 14 6

��� � = 1
�

� �
1 + � � = 1

�

��
1 − ���

1 + ��
1 − ���

= 1
�

��
1 − ��� + ��

��� � = 1
�

��1 + ��
1

1 − ��� 1 + ��
= ��� + � 

1
1 − ��� � + � 

�!" �� ≫ 1         ��� � ≅ 1
�

1
1 − �����
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� Applying feedback has increased the bandwidth by 1 + ��
� But, we have sacrificed gain in the process, since ����  =  ��/(1 + ��) 
� Essentially, we have traded gain for bandwidth

� Also note that the circuit is stable, since the pole remains in the LHP
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Bode Plot (Assuming �� >> 1)
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� The loop forces ��� to be close to 1/� until it runs out of loop gain

– This is where the closed loop pole appears
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Bode Plot of Loop Gain 

� The frequency *�� is called the unity gain frequency of the loop or loop 

gain-bandwidth product; it is approximately equal to the closed-loop 

bandwidth
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Example (Non-Inverting Amplifier)

� The closed-loop bandwidth corresponds to the frequency where the 

opamp’s gain magnitude has reduced to 10.
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Example (Inverting Amplifier)

� The closed loop bandwidth corresponds to the frequency where the 

opamp’s gain magnitude has reduced to 11

– Very close to what we had before, with slightly less bandwidth
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� � = ���� + �� � � = 1
11 �(�)

� � = 1     ⇒      � � = 11

R2
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vin

R1

G ���� = − ���� = −10
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Let’s Now Consider the Second Opamp Pole

� � = ��
1 + �*,� 1 + �*,�

��� � = 1
�

� �
1 + � � = 1

�
��1 + �� · 1

1 + *,� + *,�(1 + ��)*,�*,� � + 1(1 + ��)*,�*,� ��

��� � = ����
1 + �*�B + ��

*��

*� = (1 + ��)*,�*,� ≅ *��*,� B = (1 + ��)*,�*,�
*,� + *,� ≅ *��*,�
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� Key point: In a practical amplifier design, the second pole must occur 

beyond the loop’s unity gain frequency
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B. Murmann

� Looks like we’re OK with 

our example circuit

� Open questions

– What are the 

locations of the 

closed-loop poles?

– What is the exact 

closed-loop 3-dB 

bandwidth?
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Closed-Loop Pole Positions (B ≤ 0.5)

� For B = 0.5 (critically damped step response), the closed loop circuit has 

two coincident real poles at approximately ��/2
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Closed-Loop Pole Positions (B > 0.5)
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Exact Closed-Loop 3-dB Frequency

� Note that for *,� → ∞, the closed loop response approaches the 

expression we derived for a single pole feedback system

� To find the 3-dB bandwidth we need to solve this equation:
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1
1 + ) *KLM*�� − *KLM�

*��*,�
= 1

2

��� � = ����
1 + �*�B + ��

*��
≅ ����

1 + �*�� + ��
*��*,�

*� ≅ *��*,� B ≅ *��*,�

� Best done numerically…

B. Murmann

� As expected, for large *,�/*��, the bandwidth 

approaches that of a first 

order system (*��)
� The bandwidth is 

maximum for the 

maximally flat response:
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� Bottom line

– If possible, design for a maximally flat response (*,� = 2*��)

– Pushing *,� to higher frequencies is also fine (not much loss in BW)

– Definitely avoid placing the second pole close to or before *��
• Peaking, bandwidth loss and significant step response ringing
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Unity Gain Configuration

� The closed loop bandwidth corresponds to the frequency where the 

opamp’s gain magnitude has reduced to unity � larger bandwidth and 

larger *�� than in the previous example
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� Looks like we may 

be in trouble

� The second pole is 

now close to the 

loop’s unity gain 

frequency 
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Zoom
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Discussion

� This opamp was skillfully designed so that in the worst case (unity gain 

configuration) it still achieves a reasonable frequency and step response

� This is usually the case for “internally compensated” opamps

– We will cover the concept of frequency compensation next

� Question: Should the vendor of this part consider reducing *�� so that 

there is more “margin” and potentially less peaking/ringing when the 

opamp is used as a unity gain buffer?   
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Chapter 15

Stability of Opamp Circuits
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References:

“Op Amps for Everyone” by Texas Instruments, Chapter 7

Maloberti, Chapter 12 (see e-book link under reading material)

B. Murmann

Motivation

� We studied the frequency response of opamps with one and two poles

– In both cases, the circuit is still stable with feedback applied, i.e. the 

poles can never wander into the right half plane

� However, in the circuit with two poles we must make one of the poles 

dominant to “tame” the � of the closed-loop transfer function

– The second pole should occur at least 2-4x beyond the extrapolated 

loop unity gain frequency (��1)

� Unfortunately, many practical opamp circuits will have more than two 

poles (and also unwanted zeros) in their loop transfer function, and this 

can lead to an unstable system

� Let’s have a look at a simple example with three poles
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Three-Pole Example

� Consider a circuit with three identical poles in its loop gain, and a 

feedback network with a constant transfer function �

0
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� Conclusion: A feedback amplifier with three identical poles is unstable 

unless we limit the low-frequency loop gain to less than eight!
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Stability

� What we already know

– The most general stability criterion is BIBO

– An LTI system is stable if all of its poles are in the LHP

� Since the circuits we consider are LTI, we could (in principle) always 

compute the closed-loop poles to check stability

– But this is very tedious, especially for systems with more than 2 poles 

� Assuming that the system before closing the loop is stable, we can use a 

simplified approach, called the “Bode  Criterion”
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A closed-loop system is stable if the open-loop

system is stable and the frequency response of

the loop gain has a magnitude of less than unity

at the frequency where its phase shift is -180°
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Intuition

� Suppose we inject a sinusoid into a circuit that has a loop gain magnitude of 

1 and a phase shift of -180º at the sinusoid’s frequency 

� Together with the minus sign at the summing node, the original signal vt with 

the same amplitude and phase will return at vr

� We can close the loop and it will then sustain an everlasting oscillation, even 

with vt removed � This is indicative of closed-loop poles on the �� axis
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Bode Plot of 
(
) for Three-Pole Example (T0 = 8)

EE101B - Spring 2017 - Chapter 15 7

10
-2

10
-1

10
0

0

10

20

ω/ω
p1

|T
(j
ω

)|
 [
d
B

]

10
-2

10
-1

10
0

-200

-100

0

ω/ω
p1

∠
T

(j
ω

) 
[d

e
g
]

Unity magnitude

-180º phase

B. Murmann

Bode Plot of 
(
) for Three-Pole Example (T0 = 2)
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Definition of Stability Margins
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PM 180 Phase T j
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 = ° + ω 

( )
180

1
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T j
ω=ω

=
ω

Typically want GM ≥ 3…5

Typically want PM ≥ 60…70°
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Another Look At Our TLC272 Example (ACLI=10)
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Another Look At Our TLC272 Example (ACLI=1)
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Detailed View of Second Order Crossover
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Relationship Between Parameters

� We can find the relationship between �� and ��� using
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� Once we know ��, we can easily compute the phase margin

�� � 180° ! 90° ! arctan 
��

���
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Resulting Relationship Between Phase Margin and Q

� Well-designed second order systems have phase margins between 65 

and 76 degrees (or higher)
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Higher Order Systems

� The majority of practical opamp circuits have a dominant pole and a 

non-dominant pole past the loop’s unity gain frequency

� In addition, there are usually several poles (LHP) and zeros (LHP and 

RHP) beyond the second pole (inside the opamp, board parasitics, etc.)

� Despite these extra poles/zeros, we can usually still approximate the 

system as second order

– The extra poles/zeros mainly affect the phase margin and don’t have 

much bearing on ��
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� The equivalent non-dominant pole frequency is given by the frequency 

at which the overall phase shift of the loop (with all poles and zeros 

included) is -135º

� This approximation is particularly convenient for interpreting circuit 

simulation results

� Some rules of thumb

– A LHP pole or RHP zero 10x past �� steals about 5.5º of PM

– A LHP pole or RHP zero 5x past �� steals about 11º of PM
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Frequency Compensation

� Frequency compensation refers to the means by which the frequency 

response of the loop gain is altered to ensure adequate phase margin

� Frequency compensation schemes can be categorized into three groups

– Internal compensation

• Alter the frequency response of the opamp

– External compensation

• Alter the frequency response of the feedback network

– Or alter both! 

� Our example opamp (TLC272) is internally compensated to ensure 

reasonable phase margin in the worst case (unity gain feedback)

� In some cases, we may still want to add external compensation to 

improve the phase margin

– We’ll look at two examples, many more scenarios/options exist

– See chapter 7 of “Opamps for Everyone”
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TLC272 Schematic

� C1 and R5 take care of the opamp’s internal frequency compensation

– These components are sized such that the opamp has a dominant 

pole and a non-dominant pole beyond unity crossover

– This is studied in detail in EE114
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Motivation for External Compensation

� Say we want to design an inverting amplifier with a gain of -2 using the 

TLC 272, and we want to have a step response with no overshoot
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Possible Solution: Lead Compensation

EE101B - Spring 2017 - Chapter 15 20

R2

vout

vin

R1

G

Cc


 
 �
C�

C�||
1


GH
+ C�

D 
 � I 
 D(
)

I 
 �
C�

C�

1 + 
C�GH
+ C�

�
C�

C� + C�

⋅
1 + 
C�GH

1 + 
(C�| C� GH

For C1 �  2C2: �� � !
1

C�GH

;� � !
3

C�GH



B. Murmann

Bode Plot of K(s) for R1 = 2R2

� The feedback network gives us a phase lead that improves the PM

� If we size GK such that �� ≅ 0.25/C�GH, we get the extra 13° we need
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But, How About the Closed-Loop Gain?

� Conclusion: No big deal, we get another closed-loop pole way past the 

original -3dB corner (which is about 1.28��)

� We’ll sacrifice a little bit of bandwidth, but we have our desired response  
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Another Example

� Bad news: The extra pole in the loop may reduce the phase margin
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Simple Remedy

� If Cp is not exactly know, this requires some tweaking…
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Summary

� Phase margin is the most widely used “proxy” for quantifying the stability 

margin of a feedback system

� First order system

– Trivial; the phase margin is approximately 90º

� Second order system

– There is a one-to-one mapping between phase margin and the Q of 

the closed-loop poles

– A maximally flat response requires a phase margin of 65º

– A critically damped response requires a phase margin of 76º

� Higher orders systems

– Are typically approximated as second order systems

– The extra high-frequency poles and zeros reduce the phase margin; 

this can be captured via an equivalent shift of the second pole to a 

lower frequency
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Oscillators
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References: 

Maloberti, Chapter 14, Section 14.3

Texas Instruments, Design of Op Amp Sine Wave Oscillators 
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Motivation

� Most electronic systems require oscillators

– Radios (above example), watches, microprocessor systems, etc.
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How to Build an Oscillator?

� Key to all forms of oscillators is feedback

� The stability issues that bothered us in designing amplifiers are here 

being used to create steady-state oscillations
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� Barkhausen criterion (1921):

A oscillator circuit will sustain steady-state

oscillations at frequencies for which its gain around

the loop is equal to unity in magnitude and the

overall phase shift around the loop is 0° or an

integer multiple of 360°.
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Phase Shift Oscillator

� As we already know, the poles land on the �� axis for ��/�	 =  8

� The Barkhausen criterion is met at this point
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� The oscillation frequency is determined by the point where the total 

phase shift of the RC sections is -180°
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Wien Bridge Oscillator
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� The Barkhausen criterion is met when
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The Startup Problem

� Barkhausen is met during steady-state, i.e. when the circuit is oscillating

– But how does it get into steady-state?

� For an oscillator to start up, it turns out that we need to push the closed 

loop poles into the RHP, to enable a growing envelope

– The seed for this oscillation comes from any tiny “kick” applied to the 

circuit, e.g. turning on the power or thermal noise in the circuit
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Amplitude Limiting

� The waveform grows until nonlinearities begin to reduce the loop gain

� The steady state amplitude is determined by the point where the large 

signal loop gain is unity, satisfying the Barkhausen criterion 
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B. Murmann

s-Domain Perspective

� This plot must be taken with a grain of salt, because we are dealing with 

a nonlinear system…
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Startup with �� =  �. ���
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B. Murmann

Steady-State Waveform

� Opamp is clipping (its supply voltage is +/-5V)
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Startup with �� = !��

� Startup is much faster (why?)

� Opamp clips hard; output looks more like a square wave
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B. Murmann

Startup with �� = !��

� The waveform at the positive input of the opamp looks somewhat nicer

– Why? 
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Need for Proper Amplitude Limiting

� We want the oscillator to start up reasonably fast and reliably 

� We do not want the amplitude to be defined by the opamp’s “random” 

clipping behavior, which may not be reproducible

� Practical Wien Bridge oscillators incorporate a well-defined mechanism 

for amplitude limiting

� Examples

– Back-to-back diodes

– Automatic gain control (AGC) loop

– Adding a light bulb (!) to the feedback network
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Amplitude Limiting with Diodes
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Startup with Diodes

EE101B - Spring 2017 - Chapter 16 17

(Opamp supplies increased to +/-15V; so that the opamp does not clip)

B. Murmann

� Yields a lower distortion sinusoid than the diode-based circuit
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B. Murmann

HP200A

� First HP product

� William Hewlett’s MS thesis
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http://en.wikipedia.org/wiki/HP200A

As the oscillation 

grows, Rb heats up 

until it becomes 

equal to Rf/2

B. Murmann

More on Oscillators

� Ring Oscillator

� LC Oscillator

� Crystal Oscillator

� Relaxation Oscillator

EE101B - Spring 2017 - Chapter 16 20
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Ring Oscillator

� In principle, not too different from a phase shift oscillator

� Use an odd number of stages (180° phase shift); remaining phase shift 

comes from RC delay

– With an even number of stages, there is no inversion around the loop 

at DC and the circuit is simply a latch � more later

� Practical implementations often don’t use explicit RC, but rely on the 

resistance and capacitance of the MOSFETs

– Oscillation frequency is somewhat harder to predict

– Can scale frequency down by using more inverters
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B. Murmann

Ideal Parallel LC Circuit (“LC Tank”)

� A non-zero initial condition will suffice to create an everlasting oscillation 
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Quality Factor of Inductors and Capacitors

� Unfortunately real inductors and capacitors dissipate energy

� The “quality factor” for these components is defined as 
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� For a capacitor, the losses are typically modeled using a parallel resistor
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LC Tank with Inductor Losses

� Working with a series resistance can be annoying in a parallel circuit

� It is therefore common to approximate the losses with a parallel resistor 
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� Assuming .; >>  1, the imaginary parts are approximately equal and 
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� Finally, note that since the quality factor is frequency dependent, the 

above approximation holds only at one single frequency

– This is OK for analyzing narrow-band circuits, like oscillators
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Summary on Parallel to Series Conversion
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http://wcalc.sourceforge.net/cgi-bin/parallel_rl.cgi

http://wcalc.sourceforge.net/cgi-bin/parallel_rc.cgi
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Back to Our Circuit

� Analyzing this circuit with some initial condition (as we did before) yields 

a decaying sinusoid
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Eliminating Rp

� Basic implementation:
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Amplitude Limiting

� For proper startup, the net resistance must be negative initially

� As the amplitude grows, the negative resistance shrinks in magnitude 

and becomes equal to –Rp in steady-state
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Amplitude

Oscillation 

Amplitude

Steady State: R = –Rp

Initially: R < –Rp
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Other Architectures (Many More Exist)

� These architectures can be analyzed using feedback theory or using a 

negative resistance approach

� The two analysis methods are complementary; sometimes one is more 

convenient/intuitive than the other
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Quartz Crystals

� Quartz shows piezoelectric behavior: Applying a voltage induces a 

deformation (a fraction of µm) and vice versa

� A properly cut crystal has a mechanical resonance with a very precisely 

defined frequency and low drift (a few ppm/°C) 

� Main application is in wristwatches, clocking for digital integrated circuits, 

and frequency generation for radio transmitters and receivers
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Electrical Equivalent

� Key: The quality factor of the series RLC network is extremely high, on 

the order of 104 to 106

� The circuit exhibits a “series resonance” and a “parallel resonance,” 

which are very close to one another (within a small fraction of a percent)  
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fs fp

fpfs

Inductive region
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Example: Operation at the Series Resonance 
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http://cds.linear.com/docs/en/application-note/an43f.pdf
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Example: Pierce Oscillator

� Operates the crystal in its inductive region

� Main advantage of this configuration is its simplicity, robustness, and the 

ability to “pull” the frequency slightly (via C1 and C2 � Co)

� Rf (large resistor) serves to bias the inverter in its linear region
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-

~180°

Crystal Equivalent

Helps 

provide extra 

phase shift if 

needed
http://www.crystek.com/documents/appnotes/Pierce-GateIntroduction.pdf

Rs

B. Murmann

Relaxation Oscillator
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555 Timer

EE101B - Spring 2017 - Chapter 16 39

http://www.allaboutcircuits.com/vol_6/chpt_8/3.html
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Boris Murmann

Stanford University

Chapter 17 

Filters

EE101B - Spring 2017 - Chapter 17 1

Reference: Analog Devices, Linear Circuit Design Handbook, Chapter 8

Texas Instruments, Op Amps for Everyone

B. Murmann

Motivation

� Filters are used in many systems, for a variety of purposes

– Frequency band selection in radios, removal of noise or unwanted 

interference (e.g. 60Hz notch filter), smoothing of signals, …
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Filter Types

EE101B - Spring 2017 - Chapter 17 3

B. Murmann

The Filter Approximation Problem

� Ideal Filter

– Brick-wall characteristic

– Flat magnitude response 

in the passband

– Infinite attenuation in the 

stopband

� Practical filter

– Ripple in either or both the 

passband and stopband

– Limited attenuation in the 

stopband

EE101B - Spring 2017 - Chapter 17
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Filter Design

� Ideal filters are non-causal or otherwise impractical

� No global optimization techniques known

� In practice, chose from several known solutions

– Butterworth, Elliptic, Bessel, …

� The overall goal of filter design is to approximate the ideal response by 

one that implements a reasonable compromise between filter complexity 

(number of poles and zeros) and approximation error

� Filter design, in general, requires a compromise between magnitude 

response, phase response, step response, complexity, etc.

� It is common to base a filter design on a lowpass prototype

– Then “transform” into highpass or bandpass (more later)

EE101B - Spring 2017 - Chapter 17 5
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Lowpass Filter Template

� Specifications are fully defined by Apmin, Apmax, As, ωp, ωs

EE101B - Spring 2017 - Chapter 17
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Re-Cap: Second Order Lowpass Response

� Magnitude response is “maximally flat” (no peaking) for � = �
�
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Pole Locations for � > 0.5
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Improvements

� A maximally flat response is great, but how can we make the roll-off 

steeper?

� Let’s look at

– Imaginary zeros

– Increasing the filter order

– High-Q poles

– High-Q poles and imaginary zeros

EE101B - Spring 2017 - Chapter 17 10
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Adding Zeros on the Imaginary Axis

B. Murmann

Bode Plot

� Steeper roll-off at the expense of reduced stopband rejection
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Adding Another Real Pole

� As expected, steeper roll-off, but transition is not all that sharp

� Can fix this issue by increasing the Q of H1(s)!
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Utilizing Peaking in H1(s)

� Win-win improvement

– Passband flat, roll-off steeper
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nth Order Generalization

� Stephen Butterworth showed in 1930 that the magnitude response of an 

nth order maximally flat lowpass filter is given by 
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� This magnitude response is monotonically decreasing and satisfies

• The corresponding pole locations can be determined using

B. Murmann
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Pole Locations

� The poles lie equally spaced (in angle) on a circle in the s-plane 

centered at the origin with radius ωP

� The LHP roots are taken to be the poles of H(s), while those in the RHP 

are regarded as the poles of H(–s)
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Magnitude Response and Coefficients

EE101B - Spring 2017 - Chapter 17

n Denominator Polynomial

1 (s + 1)

2 s2 + 1.4142s + 1

3 (s + 1)(s2 + s + 1)

4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)

5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)

6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9319s + 1)

7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)

8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)

1Pω =

http://en.wikipedia.org/wiki/Butterworth_filter
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A Closer Look at n=4
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Increasing QP2

� Helps make the roll-off steeper, but introduces peaking

� We can try to alleviate this problem this by reducing ωP1
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Increased QP2, Reduced ωP1

� This may not a bad choice of we can tolerate some peaking or ripple
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Comparison with Original Butterworth

� How can we optimize this situation, i.e. minimize the transition band for a 

given tolerable peaking (or “ripple”) in the passband? 
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Chebyshev1 Filter Approximation

� Fortunately someone has already figure this out!

� The “Chebyshev1” filter approximation minimizes the error between the 

idealized response and the actual filter, with the passband ripple as a 

parameter (1dB for examples below)
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Elliptic (Cauer) Filter Approximation

� The Elliptic filter approximation combines our previous ideas and adds 

imaginary zeros to sharpen the transition band

� This approximation has the passband ripple and stopband attenuation as a 

parameter (1dB and 20dB, respectively, for example below)
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Chebyshev2 Filter Approximation

� No ripple in the passband, but finite stopband attenuation and ripple due to 

imaginary zeros

� This approximation takes the stopband attenuation as a parameter (20 dB in 

the example below)
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Matlab Design Example

wp=2*pi*1e6; % Passband edge

ws=2*pi*2e6; % Stopband edge

Rp=1;  % Passband ripple

Rs=40; % Stopband attenuation

% Determine required order and synthesize

[N, wp] = ellipord(wp, ws, Rp, Rs, 's');

[z, p, k] = ellip(N, Rp, Rs, wp, 's');

sys = zpk(z, p, k);

f = logspace(4, 7, 1000);

[mag, phase] = bode(sys, 2*pi*f);

db = 20*log10(reshape(mag, 1, length(f)));

figure(1)

semilogx(f, db, 'linewidth', 2); 10
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Filter Order for Rp=1dB, Rs=40dB

� Why not always use an Elliptic filter?

– It is certainly the best choice if we consider the magnitude response only

– But, there may be constraints on the step response; more later…
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Matlab Design Example – Elliptic Filter

wp=2*pi*1e6; % Passband edge

ws=2*pi*2e6; % Stopband edge

Rp=1;  % Passband ripple

Rs=40; % Stopband attenuation

% Determine required order and synthesize

[N, wp] = ellipord(wp, ws, Rp, Rs, 's');

[z, p, k] = ellip(N, Rp, Rs, wp, 's');

sys = zpk(z, p, k);

f = logspace(4, 7, 1000);

[mag, phase] = bode(sys, 2*pi*f);

db = 20*log10(reshape(mag, 1, length(f)));

figure(1)

semilogx(f, db, 'linewidth', 2); 10
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Very sharp cutoff!
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Step Response of Design Example

� Overshoot and other forms of pulse deformation can be problematic

– Consider e.g. oscilloscopes, pulse-based data links, etc.

� The pulse deformation is mostly due to the fact that different frequency 

components pass the filter with different time delays

– This is called phase distortion

� Let’s first have a look at the phase response of our filter
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Phase Response of Design Example
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Phase Jumps due to Imaginary Zeros

� As seen on the previous slide, the phase jumps occur at the frequencies 

of the zeros
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Phase Distortion (1)

� Consider a filter with transfer function

� Apply two sine waves at different frequencies
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j ( )H(j ) H( j ) e φ ωω = ω

( ) ( )in 1 1 2 2v (t) A sin t A sin t= ω + ω

( ) ( )out 1 1 1 1 2 2 2 2

1 2
1 1 1 2 2 2

1 2

v (t) A H( j ) sin t ( ) A H(j ) sin t ( )

( ) ( )
A H( j ) sin t A H(j ) sin t

= ω ω + φ ω + ω ω + φ ω

      φ ω φ ω
= ω ω + + ω ω +         ω ω      

Phase delay td1 Phase delay td2
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Phase Distortion (2)

� Assuming that the difference between |H(jω1)| and |H(jω2)| is small, the 

“shape” of the time-domain output signal will be preserved as long as
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( ) T T constantφ ω = ⋅ ω =

1 2

1 2

( ) ( )
0

φ ω φ ω
− =

ω ω

• This condition is satisfied for 

• A filter with this characteristic is called “linear phase”
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0 ω1 ω2

φ1

φ2

Linear

Phase

Filter

ω1 �

t t

t

ω2= 2ω1 �
t

(φ1 = π/2)

(φ2 = 2φ1 =π)

(e.g.  φ1 = π/2  &  ω2= 2ω1)

(Fixed delay)T

ω1 ω2

Delay with Linear Phase

∂φ
∂ω

∂φ
−

∂ω
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Delay with Nonlinear Phase

� Phase distortion occurs whenever the phase is nonlinear, i.e. the 

derivative of the phase is not constant

� The (negative) derivative of the phase is also called “group delay” or τg

� Note that for a linear phase filter, we have τg = τd = const.

0 ω1 ω2

φ1

φ2 ω1 ω2

ω1 �
t

ω2= 2ω1 �
t

(φ1 = π/2)

(φ2 < 2φ1 = π)

unmatched

∂φ
−

∂ω

1 2

1 2

( ) ( )φ ω φ ω
≠

ω ω
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Bessel Filter Approximation

� Optimized for maximally 

flat group delay

� Poles only, no zeros

� Poles are relatively low Q

� Poor magnitude roll-off
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n = number of poles
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Comparison: Bessel vs. Chebyshev1

� Lowpass filters with 100 

kHz passband

� Both filters are 4th order 

with the same -3 dB 

frequency

� Passband ripple of 1dB for 

Chebyshev I
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Phase and Group Delay
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Step Response
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Summary

� We can either get a sharp roll-off in the frequency domain or a well-

behaved step response

– Not both at the same time

� Elliptic filters offer the steepest magnitude roll-off, but have the worst 

step response

� Bessel filters have a maximally flat group decay and hence the best step 

response; but they suffer from a very poor magnitude roll-off

� A Butterworth filter lies somewhere in-between; i.e. reasonable 

compromise between roll-off and ringing in the step response
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http://www.analog.com/designtools/en/filterwizard/#/specifications

Pick trade-off 

here, the tool 

does the 

rest…
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 The s-domain poles and zeros simply become inverted.  As shown by the examples, zeros at 

infinity move to the origin, and finite-valued poles become |1/poleLP| in magnitude and become 

conjugates (flips between quadrant II & III).  The mapping boundary is the normalized unit 

circle (ω0 of the response).

s
s

LP
HP

1
= L.P.

jω

σxo

unit circle

3-zeros at ∞

H.P.

x�

(e.g.  Butterworth n=3)

x

x

x

x

o
o ooo

3-zeros at origin

L.P.

o

x

x

o

H.P.
x

x

oo

2-zeros at ∞
2-zeros at origin(e.g.  Arbitrary n=2)

x

x

�

Lowpass to Highpass Transformation
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BPs = LPs
2a

± j 1−

2

LPs
2a

 
 

 
 

≈ LPs
2a

± j

 For a “narrowband” approximation, the s-domain poles and zeros simply become replicated at 

±jω with a smaller unit circle of radius 1/2a.  To realize a wideband filter, use a cascade of 

highpass and lowpass filters.
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x
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Notes on Filter Transformations 

� This used to be a very important skill

� In the “old days” (before widespread use of computer tools) there were 

books filled with filter coefficients for lowpass prototypes

� As a designer, you then had to go and transform the filter into whichever 

other type you wanted

� Nowadays, we will directly synthesize the filter type we want

– Using Matlab, Analog Filter Wizard, etc.
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Filter Implementation Options
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Filter Implementation Options

� It is possible to build arbitrary analog filters using RLC circuits

– Example: “Ladder Filters”
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� While this looks OK at first, we will typically want to avoid using inductors

– Often big, bulky, expensive

� It turns out that we can also synthesize arbitrary filters without inductors, 

but with the help of active circuits, like opamps

� Many options exist, we’ll look at two basic examples

– State-space synthesis using opamps

– Sallen-Key filters

B. Murmann

Starting Point: Passive LC Lowpass Filter
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H s  = 
1sC1sC  + R + sL  = 1

1 + sRC + s2LC  = 1
1 + sω0Q  + s2

ω02

ω0 = 1
LC Q = 1

R
L
C
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Opamp-Based Integrator
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Vin

Vout

Vin -

R

C

C

Vout

R

1

sC
Vin

-1/R
Vout

1 in
out

v (t )
v (t ) dt

C R
= − ∫

1
out inV (s) V (s)

sRC
= −
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State-Space Filter Synthesis
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1

1

c c

c c

v (t ) i (t )dt
C

V (s) I (s )
sC

=

=

∫
1

1

L L

L L

i ( t ) v (t )dt
L

I (s) V (s)
sL

=

=

∫

State variables

(integrator outputs)

1 1
c c L outV I I V

sC sC
= = =

( )1 1
L L in L outI V V I R V

sL sL
= = − −
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Block Diagram

� Looks promising, but the problem with this realization is that the first 

integrator takes a voltage at the input and produces a current at the 

output

– We need the opposite if we want to realize the circuit with an opamp 

integrator
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Modified (Equivalent) Block Diagrams
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Choice of Rx is arbitrary, 

we can simply make it 

equal to R
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Implementation

� One remaining issue is that the transfer function is inverted

– We could fix that (if needed) using a fourth op-amp
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A1 A2 A3

H s  = Vout s
Vin s  = ‒ 1

1 + sRC + s2LC
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Biquads

� Biquads are fine-tuned versions of the state-space filter that we derived

� They allow us to implement arbitrary second order transfer functions with 

two poles and two zeros

� We can cascade biquads to realize filters of arbitrary order
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W.J. Kerwin, L.P. Huelsman, R.W 

Newcomb, "State-Variable Synthesis 

for Insensitive Integrated Circuit 

Transfer Functions," IEEE JSSC, 

vol.2, no.3, pp. 87-92, Sep. 1967.

VoVi = VLPVi  = 2
1 + sωoQ  + s2

ωo2

Q = R1R2 + R1R3 + R2R32R1R3ωo = 1
RC

K = 2R2R3R1R2 + R1R3 + R2R3  =  R2R1�
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Highpass and Bandpass Output

� An interesting feature of some biquads is that they provide additional 

highpass and bandpass outputs for “free”
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General Biquad
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+ +
ω ω

GENERAL

b s b s b
H (s )

s s

Q

GENERAL

Implements arbitrary poles 

and zeros
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Sallen-Key Lowpass Filter

� Single opamp

� Poles only, no zeros  

� Similar circuits exist for HP, BP, etc.
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H s  = K
1 + sωpQp  + s2

ωp2

Qp = ωp1R1C1  + 1R2C1  + 1‒ KR2C2

ωp = 1
R1C1R2C2

C1

Vout

Vin

Rf

Rg

R1 R2

C2

2 = 67 + 6868
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State-Space Biquad or Sallen-Key?

� Suppose we wanted to realize a second-order filter with poles only

– Should we use a Biquad or Sallen-Key realization?

� From a complexity perspective, we would obviously go for Sallen-Key

� But, the Sallen-Key circuit comes with a few potential disadvantages that 

may (or may not be) be a problem

– Sensitivity to parasitic capacitance; this is less of an issue in a state-

space circuit due its virtual ground nodes

– Undesired tradeoff between component spread and sensitivity to 

component inaccuracy

– Increased sensitivity to component inaccuracy for high-Q poles

� Let’s take a closer look…
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Definition of Sensitivity

0 0

y
x

x x

y / y x y x y
S lim lim

x / x y x y x∆ → ∆ →

∆ ∆ ∂ = = = ∆ ∆ ∂ 

y
x

y x
S

y x

∆ ∆
≅

� The sensitivity of any variable y to any parameter x is defined as

• In order to relate fractional changes in y to fractional changes in 

x we can then write

• Example
10 2 20y

x

x y
S % %

x y

∆ ∆
= = ⇒ ≅

• Common sense: sensitivity is a first order approximation, 

accurate only for “small” errors 
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Parameter Variations of Discrete Components

EE101B - Spring 2017 - Chapter 17 58

� The best we can do on a printed circuit board

– Metal film resistors are ~0.1% inaccurate, 5 ppm/°C

– C0G dielectric capacitors, 2% inaccurate, very small temperature 

dependence

� Other, cheaper components show larger variations

� Bottom line: RC products can easily vary by a few percent
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Sensitivity to Component Inaccuracy for a Sallen-Key LPF

EE101B - Spring 2017 - Chapter 17

� Sensitivity depends on QP and “component spread” i.e. the ratios of the 

resistors and capacitors, respectively

P P P P
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S S Q

2 R C R C

R C
S Q G

R C

ω ω ω ω= = = = −

= − = − +

 
= − = − + +  

 

=

P

1 1 2 2

P
P

1 1 2 1 2 2

1

R C R C

Q
1 1 1 G

R C R C R C

ω =

ω
=
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Example

� Want to design a Sallen-Key filter with QP=10

� Choice 1: All R and C are the same ⇒ G = 3 -(1/QP) = 2.9

– Very nice from the perspective of component spread, but bad for 

sensitivity, e.g.
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1

1
9.5

2
= − + =PQ

R PS Q

• Choice 2: Reduce sensitivity by accepting large component spread

– Can show that G=1 is a good choice

• See e.g. http://www.maxim-ic.com/appnotes.cfm/an_pk/738

• Note: The expression for SQ
K is incorrect this application note (R3 and R1 should be 

interchanged in this expression to match the result on the previous slide)
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� For G=1, we have
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1

2
1 2

1 2

1
0

2
= − + = =

+
PQ

R

R
S for R R

R R

1 1 2 1

1 1
P

PQ

R C R C

=
+

ω

• Unfortunately, in this case

21

2

4 400 10P P

C
Q for Q

C
= = =

• Bottom line: The Sallen-Key realization suffers from a strong 

tradeoff between sensitivity and component spread
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Case Studies

EE101B - Spring 2017 - Chapter 17

MAXIM APPLICATION NOTE 738  

Minimizing Component-Variation Sensitivity in Single Op Amp Filters

http://www.maxim-ic.com/appnotes.cfm/an_pk/738/ 
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Summary

� Practical filter design is based on choosing a proper filter template 

(Butterworth, Bessel, etc.) and mapping the resulting poles and zeros 

into hardware

� While we can in principle build arbitrary filters using passive RLC 

circuits, we typically want to avoid inductors and instead use active 

circuits to achieve the desired mapping 

� Sallen-Key implementations

– Low complexity � Good for board level design

– Undesired tradeoffs between pole Q, component spread and 

sensitivity

� State-space Biquads

– Are known to be less sensitive, at the expense of increased 

complexity � This is OK for integrated circuits that anyway contain 

millions (or billions!) of transistors
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Stanford University

Chapter 18

Circuit Simulation
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SPICE

� SPICE stands for Simulation Program with Integrated Circuit Emphasis

� SPICE simulates the behavior of circuits by numerically solving the 

pertaining set of equations

– Really just a gigantic calculator

� The original version of SPICE originated at UC Berkeley in the 1970s

� Information about the history of SPICE can be found at

– http://www.coe.berkeley.edu/labnotes/0502/history.html

– http://www.ecircuitcenter.com/SpiceTopics/History.htm

� SPICE webpage at UC Berkeley

– http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE

� Dozens of different versions available today

– PSpice, HSpice, Eldo, Spectre, LTSpice, NGSpice, ICircuit, …

� In this class, we will use LTSpice

– Download at www.linear.com/ltspice
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LTSpice Window

EE101B - Spring 2017 - Chapter 18 3

Simulation 

Command

B. Murmann

� SPICE won’t “think” for you

– It’s really just a tool for crunching the numbers much faster than you can

� How to properly use SPICE?

– First, design the circuit using “your head” 

• Understand how the circuit works, what is important, what is a first 
order effect, second order effect, etc. 

• Use hand calculations, computer programs like Excel or MATLAB, to 
find initial component values and performance estimates

– Simulate your hand design with SPICE and inspect the result

• If your prediction and SPICE’s answer differ, question your hand 
calculations and question SPICE

– Perform final tweaks with SPICE

• SPICE can help you take into account effects that you can’t analyze 
with simple hand analysis (e.g. high frequency poles)

� How not to use SPICE?

– Guess some random component sizes and simulate in SPICE

– Iterate until the circuit somehow does what you want
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SPICE Monkey

EE101B - Spring 2017 - Chapter 18 5

[Courtesy Isaac Martinez]
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Structure of a Circuit Simulator
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Basic Analysis Modes 

� OP Analysis

– Compute the DC operating point of a circuit

� DC Analysis

– Similar to operating point analysis, but we can sweep certain 

parameters. For example, sweep the input voltage to find the large 

signal transfer characteristic. Capacitors are open circuits, inductors 

are shorts.

� AC Analysis

– Computes the frequency response of a circuit based on its operating 

point parameters. The circuit is linearized at the operating point in the 

same way we do in this in hand analysis

� Transient Analysis

– This is analogous to building the circuit in the lab and observing the 

signals of interest over time on an oscilloscope.
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Example 1 (OP)
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Netlist

R1 v1  v2   1

R2 v2  v3   2

R4 v3  0    4

I1  0  v1   1

R3 v2  0    3

.op

.backanno

.end

EE101B - Spring 2017 - Chapter 18 9

� For more details on SPICE netlist syntax, refer to 

http://www.ecircuitcenter.com/Basics.htm
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Result
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Under the Hood

� In this example, SPICE simply solves a linear system of equations

– Think Gaussian elimination, done numerically
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This Should Not Work…
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But it Does!

� -1 teravolts at node V1

� What’s going on?
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� Key take-home

– Numerical tools behave 

“funny” when you ask them 

dumb questions

– Garbage in → garbage out

� If something strange comes out 

of SPICE, chances are that you 

have made a mistake, and the 

tool is just trying to do its best… 
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The tool automatically inserts a 

conductance of 1pS at each node; 

this helps the tool to “converge” even 

when there are “floating” nodes
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Example 2 (OP)

� This is a nonlinear circuit, so linear algebra alone won’t do the trick

� How does SPICE get the answer?
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� We can still describe the circuit in matrix format
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2� −1�

−1� 1�

��

��
=

5�

− �
��
�� − 1

� And we can perform Gaussian elimination to make the conductance 

matrix triangular

2� −1�

0 0.5�

��

��
=

5�

−�� �
��
�� − 1 + 2.5�

� Next steps

– Solve the transcendental equation in �2

– Then back substitute as usual to get �1
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Solving the Transcendental Equation

� We need to find the intersect of the two curves

� SPICE does this using Newton-Raphson iterations
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� If the function � is well behaved, we can get arbitrarily close to the true 

solution of the transcendental equation

– But we obviously want to stop at some point 

EE101B - Spring 2017 - Chapter 18 21

The Newton-Raphson 

iterations end when these error 

tolerances are met

See SPICE manual or 

advanced books if you are 

curious about what these 

settings mean

If the simulation does not 

converge, changing these 

settings may help

B. Murmann

Example 3 (DC)

� In this example, the input source is swept and essentially an operating 

point analysis is performed in each step

– Result from previous step comes in handy as initial guess for 

Newton-Raphson iterations

EE101B - Spring 2017 - Chapter 18 22
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Example 4 (AC)
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B. Murmann

What Happens During AC Analysis?

� Again just linear algebra, as in the operating point analysis with linear 

elements (example 1)

� But, this time with complex numbers, and with " as a parameter

� The statement “.ac dec 100 10 100k” tells SPICE to

– Perform a logarithmix sweep in frequency with 100 points per decade

– Start at 10 Hz and end  at 100 kHz

– Means that the tool solves 100·4 = 400 complex matrix equations to 

generate the plot on the previous slide
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Example 5 (TRAN)
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Specifying Initial Conditions

� Unless we specify an initial condition, Spice assumes that the initial voltage 

across the capacitor is the same as the applied input at t=0 (see previous slide)
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Example 6 (TRAN)
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Under the Hood of Transient Analysis

� Transient analysis is the most complex among the analysis types we 

have discussed

� The simulator solves the circuit’s system of nonlinear differential 

equations numerically and at discrete time instances

– Think Newton-Raphson, but with numerical integration in time to take 

the behavior of energy storage elements into account 
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0.0µs 0.5µs 1.0µs

-2.0V

-1.6V

-1.2V

-0.8V

-0.4V

0.0V

0.4V

0.8V

1.2V

1.6V

2.0V
V(vin) V(vout) V(n001)
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Plot Settings � Mark Data Points

The simulator chooses a 

small time step when the 

waveforms change quickly
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Transient Analysis Convergence Problems

� Non-convergence during transient analysis is usually related to extreme 

derivatives or discontinuities, often caused by bad component models or 

unreasonable circuits
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Simulating MOSFET Circuits
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M1

MyNMOS

VGS

1.5

VDS

5

vgs

vds

.MODEL MyNMOS NMOS (KP=50u VT0=0.5)

.dc VDS 0 5 0.01 VGS 1 5 0.5

MOSFET parameters

Two-dimensional DC sweep

W=20u

L=1u
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Level 1 MOSFET Model
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http://ltwiki.org/LTspiceHelp/LTspiceHelp/M_MOSFET.htm
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DC Sweep Results

EE101B - Spring 2017 - Chapter 18 33
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Setting LAMBDA = 0.1
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Example: CS Stage

EE101B - Spring 2017 - Chapter 18 35

M1

MyNMOS

VIN

1

VDD

5

RD

10k
vout

vin

vdd

.MODEL MyNMOS NMOS (KP=50u VT0=0.5)

;tf V(vout) VIN

;op

.dc VIN 0 5 0.01

B. Murmann

Log File (OP Analysis)

Instance "m1": Length shorter than recommended for a level 1 MOSFET.

Direct Newton iteration for .op point succeeded.

Semiconductor Device Operating Points:

--- MOSFET Transistors ---

Name:          m1

Model:       mynmos

Id:          1.25e-04

Vgs:         1.00e+00

Vds:         3.75e+00

Vbs:         0.00e+00

Vth:         5.00e-01

Vdsat:       5.00e-01

Gm:          5.00e-04

Gds:         0.00e+00

Gmb:         0.00e+00

Cbd:         0.00e+00

Cbs:         0.00e+00

Cgsov:       0.00e+00

Cgdov:       0.00e+00

Cgbov:       0.00e+00

Cgs:         0.00e+00

Cgd:         0.00e+00

Cgb:         0.00e+00
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Can compare these numbers to hand analysis



B. Murmann

TF Analysis Output

� Computes the small-signal gain and port impedances at the circuit’s 

operating point
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--- Transfer Function ---

Transfer_function: -5 transfer

vin#Input_impedance: 1e+020 impedance

output_impedance_at_V(vout): 10000 impedance

B. Murmann

DC Sweep Output
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Transient and AC Simulation Example
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M1

MyNMOS

AC 1

VIN

SINE(1 0.1 10k)

VDD

5

RD

10k

C1

1n

vout

vin

vdd

.MODEL MyNMOS NMOS (KP=50u VT0=0.5)

.tran 300u

;ac dec 100 1k 100meg

B. Murmann

Transient Analysis Output
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Input amplitude set to 100 mV Input amplitude set to 1 V



B. Murmann

AC Analysis Output
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AC Input amplitude set to 100 mV (-20 dBV) AC Input amplitude set to 1 V (0 dBV)

DC Gain = 14dBV – 0dBV = 14dBDC Gain = -6dBV – (-20dBV) = 14dB

B. Murmann

� Key Point: AC simulations are based on a linear circuit model; it does 

not matter which value we use for the AC input amplitude

� May as well set it to 1, in which case plotting the output is equivalent to 

plotting the circuit’s transfer function 
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AC Input amplitude set to 1 kV (60 dBV)

DC Gain = 74dBV – 60dBV = 14dB
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Boris Murmann

Stanford University

Chapter 19

A/D and D/A Conversion

EE101B - Spring 2017- Chapter 19 1

References: 

Maloberti, Chapter 7

Analog Devices, The Data Conversion Handbook, Chapter 3

B. Murmann

Motivation

� In almost all modern electronic systems, the information of interest is 

processed and/or stored in the digital domain

� This means that most systems need data converters (A/D and D/A)

EE101B - Spring 2017- Chapter 19 2

  A/D

Frequency 
translation

FilteringAmplification
Analog-to-digital 

conversion

 D/A

Frequency 
translation

FilteringAmplification
Digital-to-Analog 

conversion

Digital 
Processing

Transducers 
Cables

...

A⋅cos(ω1t)

B⋅cos(ω2t)
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Data Converter Applications (1)

� Consumer electronics

– Audio, TV, Video

– Digital Cameras

– Automotive control

– Appliances

– Toys

� Communications

– Mobile Phones

– Wireless Base Stations

– Routers

– Cable Tuners

– Satellite Receivers

3
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Data Converter Applications (2)

� Computing and Control

– Storage media

– Sound Cards

– Data acquisition cards

� Instrumentation

– Lab bench equipment

– Semiconductor test equipment

– Scientific equipment

– Medical equipment

4
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The Data Conversion Problem

� Real world analog signals

– Continuous time, continuous amplitude

� Digital abstraction

– Discrete time, discrete amplitude

� Two problems

– How to discretize in time and amplitude

• A/D conversion

– How to "undescretize" in time and amplitude

• D/A conversion 

5

B. Murmann EE101B - Spring 2017- Chapter 19

Overview

� We'll fist look at these building blocks from a functional, "black box" 

perspective

� Look at implementations later

6
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Uniform Sampling and Quantization

� Most common way of performing A/D 

conversion

– Sample signal uniformly in time

– Quantize signal uniformly in amplitude

� Questions

– How fast do we need to sample to 

preserve the information

– How can we reconstruct the signal 

back into analog form? 

– How much "noise" is added due to 

amplitude quantization?

• We will at first ignore amplitude 

quantization and come back to this 

later…

7
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Sampling a Sinusoid
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fsig changed to 899 kHz
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fsig changed to 1101 kHz

1
1000

1101

s
s

sig

f kHz
T

f kHz

= =

=

( ) 1101 1101 101
2 2 1 2

1000 1000 1000
sigv n cos n cos n cos n

      = π ⋅ ⋅ = π ⋅ − ⋅ = π ⋅ ⋅           

Time

A
m

p
lit

u
d

e

10



B. Murmann EE101B - Spring 2017- Chapter 19

Consequence

� The frequencies fsig and N·fs ± fsig (N integer), are indistinguishable in the 

discrete time domain (after sampling)

� See EE102B for a rigorous mathematical treatment

11
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Nyquist Sampling Theorem

� In order to prevent “aliasing” we need

2
s

sig,max

f
f <

12

� The sampling rate fs=2·fsig,max is called the Nyquist rate

� Two possibilities

– Sample fast enough to cover all spectral components, including 

unwanted ones outside band of interest

– Limit fsig,max through filtering � “anti-alias filter”
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Brick Wall Anti-Alias Filter

13
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Practical Anti-Alias Filter

� Need to sample faster than Nyquist rate to get good attenuation

– "Oversampling" 

Continuous

Time

Discrete

Time

0 f
s

... f

Desired

Signal

0 0.5 f/f
s

f
s
/2B f

s
-B

Parasitic

Tone

B/f
s

Attenuation

14
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The Reconstruction Problem

� As long as we sample fast enough, 

x(n) contains all information about x(t)

– fs > 2·fsig,max

� How to reconstruct x(t) from x(n)?

� One can show that ideal reconstruction 

requires convolution with a sinc pulse

– Not practical

– See EE102B for the math

15
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Zero-Order Hold Reconstruction

� The most practical way of 

reconstructing the continuous time 

signal is to simply "hold" the discrete 

time values

� It turns out that this causes sinc 

shaped replicas of the signal 

spectrum at multiples of fs

– Again, see EE102B for the math

� These unwanted spectral 

components are removed/attenuated 

using a reconstruction (or 

smoothing) filter
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Example from EE102B

EE101B - Spring 2017- Chapter 19 17

Sinc

Signal 

Spectrum

Distorted Spectrum

Unwanted replicas
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Magical Filter!

Perfect Signal Spectrum
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Time Domain Example with “Nonideal” Filter

EE101B - Spring 2017- Chapter 19 19

Signal after 

second-order 

Butterworth filter

B. Murmann

How to Improve the Reconstruction 

� Use a steeper filter

– This provides stronger attenuation for the unwanted replicas

� Oversample the signal

– This increases the spacing between the replicas and the wanted 

band so that the given filter will provide more attenuation

– Furthermore, this reduces the effect of “sinc” distortion to the spectral 

shape (see slide 17) 
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Recap

� Next, look at

– Transfer functions of quantizer and DAC

– Impact of quantization error

21
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Ideal DAC Transfer Function

� Essentially a digitally controlled voltage, current or charge source

� A DAC does not introduce a quantization error

22
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Ideal ADC Transfer Characteristic

� The inputs are mapped onto the nearest discrete output level

� Mathematically equivalent to rounding
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Quantizing a Sine Wave

� The introduced error is a very complicated signal that is hard to describe 

analytically
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Quantization Error Histogram

� Sinusoidal input signal with fsig=101Hz, sampled at fs=1000Hz

� 8-bit quantizer
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� Distribution is "almost" uniform

� Can approximate average error power by integrating uniform distribution
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Statistical Model of Quantization Error

� Assumption: eq(x) has a uniform probability density

� This approximation holds reasonably well in practice when

– Signal spans large number of quantization steps

– Signal is "sufficiently active"

– Quantizer does not overload
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Signal-to-Quantization-Noise Ratio

� A B-bit ADC has 2B quantization levels

� Assuming uniform eq and a full-scale sinusoidal signal, we have

2
B

sig 2B

2
qnoise

1 2

2 2P
SQNR 1.5 2 6.02B 1.76  dB

P

12

 ∆
  
 = = = × = +
∆

B (Number of Bits) SQNR

8 50 dB

12 74 dB

16 98 dB

20 122 dB
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Circuit Implementation

� D/A conversion

– Thermometer DACs

– Binary weighted DACs

� A/D conversion

– Flash

– Successive approximation

– Single slope

EE101B - Spring 2017- Chapter 19 28
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Dout
Din

Dout

Vin

110

101

100

011

010

001

000

111

“Decision Levels”

[Maloberti]

B. Murmann

The Data Conversion is Timed by a Clock Signal

� In an ADC, the clock defines the sampling instant

� In a DAC, the clock defines the update instant of the output voltage
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Dout

[Maloberti]
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Resistor String DAC

� Switches are implemented using MOSFETs

– Either off of operating in the triode region
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“One-hot decoder”

[Data Conversion Handbook]
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Decimal Binary One-hot

0 000 00000001

1 001 00000010

2 010 00000100

3 011 00001000

4 100 00010000

5 101 00100000

6 110 01000000

7 111 10000000
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Similar Idea Using Currents – Thermometer Current Steering DAC

� For a “single ended” output, OUTPUT can be grounded

� The output can be fed to a resistor or the virtual ground of an opamp 
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“Thermometer decoder”

[Data Conversion Handbook]
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Decimal Binary Thermometer

0 000 0000000

1 001 0000001

2 010 0000011

3 011 0000111

4 100 0001111

5 101 0011111

6 110 0111111

7 111 1111111
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Eliminating the Encoder
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No encoder, but lots

of switches

[Maloberti]

B. Murmann

Binary Weighted Resistor DAC

� No encoder, but component spread becomes large for high resolution

– Think about a 16-bit version of the above circuit
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R-2R DAC

� Analyze using successive application of Thevenin

� Let’s look at the LSB as an example
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R

R
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VREF

VREF/8

2R

R

VOUT

b3

R

VREF

VREF

VREF/4

2R

2R

R

VOUT

b2

b3

R

R

VREF/16

R

VOUT
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Binary Weighted Current Steering DAC

� Similar to binary weighted resistor DAC

� There is no current steering equivalent for the R-2R architecture
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IOUT

[Data Conversion Handbook]
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Summary on DACs

� DACs can be built in lots of different ways; we just looked at a few

� Architectural choices are often driven by the need to limit complexity or 

component spread

� What we haven’t covered

– Switched capacitor DACs

– Opamp-based circuits

– Segmentation (combining binary and thermometer sections)

– Nonidealities

– … 
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Flash ADC

� Decision levels are generated by a resistor ladder and a bank of voltage 

comparators compares the input against these levels 
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Basic Latch-Based Voltage Comparator

φ1: Set up initial conditions

φ2: Enable positive feedback

t=0

43

-Gm

-Gm

Circuit model during φ2
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Typical Waveforms

� This is the fastest possible way to detect the polarity of a signal 
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Nodes vOP and vON for initial vOD of 1mV, 1µV, 1nV and 1pV 

φ2 goes high

B. Murmann

SAR ADC
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[Maloberti]

“Sample and Hold”

or 

“Track and Hold”

Successive 

Approximation 

Register
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Alternative View
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[Data Conversion Handbook]
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Basic Track and Hold Circuit
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M
1

M
y

N
M

O
S

VIN

SINE(1.5 1 35k)

VDD

PULSE(0 5 0 1n 1n 5u 10u) C1

100p

vout

vclock

vin

.MODEL MyNMOS NMOS (KP=50u VT0=0.5)

.tran 50u
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Waveforms
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0µs 5µs 10µs 15µs 20µs 25µs 30µs 35µs 40µs 45µs 50µs

0.4V

0.6V

0.8V

1.0V

1.2V

1.4V

1.6V

1.8V

2.0V

2.2V

2.4V

2.6V

-0.5V

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

V(vin) V(vout)
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Track Hold
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Single-Slope ADC

� Many different implementations exist; below is the simplest variant

� Main idea is to count the number of clock cycles it takes to discharge the 

sampled signal with a current source
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Comparison
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Clock Cycles

Per Conversion
Complexity

Flash ~1 High ~2B

SAR ~B Medium

Single Slope ~2B Low (no DAC)

B = number of bits

B. Murmann

Summary on ADCs

� ADCs can be built in lots of different ways; we just looked at a few

� The choice of architecture is often driven by a reasonable tradeoff 

between complexity and speed

� What we haven’t covered

– Oversampling ADCs (Delta-sigma ADCs)

– Pipeline ADCs

– Time interleaving

– Nonidealities

– … 
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Performance of State-of-the-Art ADCs 
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Summary

EE101B - Spring 2017 - Chapter 20 1

B. Murmann

Modern Circuits Are Complex
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Managing Complexity: Block Abstraction

� Almost any meaningful electronic mixed-signal system can be 

represented by this generic block diagram
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  A/D

Frequency 
translation 
(optional)

FilteringAmplification
Analog-to-digital 

conversion

 D/A

Frequency 
translation 
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FilteringAmplification
Digital-to-Analog 

conversion

Digital 
Processing

Transducers 
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...

Physical 
signals:

RF, electrcial, 
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Transmit (or Actuation) Path

Receive (or Sense) Path
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Managing Complexity: Hierarchical Abstraction
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Topics Covered in This Course

� Modeling and analysis of analog gain stages

– MOSFET operation

– Biasing

– Small-signal analysis

– Two-port models

� Laplace transform for circuit designers

– Frequency response

– Step response

� Opamp-based feedback circuits

– Basic analysis

– Stability and frequency compensation

– Oscillators

– Analog filters

� Circuit simulation

� A/D and D/A conversion
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Main Objective: Build up a Solid Toolkit

� MOSFET modeling

– MOSFET physics are very complicated

– Used the simplest possible model to minimize 

complexity while retaining most important effects

� Small-signal approximation

– Electronic circuits are not perfectly linear, but using 

a linear model greatly simplifies their analysis

– Use large-signal equations to find bias point

– Linearize all components at the operating point

– Continue analysis with linear small-signal model

• Can use linear tricks, like superposition

• Apply known results as much as possible; do 

not blindly grind through KCL/KVL!

� Two-port modeling

– Creates an additional level of abstraction

– Lets us think about cascading multiple stages
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� Energy storage elements

– Basic intuition

• C is an open at DC, short at high frequencies

• L is a short at DC, open at high frequencies

– Nodal equations become differential equations with 

L and/or C present

• But writing/solving differential equations for 

circuit analysis is tedious and cumbersome

� LTI system analysis, Fourier transform, H(jω)

– A step in the right direction

– Recognize that system is fully described by 

impulse response; convolution with impulse 

response gives output

– Convolution in the time domain � Multiplication in 

the frequency domain

– Eigenfunction ����
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� Laplace transform, H(s)

– “The” analysis tool for electrical engineers

– Eigenfunction ���

– Lets us describe arbitrary linear systems, even 

unstable ones (e.g. oscillators during start-up)

– System is fully described by the location of poles 

and zeros in the s-plane
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� Laplace transform of components

– ZC = 1/sC, ZL = sL

– Model initial conditions using independent sources 

in series or parallel

� Using Laplace to find the step response

– Set input to 1/s, multiply with H(s), use inverse 

Laplace transform to find time domain output

– Often requires partial fraction expansion

� Using Laplace to find the frequency response

– Set s = jω � Fourier transform

– Evaluate magnitude and phase, create a Bode plot

– Understand asymptotes in Bode plot

• What happens at low/high frequencies when 

certain components become open/short

– Understand impact of real LHP/RHP zeros and 

LHP poles on phase and magnitude
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� Second order systems

– The “bread and butter” system model; applicable to 

many different circuits

– Q factor is a proxy that tells us whether the system 

rings (time domain) or peaks (frequency domain)

� Filter design

– Place poles and zeros “strategically” in the s-plane 

to meet certain objectives, e.g.

• Maximally flat response (Butterworth)

• Steepest possible roll-off (Elliptic)

• Maximally flat group delay (Bessel)

– Desired when wave-shape of time domain signal 

is important

– Unfortunately it is impossible to get a sharp roll-off 

and well-behaved step response; one must pick a 

trade-off
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� Basic op-amp circuit analysis

– Find ideal closed-loop transfer function by 

assuming ideal opamp model (infinite gain, virtual 

ground)

– Then find loop gain (T) to quantify deviation from 

ideality
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� Frequency response of opamp circuits

– Single-pole opamp

• Closed-loop BW is equal to unity gain frequency 

of T(jω) � f3dB = fu1

– Two-pole opamp

• Closed-loop BW is still approximately equal to 

fu1, but exact value depends on position of 

second pole (which must occur beyond fu1)

– More than two poles � approximate with two pole 

model

B. Murmann

� Stability of feedback circuits

– Most general criterion is BIBO (somewhat useless)

– For a loop consisting of stable LTI systems, we can 

apply the Bode criterion

• Phase margin, gain margin

– First order system has 90º phase margin (boring)

– Second order system has a one-to-one mapping of 

phase margin and Q of closed loop poles

� Frequency compensation

– Tweak a feedback circuit to adjust/improve its 

phase margin

– Most off the shelf opamps are already properly 

compensated

• Dominant pole plus other poles beyond fu1
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� Oscillators

– What bothers us in amplifiers is great for building 

oscillators

– Barkhausen criterion

– Roughly speaking, poles are initially in the right half 

plane, then snap onto the jω axis � steady-state 

oscillations

– Covered phase shift, Wien, LC and xtal oscillators

� Data converters

– ADC: Sampling and quantization

– DAC: Zero-order hold reconstruction

– Both typically require filters

• Anti-aliasing and image rejection

– Many different architectures exist to meet different 

points objectives in the speed/complexity trade-off 

space

EE101B - Spring 2016 - Chapter 20 13

B. Murmann

� Circuit simulation

– Circuit simulator is nothing but a powerful 

numerical solver

– OP, DC, AC, TRAN analysis are very similar to the 

way we look at/analyze circuits by hand

– Garbage in � garbage out

� The coolest hand analysis tools ever

– OCTC analysis

• Provides a first order (conservative) BW 

estimate using divide and conquer

• Must know potential pitfalls

– Blackman’s impedance formula

• Quickly compute the input/output impedances 

of a feedback circuit
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Where to Go From Here?

EE 101A
Circuits I 

Autumn Winter Spring

EE 101B
Circuits II

EE 114
Analog IC I

Sophomore 

EE 214B
Analog IC II

EE 122A
Analog Lab

EE 133
Analog Comm. Lab

Junior

Senior

Co-term

EE 254
Adv. Power Electr.

EE 153
Power Electronics

EE 118
Mechatronics

Eng. 105
Feedback Controls

EE 271
Digital IC

EE 313
Digital Memory

Integrated (IC) Analog

Board-Level Analog

Power Electronics

Mechatronics

Digital Circuits

EE 122B
Bio-Instruments

EE 124
Neuro-Bio 

Neuro-Bio Electronics
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The Evolution of a Circuit Designer…

EE101A,B EE114/214A

EE122A/B

EE133

EE153

EE214B

EE271

EE254

EE313

EE314A,B

EE315

EE101B - Spring 2016 - Chapter 20 16


