Image sensors

- Sensor technologies: CMOS and CCD
- CMOS imagers dominate high-volume applications; Fabrication cost, lower power; system integration
- CCD are used in certain scientific applications (astronomy)
- CMOS sensors: viable research platform
 - Enable new experiments
 - New imaging architectures

Photo detector: basic principles

Photoelectric effect

The photoelectric effect (CMOS and CCD)

Atoms in a silicon crystal have electrons arranged in discete bands called the **Valence Band** (lower energy) and the **Conduction Band** (higher energy).

Most electrons occupy the **Valence band.** The absorption of a photon can excite electrons into the **conduction band.** The excitation requires the photon to provide at least 1.26 electron volts.

A 1100nm photon of light has 1.26eV. Beyond this wavelength silicon is transparent; hence silicon imagers are insensitive beyond this infra-red band.

In the conduction band electrons move freely about in the lattice of the silicon crystal; this leaves a 'hole' in the valence band which acts like a positively charged carrier. In the absence of an external electric field the hole and electron will recombine and be lost.

- In a CCD an electric field is introduced to prevent recombination.
- In CMOS electrons are trapped in capacitors.

CCD and CMOS transfer functions

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

• Front-illuminated

11-11

Front-illuminated imagers

Front illuminated CMOS

Building up the CMOS imager layers

The pixel stack

The microlens array

Anatomy of the Active Pixel Sensor Photodiode

http://www.olympusmicro.com/primer/digitalimaging/cmosimagesensors.html

CMOS graphics description

Back-illuminated sensors

- Back-illuminated
- Optical cross-talk
- Light sensitivity

A problem with front-illuminated

Optical cross-talk

With some CMOS sensors, rays of incoming light at large angles of incidence can fail to reach the photodiode of the corresponding pixel and reach only the adjacent pixel. Or they are shadowed or reflected on the way to the pixel with the effect that the overall amount of light received by the pixels is less than the amount arriving through the microlenses.

Leica

Reducing path length to correct for optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html

Back-illuminated (BI) CMOS sensor

Also called Back-side illumination (BSI)

Silicon substrate

Metal layers

Adapted from http://www.sony.net/SonyInfo/News/Press/200806/08-069E/

Front vs. Back illuminated

Front illuminated

Back illuminated

Front vs. Back illuminated

Front illuminated

Back illuminated

Front vs. Back illuminated

Back illuminated

Front illuminated

At equal exposure durations, more photons are captured

Sony comparison of backside illuminated CMOS

Front-illuminated structure

Back-illuminated structure

Back illuminated sensor

http://www.ovt.com/technologies/technology.php?TID=7

CCD imagers

- Charge transfer ideas
- Architectures
- Correlated double sampling

A few moments for the venerable CCD

Invented in the 1970s as memory devices; light sensitive properties were exploited for imaging applications; a major revolution in Astronomy.

They improved the light gathering power of telescopes by almost two orders of magnitude. In 2001 an amateur astronomer with a CCD camera and a 15 cm telescope collects as much light as an astronomer of the 1960s equipped with a photographic plate and a 1m telescope.

CCD Charge transfer

Exposure finished, buckets now contain samples of rain.

Conveyor belt starts turning and transfers buckets. Rain collected on the vertical conveyor is tipped into buckets on the horizontal conveyor.

Vertical conveyor stops. Horizontal conveyor starts up and tips each bucket in turn into the measuring cylinder .

After each bucket has been measured, the measuring cylinder is emptied , ready for the next bucket load.

Is this better?

CCD Animation Sequence (Full HD 15-25Mbps)

from Raymond Sirí 2 years ago

Full Frame CCD

Frame Transfer CCD

Frame Transfer CCD

Interline Transfer CCD

Electrical Efficiency - Stages (CCD, see Janesick's books, tutorials)

(After J. Janesick, Pixel Vision)

Engineering: Reducing 'reset' noise (CDS)

The image from a CCD is read out by transferring rows of charge into a single horizontal register, followed by transfer of individual pixel charge along the horizontal register towards a single output node.

As each pixel's charge reaches the output node, it is digitized and transferred to the computer for display.

There can be significant unwanted charge at this output stage. This unwanted signal is due to inaccurate resetting of the output.

Before the charge of each pixel is transferred to the output node, the node is reset to a fixed **reference value**. This value has Fixed and Variable Unwanted Effects.

The difference between the **reference value** and the transferred charge is measured and assigned to the pixel. This process is called Correlated Double Sampling (CDS).

Measuring the difference removes the Fixed Unwanted Effects. But reading twice causes extra noise (Variable Unwanted Effects)

It increases the Variable Unwanted Effects. When the Fixed >> Variable Unwanted, CDS is useful.

CX.

- Rolling
- Global

11-11

Rolling shutter

- Sensor is reset-integrationread a row (or column) at a time; this takes some time
- The scene changes during the read-out
- Temporal sampling artifacts
- These appear as spatial distortions

Read-out

Integrate

Reset

Movie of telephone lines

Note the power line

Rolling shutter

- Sensor is reset-integrationread a row (or column) at a time; this takes some time
- The scene changes during the read-out
- Temporal sampling artifacts
- These appear as spatial distortions

http://en.wikipedia.org/wiki/Rolling_shutter

Global shutter – single pixel

Figure 3. Rolling Shutter Pixel

Figure 4. Global Shutter Pixel

Global shutter readout (Aptina)

- Global shutter efficiency measures how well electrons are stored in the memory without being contaminated by unwanted electrons
- This image illustrates two ways in which unwanted electrons enter the memory node

Global Shutter Pixel Technologies and CMOS Image Sensors – A Powerful Combination – (Aptina white paper)

Global shutter readout (Aptina)

Charge from the pinned photodiode is pumped to a surface-pinned storage node.

There is an anti-reflective metal light shield in close proximity to the node to shield from stray light

The pump technology reduces the number of stray (diffusing) electrons

Global Shutter Pixel Technologies and CMOS Image Sensors – A Powerful Combination – (Aptina white paper)

Global shutter

Rolling shutter

Global shutter

System on a chip

- The sensor is embedded in other circuitry
- Much of the circuitry controls the sensor read and reset
- There can be additional elements (such as masked pixels) that are used for image processing (noise)

CMOS Image Sensor Integrated Circuit Architecture

http://www.olympusmicro.com/primer/digitalimaging/cmosimagesensors.html

Camera equation – (No noise)

- Linear spectral responsivity
- Counting photons
- Photon noise

CCD and CMOS transfer functions

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Convert photons to electrons at the pixel

$$e = GT \int i(\lambda) r(\lambda) f(\lambda) d\lambda$$

G = geometric factors (pixel optical cross-section, m²)

T = integration time (s)

$$i = \text{spectral irradiance (photons/s/nm/m2)}$$

- r = spectral responsivity of channel (electrons/photon)
- f = filter and media transmissivities

e = electrons at the pixel

Check units: $e = m^2 s \int p/s/nm/m^2 e/p d(nm)$

Camera equation (noise-free) as a matrix tableau

Camera equation (noise-free) as a matrix tableau

Follow the photons

Wavelength (nm)

Optical image (irradiance)

- Passive, active, digital
- Noise
 - Poisson shot noise
 - Dark voltage

22.25

• Read and reset noise

Hardware Development: CMOS pixels: PPS, APS, DPS

CMOS pixel circuit (APS, 3T)

• Reset transistor clears the charge on the photodiode by coupling to power

•Light induces charge to accumulate at photodiode

• Source follower allows voltage to be observed without clearing the charge

• Columns tied together, one row selected at a time

Nakamura (Olympus) and Fossum (JPL/Photobit)

http://en.wikipedia.org/wiki/Active_pixel_sensor
Hi Prof. Wandell,

I listened to your PSYCH 221 recording (lecture 6, 2013). I have a comment about who invented the idea of using in-pixel buffers in CMOS sensors.

Please take a look at this 1969 paper. Figure 1 and 8 show a photodiode equipped with a source follower and a reset transistor. Despite the cumbersome output mechanism, the idea of buffering each photodiode is evident.

Prof. Fossum patented this idea along with a modern readout mechanism. A heroic contribution, but the idea of buffering each pixel predates that.

Thanks, *XXX (heroic and smart young student)*

Pixel-level circuit noise

t_cameraNoise.m hwSensorFundamentals.m

 Electrons (Poisson random variable) are converted to volts by circuit properties (conversion gain)

Poisson distribution

Photon noise (shot noise)

No spatial structure Averaged away by repeated measures Visible at an SNR of 30 dB (1000 photons, Xiao et al.)

Pixel noise

- Electrons (Poisson random variable) are converted to volts by circuit properties (conversion gain)
- Circuit imperfections introduce dark voltage that grows over time (T*V/sec)
- The acts of reading and resetting the voltage are noisy (and can be grouped)

$$v_0 = ce$$

$$v_1 = v_0 + T\tilde{d}$$

$$v_2 = v_1 + \tilde{r_0} + \tilde{r_1}$$

Dark noise

Thermally generated electrons are indistinguishable from photogenerated electrons . They constitute a noise source known as 'Dark Current.' High end CCDs are designed (e.g., by cooling or in CMOS special circuitry) to reduce the amount of dark current.

Read and reset noise

The act of reading data from a pixel and resetting the pixel level to an initialized state involve imperfect circuit events. These imperfections are sensor read and sensor reset noise. They can be separately identified, but in simulation it is convenient to group them.

Photon, read, reset, dark, prnu, dsnu

Adds to photon noise – so 1000 photons not enough for noise-free

Sensor imperfections: PRNU

Across the imager surface there are two principal imperfections:

DSNU and PRNU

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Sensor imperfections: DSNU

Across the imager surface there are two principal imperfections:

DSNU and PRNU

Dark signal nonuniformity (**DSNU**) Varying leakage, reset

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Combined PRNU and DSNU

Across the imager surface there are two principal imperfections:

DSNU and PRNU

Dark signal nonuniformity (**DSNU**) Varying leakage, reset

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Sensor imperfections

Programmable gain/offset

- Electrons (Poisson random variable) are converted to volts by circuit properties (conversion gain)
- Circuit imperfections introduce dark voltage (d) that grows over time (T*V/sec)
- The acts of reading and resetting the voltage are noisy (and can be grouped)
- Variations across the sensor in analog offset V_{RS}

and gain; offset can be due to leakage and thus time-dependent

Programmable gain amplifier and offset

 $v_0 = ce$

 $v_1 = v_0 + T\tilde{d}$

$$v_2 = v_1 + \tilde{r}_0 + \tilde{r}_1$$

$$v_3 = \tilde{a}(v_2 + T\tilde{o})$$

Terminology: Temporal and fixed noise

- **Temporal noise:** Some noise terms differ across repeated reads of the pixel (e.g., read noise, reset noise, dark noise, photon noise); these can be averaged away
- Fixed pattern: Some noise terms are simply variations of the device properties across the array; these are fixed over time (conversion gain, DSNU, PRNU, Column gain) and are not averaged away

$$v_0 = ce$$

$$v_1 = v_0 + T\tilde{d}$$

$$v_2 = v_1 + \tilde{r}_0 + \tilde{r}_1$$

$$v_3 = \tilde{a}(v_2 + T\tilde{o})$$

Phenomonological model

 $v = \tilde{Z}(\tilde{e} + \tilde{X} + T\tilde{Y})$

Knowledge of the noise mechanisms is important for accurate simulation because the mechanisms have different temporal and spatial characteristics; in this form the equation does not make this important issue clear.

Column amplifier variation:

A special place in imaging hell

Fixed column noise

In some systems, an entire column shares an amplifier. In this case, variations between the column amplifiers produce unwanted variations (as above). Consistent column variations are very noticeable and thus must be eliminated.

Imager components

- Anti-aliasing and infrared filter
- Color filter array types

Sensor Properties: Overview

Pixel Properties

٠

- Pixel height, width
- Fill factor
- Dark current
- Read noise
- Conversion gain
- Voltage swing
- Array Properties
 - DSNU and PRNU
 - Pixel spacing
 - Number of pixels
- Color Properties
 - Color filter, transmittance
 - Photodetector QE
 - Infrared filter transmittance
 - Color filter array pattern

- Circuit Properties
 - Analog-to-digital conversion
 - Correlated Double Sampling
 - Column Amplifiers (Column FPN)
- **Pixel Optics**
 - Microlens array

Anti-aliasing and infrared blocking filter

- Placed on the sensor surface
- Blocks IR to discuss
- Blurs to prevent sampling artifacts —to discuss
- Two types birefringent and diffusing

lithium niobate is a commonly used birefringent material

The microlens array

The anti-aliasing filter and the CFA

The 4 pixels in a Bayer pixel block are combined to produce the RGB values displayed in a single pixel in the display

Thus, we want these 4 pixels to see the same point in the visual field

To achieve this, the image must not vary over space faster than the size of the pixel block

Anti-aliasing filter effect

Classically, aliasing refers to the fact that when we under sample a space-varying image, the measured values appear to be at a different frequency from the original signal

In this case, the true signal is rapidly varying; the samples are evenly spaced by too slow to pick up the rapid variation

The sampled signal appears to be low, rather than high, frequency

Anti-aliasing effects

s_sensorAliasing.m

Chromatic artifacts 10 !p/mm 100 66 pizels gamma = 1.5 inh spread = 0.25

The consequence of this undersampling in imaging with color sensors is a combination of aliasing and unwanted chromatic artifacts

The chromatic artifacts arise because we need to account not only for the sampling rate but for the fact that we are sampling with pixels that have different color sensitivities

Anti-aliasing filter effect

No filter (Sharp, but aliased) With filter (Blurry, but less aliasing)

Anti-aliasing with birefringence filters

Light through a calcite crystal Divided into an ordinary and extraordinary ray Displaced in position Different polarizations

Birefringence

Ordinary and extraordinary ray positions can be seen easily

2mm block of calcite

Modeling the anti-aliasing filters

Scene of point array

Modeling the anti-aliasing filter:

Optical image with birefringent filter

Two filter layers, rotated, produce four spots

Modeling the anti-aliasing filter:

Diffusing filter

ISET-Optics			_ 🗆 🗙
File Edit Plot Optio	s Analyze	Help	Ľ
		opticalimage1 Text State Text State Text State Set State State State State State State Sta	
E		Optical image	
		Diffraction-limited 💌	
		Diffraction limited optics	
		F-number Focal Length	
		4.00 3.86	mm
		 Off axis (cos4th) 	
		Anti-alias	
0.6		Compute Optical Image	um)
Gamma		Perform calculation	

ISET simulation

No real difference at sensor

No real difference at sensor

Input referred signals

Input light level

Saturation noise levels

Ratio of saturation and dark noise levels

Dynamic range and quantization

High Dynamic Range Imaging of Natural Scenes

Volume 10/Nov. 2002/ Color Imaging Conference Feng Xiao, Jeffrey M. DiCarlo, Peter B. Catrysse and Brian A. Wandell Stanford University Stanford, California

Rendering high dynamic range images Proceedings of the SPIE (2000), V. 3965, pp. 392-401

Jeffrey M. DiCarlo^{*a} and Brian A. Wandell^{a,b}

^aDepartment of Electrical Engineering, Stanford University, CA 94305

HDR: How High Is High?

System calibration

Dark current < 0.03 DV/sec Readout noise < 0.3 DV Exposure 40us ~ 15 minutes 10-bit linear output 1024x1280 Bayer pattern

Multiple Exposures for HDR Capture

Increases DR by factor:

$$\frac{T_{long}}{T_{short}} \quad \text{(Yang et al. 99)}$$

5-6 exposures at interval of 4 times Measurable luminance range: $[10^{-1} \sim 10^5 \text{ cd/m}^2]$ Dynamic range > 10^6 :1

(1) HDR scenes have multiple illuminants

(2) Image DR is often 3-5 Log units

(3) The high range is often due to specular reflection or light

Original dynamic range = 6000:1

Effective dynamic range = [99% tail] / [1% tail] 6000:1 reduced to 350:1

Eliminating specular reflections and light sources reduces DR

HDR image database (online)

http://52.32.77.154/#browse~isetbio/resources.scenes.hdr

Lens Calibration: Flare for HDR

Shift-variant (but linear)

Dynamic range Not the same as quantization

Changing exposure value scales input-referred dark noise **and** input referred saturation. Hence, the dynamic range remains **roughly** constant

Sensor limited

Input light level

High dynamic range image capture

- There are software and multi-capture approaches
- We attend to hardware ideas
- Limitation is pixel well-capacity

1st Generation Implementation (D. Yang et al., IEEE JSSC, 1999)

- Imager: 640 x 512
- Pixel: 10.5 micron
- Technology: 0.35 micron
- *ADC* shared x 4
- Control signals FPGA
- *Fill factor* ~ 29%
- QE ~10%
- Really cool, though

Multicapture HDR Illustration

Pixim

Gamma

Display

HDR range compression code from MIT

Li, Sharan, and Adelson

Novel camera architectures

Fuji Corporation

This is an overview. When we get to the image processing lectures in 2.5 weeks, I will explain more about how the data are processed and evaluated. Before that we need to review some human perception, which is next.

Camera CFA architectures

- Bayer array RGB
- Most common
- Green double the sampling rate
- Requires filling in missing pixel values (demosaicking)
 - nosaicking)

- CMYG video cameras
- Fast demosaicking
- Broad filters, more photons
- Poor noise properties

Example sensor responsivities differ

⁽Xiao and Wandell, personal comm.)

- High density (small size) and excellent electrical properties of modern pixels enable new sensors with new applications
- **Challenge**: design and deliver image processing pipelines that exploit the spatial spectral statistics of the target scenes, properly balancing noise

Arrays with white pixels

Under low illumination conditions, the white pixel still gathers some information. The rendered scene, however, will not have good color reproduction

RGBW compared to Bayer

RGBW: better in low light & same in high light

Camera color architectures: 3-Sensor

Prismatic optics No demosaicking Three (smaller) sensors and optical alignment

Philips total internal reflection dichroic prism

Foveon and Sigma

http://www.foveon.com/article.php?a=67

s_sensorStackedPixel.m

The Sigma SD9 was the first digital camera to use a full-color multi-layer sensor technology.

The sensor was called the Foveon X3.

Wavelengths penetrate to different depths

Long-wavelength photons penetrate deeper than short. The spectral response of electrons at the surface differs from electrons deeper in the material

Probability of absorption in an infinitesimal slice

$$p(\lambda, \delta) = a(\lambda)\delta$$

Suppose that we calculate for a thickness, T, of N infinitesimal slices, each of thickness T/N = d the likelihood of **not** being absorbed up to that last slice

$$\lim_{N\to\infty} (1-a(\lambda)\frac{T}{N})^N = e^{-a(\lambda)T}$$

Probability of **being** absorbed in the next infinitesimal slice

$$p(\lambda, \delta)e^{-a(\lambda)T} \sim a(\lambda)e^{-a(\lambda)T}$$

Photon penetration into silicon

$$p(\lambda, d) = a(\lambda) e^{-a(\lambda)d}$$

Each photon goes somewhere

Foveon X₃ Pixel (Triple-Well)

Depth (microns)

Quantum efficiencies of the three wells (Foveon)

Having more photosites makes the luminance image sharper

Foveon marketing

Is slightly higher resolution what people really wanted?

Bayer

Bayer + blur

Foveon X3

New high-end camera designs: Light L16

Choose 10 of 16

Multiple focal lengths, field of view, depth of field

Computational imaging

Potential for multiple exposure durations

Taking advantage of camera module scaling

Built on top of massive industrial development of small camera modules

Light.co status

The Light L16 Camera

\$1699

The L16 is a compact camera that uses multiple lens systems to shoot photos at the same time, then computationally fuses them into a DSLR-quality image.

The Light L16 is sold out until 2017.

Join our email list for updates and to get notified when we begin taking new orders.

Innovative design using movable mirrors

Innovative design using movable mirrors

Innovative design using movable mirrors

Put together by computational imaging ideas

Is higher resolution and controlled properties of depth of field and bokeh¹ features in a cell phone form factor what people really want?

1. Bokeh: The visual quality of the out-of-focus areas of a photographic image, especially as rendered by a particular lens (pronounced both ways, in practice).

Pixel optics

- Light inside imagers
 - # photons at the pixel is finite
 - Light collecting and guiding in pixels
 - Effects of pixel scaling

1,000 photon criterion (Xiao et al.)

3% contrast-threshold for spatially uniform photon noise Photon noise becomes visible at 1,000 photons (SNR = $1000/\sqrt{(1000)} = 33:1$)

Figure 3: A pair of stimuli was displayed side by side: one was a uniform disk and the other one with noise superimposed.

F. Xiao et al., El 5678-07 (2005)

Photon noise: Photons per pixel

P. B. Catrysse et al., El 5678-01 (2005)

Photon noise: Visibility (monochrome)

Luminance range: 12 - 1.25 cd/m² Exposure time: 10 ms

P. B. Catrysse et al., El 5678-01 (2005)

Photon noise: Visibility (monochrome)

Luminance range: 12 - 1.25 cd/m² Exposure time: 10 ms

P. B. Catrysse et al., El 5678-01 (2005)

Photon noise: Visibility (color)

Additional processing steps usually amplify noise in color images

Mean luminance: 100 cd/m^2 Exposure time: 10 msImaging lens: f/2.8

Photon noise: Visibility (color)

Mean luminance: 10 cd/m² Exposure time: 10 ms Imaging lens: f/2.8

Photon noise: Visibility (color)

Mean luminance: 10 cd/m² Exposure time: 10 ms Imaging lens: f/8.0

Typical image sensor pixel

Pixel optics: Capture every photon!

- Pixel QE = Optical Efficiency (OE) + internal QE
- Optical X-talk (OX) (in addition to electrical X-talk)
- Collecting and guiding: maximize OE & minimize OX

P. B. Catrysse et al., JOSA A, Vol. 19, No. 8 (2002)

Optics of digital camera systems

Collecting optics: The basics

$$G = 2NA_{Lens} w$$

• Etendue G, Concentration C

$$C = \frac{NA_{\mu Lens}}{NA_{Lens}} \approx \frac{n_{\mu Lens}}{n_{Lens}} \frac{f / \#_{Lens}}{f / \#_{\mu Lens}}$$

 $G = 2NA_{\mu Lens} W_{Diode}$

Collecting optics: Examples

- Micro-lens arrays
 - Single \rightarrow double
 - Circular \rightarrow gapless
 - Refractive \rightarrow diffractive/Fresnel

H. Rhodes et al., IEEE (2004)

Panasonic CCD technology

Optics of digital camera systems

Guiding optics: Examples

• Air gap "Guard ring": TIR waveguide

- Motivations for reducing pixel size
 - Decrease cost per sensor
 - Increase number of pixels per area (spatial resolution)
- Reducing pixel size leads to:
 - Less light incident on each pixel
 - Noise visible when less than 1000 photons
 - More diffraction, spreading out light
 - Decrease in Optical Efficiency (OE)
 - Increase in Optical Crosstalk (OX)

Catrysse, P.B. and Wandell, B.A., Proc. SPIE 5678, 1-13 (2005) Xiao, F. *et al.*, Proc. SPIE 5678, 75-84 (2005)

Photodiode: A single, light-sensing element on a sensor.

Photosite: The area on a sensor where the light from one point of the image is received. The light entering the photosite passes through one microlens and one color filter. With a traditional sensor, there is one photodiode beneath the microlens, whereas with Double Honeycomb Super CCD, there are two photodiodes: a primary and a secondary photodiode.

Pixel: A final point of picture information in the outputted image. This normally equates to one printed 'dot', or a square of information on the image when displayed on a monitor.

An explanation of Dynamic Range: Unlike the human eye, which can rapidly adjust to differing intensities of light inherent within a contrasty scene, photographic media (film and digital sensors) are constrained by having to align themselves to expose correctly for a given intensity of light. If the camera exposes bright areas correctly, the shadow areas darken out, and detail is lost. Conversely, if the camera exposes shadow areas correctly, the bright areas will appear as burnt-out whites. A camera with good dynamic range will possess the exposure flexibility to accommodate these extremes and expose both bright and shadow areas correctly.

High dynamic range CCD imager (Fuji)

 The Super CCD SR was developed specially to simulate the extended tonal range characteristics of color negative film.

FUJIFILM

 The Super CCD SR mimics the structure of negative film by using two photodiodes at two different sensitivities. The secondary detector continues to accumulate charge after the primary saturates.

Dynamic range enhancement combines the two captures

Transduction function range is increased

Dynamic range

Pixel-size trends in 1/4" Image sensors (cell phone cameras)

Pixel-size trends in 1/4" Image sensors (cell phone cameras)

Mean photon absorption or penetration depth in silicon

1st Generation Implementation (D. Yang et al., IEEE JSSC, 1999)

- *Imager: 640 x 512*
- Pixel: 10.5 micron
- Technology: 0.35 micron
- ADC shared x 4
- Control signals FPGA
- *Fill factor* ~ 29%
- QE ~10%
- Really cool, though

MCSI: HDR Example

MCSI: HDR Example

MCSI: HDR Example

2nd Generation: 10,000 Frames/Sec DPS Chip

(S. Kleinfelder et al., IEEE JSSC, 2001)

- *Imager: 352 x 288*
- Pixel: 9.4 micron
- Technology: 0.18 micron
- ADC and 8bit memory per pixel
- Integrated
- QE ~14%
- Fill factor $\sim 15\%$
- Significant dark noise
- Really cool, though

2nd Generation System

(Kleinfelder, Lim, Liu)

- Based on CMOS-DPS (ADC, Memory)
- Interfaced via 3 NI cards to PC
- Programmable via Matlab interface
- Runs up to 1400 frames per sec

Correlated double sampling 1400 fps Play back at 30 fps

Image sensors: Structures and Capture

Fuji Corporation

CCD pixel structure

(Simon Tulloch smt@ing.iac.es)

Invented in the 1970s as memory devices; light sensitive properties were exploited for imaging applications; a major revolution in Astronomy.

They improved the light gathering power of telescopes by almost two orders of magnitude. In 2001 an amateur astronomer with a CCD camera and a 15 cm telescope collects as much light as an astronomer of the 1960s equipped with a photographic plate and a 1m telescope.

Stores as many as 10⁵ electrons, though 10⁴ more typical

Multiple Capture Single Image

Multiple Capture Single Image: High Dynamic Range Application

MCSI: High Dynamic Range (HDR)

Multiple captures

Exposure bracketing

Single image

High dynamic range image

Camera Module – Trend by Optical format & form factor

This is from a public talk given by Magnachip. Use the information freely, but please do not use this slide directly in your presentation!

CMOS sensor characterization

• Goal:

- Develop a noise model to analyze sensor performance
- Use sensor model for system-level simulations

Review sensor noise modeling terminology

- Temporal
- Spatial

Sample characterization results

Sensor Noise Components

Temporal noise components

- Q_{shot} : shot noise during integration (photo and dark currents)
- Q_{reset} : reset noise
- Q_{read}: readout noise (including A/D quantization noise)

Spatial noise components

- Fixed pattern noise due to mismatches across the sensor
- Offset and gain components
 - Offset: Canceled out by correlated double sampling, except DSNU
 - Gain: Pixel response non-uniformity (PRNU) not canceled

Sensor Noise Model

Total input-referred noise charge

•
$$Q_n = Q_{shot} + Q_{reset} + Q_{read} + Q_{fpn}$$

• After CDS,
$$Q_n = Q_{shot} + Q_{read} + Q_{prnu} + Q_{dsnu}$$

Characterizing Read Noise

Setup

- Dark conditions
- Short integration time (0.1ms)
- Analog gain (A) is 1
- σ_{read} is std. deviation of temporal variations over 1000 frames
- Only assumption is that i_{dc} /pixel is constant for 100ms

Sample results

- $\sigma_{read} = 0.86$ digital counts (full signal range = 1023)
- But this is A/D quantization noise-limited
- Also, need to convert to electrons (conversion gain)

Read Noise Model

- This clarifies read noise characterization Q_{quant.} Pixel $Q_{sig} = Q_o + Q_{read}$ $V_{sig} = g^* Q_{sig}$ $A^* V_{sig}$ A/D► Out $\sigma_{Out}^{2} = \left(\frac{2^{n}-1}{V_{max}}\right)^{2} \left[g^{2}A^{2}\sigma_{read}^{2} + \sigma_{quant.}^{2}\right]$
- For A=1, dominated by Q_{quant.}
- Want to increase A to the point where Q_{read} dominates

Conversion Gain

THIS IS A MESS. FIX IT OR DELETE IT.

Setup

- Sensor is in shot-noise limited regime
- Since
 - Conversion gain,

,

 $g = \frac{V_s}{SNR}$ • In general, for 10-bit A/D with FSR of

• So,

- Since we don't know g , can define V_{\max} follows

$$g = \frac{I_{sig}}{SNR}$$
 (counts/electron)

 $SNR = \frac{CV_s}{\alpha}$

Conversion Gain

Results

- What we measure is actually A*g, where A is analog gain
- With A=1, approx. 20 electrons/count
- Assuming FSR of 1.5V,
 - $g = 70 \mu V/electron$
 - This is "true" conversion gain
- So in electrons
 - Read noise = 17 electrons (A/D quantization noise)
 - Full well = 20500 electrons
- Absolute read noise floor can be lowered with A gain

With Analog Gain

Results

• Analog gain = 16

• σ_{read} = 3.2 digital counts

- Approx. 2 electrons/count (theoretically 20/16)
- Actual pixel read noise = 4-6 electrons

May not want to operate at maximum analog gain

- Limits dynamic range
- A=8 is sufficient

Verification of Results

- What are the results sensitive to?
 - Confident of read noise in digital counts
 - But read noise in electrons sensitive to conversion gain
 - So verify conversion gain

Can verify using dark current shot noise

- Dark conditions, long integration times (2.5s)
- Just look at one pixel over 40 minutes (1000 frames)

• Only assumption is that pixel dark current is constant over time

$$SNR = \frac{CV_s}{q}$$

Verification of Results

Results

Conversion gain, g = 1/50 (counts/electron)

• Assuming 1.5V swing, $g = 30\mu V/\text{electron} \rightarrow C = 5.5\text{fF}$

- Assuming 1.1V swing, $g = 22\mu V/\text{electron} \rightarrow C = 7.4\text{fF}$
- Read noise, = 10 electrons
 Reproducible for A = 8 and A = 16
- Full well = 51,150 electrons
 - So peak SNR, ignoring PRNU, is 47dB (datasheet says 45dB)

Setup

- Dark conditions @ RT
- Long integration time (2.5s)
- Capture 1000 frames and average
- Mean intensity is dark current, spatial variation is DSNU

Results

- Mean dark signal = 2200 electrons, or 0.14fA (0.6nA/cm²)
- DSNU = 80 electrons or 0.005fA

Characterization Summary

Read noise, σ_{read}	10 electrons
Dark current, i_{dc}	0.14fA (see next page for amps to electrons)
Dark signal non-uniformity, $oldsymbol{\sigma}_{i_{dc}}$	0.005fA (see next page for amps to electrons)
Full well capacity, Q_{max}	52000 electrons
Peak SNR	47dB
Dynamic range Think about noise-free dynamic range, meaning from 1000 electrons captured to well capacity, or maybe a little more to account for other noise components.	60dB (depends on duration because noise depends on duration)
Pixel conversion gain, g	22-30µV/e⁻
Quantum efficiency (550nm)	0.5-0.6

1 Amp is a one coulomb (unit of charge) per second

the charge of an electron is 1.6 x10^-19 so the number of electrons in one coulomb is $1/1.6x10^{-19}$

 $=6.25 \times 10^{18}$ electrons

so for one Amp that would be 6.25×10^{18} electrons per second flowing around the circuit/component

Femto is 10⁻¹⁵ Pico is 10⁻¹² Nano is 10⁻⁹ Micro is 10⁻⁶

So .14 femto amps is $6.25 \ge 10^{18} \ge 10^{-15} \le .14$ electrons per second = $(.14 \le 6.25) \ge 10^{3}$ e-/sec So for a sensor like this, in 10 ms, you would have $0.010 \ge 10^{3}$ e which is about 10 electrons of dark current.

Complete Sensor Model

SNR vs. photocurrent (A = 1)

Complete Sensor Model

• SNR vs. photon flux (A = 1)

$$\sigma_{read}$$
 44 electrons
Peak SNR = 47dB
DR = 60dB

Complete Sensor Model

SNR vs. photocurrent (A = 8)

Sensor Noise Model

SNR vs. photon flux (A = 8)

 σ_{read} 10 electrons Peak SNR = 38dB

$$DR = 56 dB \ (t_{int} < 100 ms)$$