Principles of color matching with displays

- CRT displays
- Linear equations for matching
- The nonlinearity (gamma) curve

Color matching with displays

CRT's use the logic of the color matching experiment on every scan

Each pixel is like a miniature color-matching display

CRT signal path

CRT	LCD-1	LCD-2
	il	$>$

Shadow mask geometry associates each neam with a single phosphor

The shadow mask directs the electrons to one of the phosphors

The electron beam spreads across a few locations, but the local rays are nearly parallel and preserve color association

SubPixel (mm)

Remember additivity of light and
Newton's wall

Solve for the linear intensities

Create a metamer
Primary intensities
Image
contains a
target value
$\left(\begin{array}{l}e_{r} \\ e_{g} \\ e_{b}\end{array}\right)=\left(\left(\mathrm{XYZ}^{*} \text { Display }\right)^{-1}\right)\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)$

Camera measures XYZ

Often called the display gamma

Some Comments About Display Gamma Levels of 2.0

Linear spacing

Steps are too big in dark regions

Bunched appearance in bright region

Uniform appearance
Equal L* spacing
Board work to explain relationship to transduction

Camera measures RGB and we convert to a value related to CIE-XYZ

Estimate monitor linear intensities that match $C I E-X Y Z$ related value

$$
\begin{aligned}
& \left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
\text { XYZ functions } \\
\end{array}\right)\left(\begin{array}{l}
\mid \\
\begin{array}{l}
e_{r} \\
\text { Monitor } \\
\text { primaries }
\end{array} \\
e_{g} \\
e_{b}
\end{array}\right) \\
& \left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
\mid
\end{array}\right)\left(\begin{array}{l}
e_{r} \\
e_{g} \\
e_{b}
\end{array}\right)
\end{aligned}
$$

Camera measures something that we convert to a CIEXYZ value

Correct for display gamma

Estimate monitor linear
intensities that match CIE-XYZ related value

$\left.(X M)^{-1}\right)\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)$

Image processing pipeline

Camera estimates

calibrated values

Produce (linear RGB) color matches

NTSC, PAL, JPEG, etc.

Encode for device RGB gamma

- Video tutorial for spectral radiance
- Luminance
- Flicker photometry

Radiance geometry

Functions of wavelength

Radiant intensity

Light emitted from a point in a solid angle

Radiance

Light scattered from an extended source in a given direction

Spectral radiance units

Definition: Light emitted or reflected from an extended source in a given direction. The light is specified in units of
energy/second/steradian/surface area/waveband watts/steradian/surface area/waveband

The surface area is foreshortened according to the viewing direction

- Source Radiance
- Symbol: L
- Units: W/(sr nm m²)

Spectral radiance

$$
L(\lambda)=\underbrace{}_{\underbrace{\omega} A_{s} \cos (\theta) t n m}
$$

- Solid angle of a cone (steradians): the surface area on a unit sphere intersected by the cone whose apex is at the center of the sphere
- A sphere is 4π steradians

Spectral radiance

$$
L(\lambda)=\frac{E(\lambda)}{\omega A_{s} \cos (\theta) t n m}
$$

- The surface area is foreshortened and consistent with the area as seen from the viewing direction.
-As the angle approaches 90 deg, the area becomes zero and the energy becomes zero.

Foreshortened surface area

Spectroradiometer uses this principle to measure luminance without measuring distance

Closer, acquires smaller surface area than farther

Parameter	Distance
Solid angle	
Surface area	

Spectroradiometer uses this principle to measure luminance without measuring distance

Closer, acquires smaller surface area than farther

Parameter	Distance
Solid angle	Decreases
Surface area	

Spectroradiometer uses this principle to measure luminance without measuring distance

Closer, acquires smaller surface area than farther

Parameter	Distance
Solid angle	Decreases
Surface area	

Spectroradiometer uses this principle to measure luminance without measuring distance

Closer, acquires smaller surface area than farther

Parameter	Distance
Solid angle	Decreases
Surface area	Increases

Irradiance (E)

$$
J s^{-1} m^{-2}=w m^{-2}
$$

- The irradiance at a surface depends on the angle of the surface with respect to the light

- As surface tilts away from the light, the same amount of light covers a larger surface area and thus less irradiance (light per square meter)

$$
\begin{gathered}
\text { Irradiance formula } \\
E=\frac{\pi}{1+4(f \#)^{2}(1+\mid m)^{2}} T L
\end{gathered}
$$

$E=$ irradiance at the sensor
$L=$ radiance in the scene
$T=$ lens and other media transmittance
$f \#=f$-number of the lens
$m=$ magnification of the lens

Term	Defining Equation	Application	SI Unit	
Radiant Flux	$F=\frac{\Delta Q}{\Delta t}$	Light emitted from a point	watt	$\mathrm{Q}=$ energy (joules)
Radiant Intensity	$I=\frac{\Delta F}{\Delta \omega}$	Light emitted from a point in a given solid angle	watt / sr	$\begin{aligned} & \mathrm{F}=\mathrm{Q} / \mathrm{sec}(\text { watt }) \\ & \mathrm{t}=\text { time }(\mathrm{sec}) \end{aligned}$
Radiance	$L=\frac{\Delta I}{\Delta A_{s} \cos (\theta)}$	Light from an extended source in a given direction	$\begin{aligned} & \text { watt / sr / } \\ & \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} A & =\operatorname{area}\left(\text { meter }^{2}\right) \\ \theta & =\text { angle incident to plane } \end{aligned}$
Irradiance	$E=\frac{\Delta F}{\Delta A_{r}}$	Light density incident on a plane	watt / m ${ }^{2}$	

The empirical basis of the luminance curve

Luminance from spectral radiance

- Source Radiance
- Symbol: L
- Units: W/(sr nm m²)
- Source Luminance
- Symbol: L_{v}
- Units: candelas/m ${ }^{2}$

$$
L_{v}=K_{m} \int V(\lambda) \cdot L(\lambda) d \lambda
$$

- Conversion

Photopic luminosity function

- Peak luminosity: unity at 555 nm
- $\mathrm{K}_{\mathrm{m}}=683 \mathrm{~lm} / \mathrm{W}$

Typical luminance levels

Outdoors (cd/m²)

Indoors (cd/m²)

Sun	6×10^{8}
Visual saturation	49,000
Just below saturation	25,000
Outdoor building façade 10,000	
Blue sky (morning)	4,600

Concrete sidewalk	
in sun	3,200
in shadow	570
in deep shadow	290

Interior room (fluorescent lighting)
floor/walls 10Interior room (no lighting)floor/walls30
in shadow 5

Corresponding photometric units

Term	Defining Equation	Application	SI Unit	$\begin{aligned} \mathrm{Q} & =\text { energy (joules) } \\ \mathrm{F} & =\mathrm{Q} / \sec (\text { watt }) \\ \mathrm{t} & =\text { time (sec) } \\ \omega & =\text { solid angle (steradian) } \\ \mathrm{A} & =\text { area (meter }{ }^{2} \text {) } \\ \theta & =\text { angle incident to plane } \end{aligned}$
Luminous Flux	$F_{v}=K_{m} \int F_{e}(\lambda) V(\lambda) d \lambda$	Light emitted from a point	lumen	
Luminous Intensity	$I_{v}=\frac{\Delta F_{v}}{\Delta \omega}$	Light emitted from a point in a given solid angle	candela (cd)	
Luminance	$L_{v}=\frac{\Delta I}{\Delta A_{s} \cos (\theta)}$	Light from an extended source in a given direction	$\begin{aligned} & \text { lumens } / \mathrm{m}^{2} \\ & \text { (lux) } \end{aligned}$	
Illuminance	$E_{v}=\frac{\Delta L_{v}}{\Delta A_{r}}$	Light density incident on a plane	$\mathrm{cd} / \mathrm{m}^{2}$	

Measuring spectral radiance

Understanding radiation and heat transfer is important

- Atmosphere is transparent to photons between 8 and 15 microns
- Such photons are coupled directly to the vast reaches of outer space (talk about a big heat sink!)
- Converting energy into this waveband has amazing opportunities from cooling to clothing

RADIATIVE COOLING FOR A BETTER WORLD
Optics and Photonics, November 2017

PERSONAL COMFORT

Solar still efficiency is improved if thermal radiation from the receiver is suppressed

THE ENVIRONMENT

Thermoradiative cells generate energy by acting as PV cells built backwards

Conventional fabrics block both visible and infrared light, increasing skin temperature

Microporous and microfiber PE fabrics let thermal radiation out while remaining visibly opaque

Projective transform

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z}
$$

When two lights differ in intensity, say

$$
\mathrm{K}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \text { and (X,Y,Z), }
$$

their chromaticity coordinates are the same

Chromaticity diagram

Looking down at the triangle

Chromaticity diagrams

Applet: Katie Dektar
Text: Marc Levoy
Technical assistance: Andrew Adams

Chromaticity Diagram

Chromaticity Gamut Demo (Stanford)

Applet: Katie Dektar
Text: Marc Levoy
Technical assistance: Andrew Adams
https://graphics.stanford.edu/courses/cs178-10/applets/threedgamut.html

(blackbody.m)

Chromaticity coordinates define complementary colors

Chromaticity coordinates define dominant wavelength

Chromaticity coordinates define display gamuts

Chromaticity coordinates define signal light colors

Main points

- Matching predicts matches, not appearance

- Color matching is understood profoundly
- CIE standard XYZ are color-matching standards
- Radiance and Luminance universes are connected via the photopic luminosity function

$$
V(\lambda), \bar{y}(\lambda)
$$

- CIE xy chromaticity coordinates are useful for some color specifications; there are other chromaticity coordinates (uv)

Color engineering

- CIELAB metric

- Manufacturers have a great deal of experience with product color (paints, textiles)
- Consistency over time
- Tolerance for contracts
- Early experience for uniform patches, not images; digital imaging requires additional thought

Example

- The distance in any frame that is linear with absorptions is wrong
- This claim invariant of linear transformation
- The discriminability of two lights, x and $x+\Delta$ depends on x
- The distance in XYZ space depends on only Δ

What factors limit discriminability?

Human wavelength discrimination

The cone absorptions are stochastic, following a Poisson distribution. Hence, the number of absorptions differs from trial-to-trial. When we calculate the information availble to discriminate two lights, we must take into account not just the difference in mean but also the statistical difference between the cone absorptions.|

This script calculates the information available in the cone absorptions to discriminate two small, uniform patches at two different wavelengths (520 and 530 nm). We calculate the discriminability as we increase the mean intensity of the two signals.

This script shows the distribution of the L,M and S absorptions caused by two stimuli, and it also shows how the distributions vary as the mean stimulus intensity level increases.

ieInit

Define the two stimuli

We image uniform fields of monochrome light on a human sensor. These plots are made for two wavelengths and three scene intensity levels

```
wSamples = [520 530]; nWave = length(wSamples);
luminance = [10 50 200]; nLevels = length(luminance);
sceneSize = 128;
% Make a scene for each of the wavelengths.
scene = cell(1,nWave);
% We extract the cone absorptions for
% plotting into these variables
L = cell(1,length(wSamples));
M = cell(l,length(wSamples));
S = cell(1,length(wSamples));
```


Stochastic cone absorptions and discriminability

Create human optics and cone mosaic

The lens has an impact on the light transmitted to the retina. The macular pigment and cone photopigments are also important. This cell creates a standard human optics and a typical human cone mosaic.
\% Human optics
oi = oiCreate
\% Cone mosaic for 100 ms
cMosaic = coneMosaic;
cMosaic.integrationTime $=0.10$;
\% This is the mosaic
cMosaic.plot('cone mosaic');

Calculate and plot the cone absorptions as 3D scatter plot

We make three graphs, one for each intensity level. Notice how the groups of points from the two different wavelengths separate as the scene intensity level increases.

Also, notice how few S-cone absorptions there are compared to the L and M cone absorptions.

for	$\mathrm{rr}=1:$ nLevels \% For each luminance level a new graph
	$\mathrm{vcNewGraphWin} ;$
	for $w w=1:$ length(wSamples) \% For the two wavelength samples

\% Create a monochromatic scene and set the luminance
scene $\{w w\}=$ sceneCreate('uniform monochromatic',wSamples(ww),sceneSize) scene $\{w w\}=$ sceneAdjustLuminance(scene\{ww\},luminance(rr));
\% Compute the retinal spectral irradiance
oi = oiCompute(scene\{ww\},oi);
\% Compute the cone absorptions cMosaic. compute(oi)

L-absorptions

M-Absorptions

- If we could use XYZ units, the threshold line would be a constant, rather than growing in proportion to the background
- The CIE defines a transformation that maps the XYZ units by a roughly logarithmic transformation so that the difference is approximately constant

- Origin is the target color; axes are difference from target color; each point is an additional match by the participant
- Solution: In a metric space, these ellipses would be circles.
- The CIE defines a nonlinear transform on XYZ into a space where these ellipses are more circular

- Ellipses shown at x10 threshold
- Kodak made 3D measurements
- Circularizing the ellipses is one of several metric constraints

- The variance in color-matching settings is consistent with thresholds
- Ellipsoid shape depends on space-time of stimulus
- No single formula for all patterns or mean levels
- Note the remarkable cancellation of L and M signals

Multi-dimensional scaling

- Similarity judgments of color pairs
- Build a distance matrix
- Check for consistency
- Derive a perceptually uniform representation
- Numerical scaling
- Provide a numerical judgment

	S0	S1	S2
S0	-	D01	D02
S1		-	D12
S2			-

- Steven's Power Law

Multi-dimensional scaling

- Similarity judgments of color pairs
- Build a distance matrix
- Check for consistency
- Derive a perceptually uniform representation
- Numerical scaling
- Provide a numerical judgment

	S0	S1	S2
S0	\ldots	D01	D02
S1		-	D12
S2			-

- Steven’s Power Law

Multi-dimensional scaling

- Similarity judgments of color pairs
- Build a distance matrix
- Check for consistency
- Derive a perceptually uniform representation
- Numerical scaling
- Provide a numerical judgment

	S0	S1	S2
S0	\ldots	D01	D02
S1		-	D12
S2			-

- Steven's Power Law

Multi-dimensional scaling

- Similarity judgments of color pairs
- Build a distance matrix
- Check for consistency
- Derive a perceptually uniform representation
- Numerical scaling
- Provide a numerical judgment

	S0	S1	S2
S0	\ldots	D01	D02
S1		-	D12
S2			-

- Steven’s Power Law
- CIE Lightness (1976)
- CIELAB

Cube-root of the relative luminance

$$
\begin{aligned}
& L^{*}=116\left(\frac{Y}{Y_{w}}\right)^{1 / 3}-16, \text { if } \frac{Y}{Y_{w}}>.00856 \\
& L^{*}=903.3\left(\frac{Y}{Y_{w}}\right), \text { otherwise }
\end{aligned}
$$

$\mathrm{Y}=$ CIE luminance
$\mathrm{Y}_{\mathrm{n}}=$ CIE luminance of a white surface

CIELAB chrominance

Cube-root of the relative values

$$
\begin{aligned}
& a^{*}=500\left\{\left(\frac{X}{X_{w}}\right)^{1 / 3}-\left(\frac{Y}{Y_{w}}\right)^{1 / 3}\right\} \quad \text { (red-green) } \\
& b^{*}=200\left\{\left(\frac{Y}{Y_{w}}\right)^{1 / 3}-\left(\frac{Z}{Z_{w}}\right)^{1 / 3}\right\} \quad \text { (blue-yellow) }
\end{aligned}
$$

Red-green and blue-yellow chrominance
 representations

CIELAB color solid

- Distance between two colors designed to predict color difference visibility

$$
\Delta E_{a b}=\left(\left(\Delta L^{*}\right)^{2}+(\Delta a *)^{2}+\left(\Delta b^{*}\right)^{2}\right)^{1 / 2}
$$

- CIE 2000 replaces this formula with a computer program

Hue and chroma terms

$$
\begin{aligned}
& h_{a b}=\arctan \left(b^{*} / a^{*}\right) \\
& C_{a b}^{*}=\left(a^{* 2}+b^{* 2}\right)^{1 / 2}
\end{aligned}
$$

Opponent colors

`that modern tendency in sensory physiology, which has found its most acute expression in the Physiological Optics of Helmholtz, is not leading us to the truth, and whoever wishes to open up new avenues of research in this area, must first free himself from the theories which now prevail."

$$
0_{0}^{0}
$$

Red, green, yellow, blue

Color appearance space: Munsell

"rational way to describe color"

Not all colors are realized

-Munsell Book of Colors (A.H. Munsell)
-Hue, Value, Chroma (2.5YR 5/10)
-Cylindrical geometry and radial sampling (cf. OSA/UCS)

- Unique notation was calibrated to CIE standards in 'Munsell renotation system"

Outer circle are various hues (color circle)
Up and down are values (lightness)
Center to edge is saturation

Munsell Color Notation

"rational way to describe color"
http://en.wikipedia.org/wiki/Munsell

-Munsell Book of Colors (A.H. Munsell)
-Hue, Value, Chroma (2.5YR 5/10)
-Cylindrical geometry and radial sampling (cf. OSA/UCS)
-Unique notation was calibrated to CIE standards in 'Munsell renotation system"

Outer circle are various hues (color circle)
Up and down are values (lightness)
Center to edge is saturation

Munsell Color Notation

"rational way to describe color"
-Munsell Book of Colors (A.H. Munsell)
-Hue, Value, Chroma (2.5YR 5/10)
-Cylindrical geometry and radial sampling (cf. OSA/UCS)

- Unique notation was calibrated to CIE standards in 'Munsell renotation system"

Outer circle are various hues (color circle)
Up and down are values (lightness)
Center to edge is saturation

Color and pattern

- Color appearance depends on spatial pattern
- A metric for spatial pattern and color

Space - The next frontier (Color is not invariant as we change pattern)

Spatial and temporal variations in color sensitivity are significant

Space-Time-Color sensitivity

- Luminance is visible over the largest range
-Blue-yellow sensitivity is lost at relatively low spatial and temporal frequencies (e.g., chromatic aberration)
- Red-green is intermediate

Asymmetric color matching experiment

(b) Spectral sensitivities

Wavelength (nm)

Spatial CIELAB Representation

Merging CIELAB and human spatial sensitivity

Difference between reference and test image

S-CIELAB difference distributions

Difference between reference and test image and

Original

Compressed

Color error frequency dependence

- Find the mean $\Delta \mathrm{E}$ difference between a uniform patch and harmonic patterns
- CIELAB has very little spatial dependency - the ΔE average is about the same for all the spatial frequency patterns
- S-CIELAB vs. uniform $\Delta \mathrm{E}$ varies a lot with the spatial pattern

- In most applications and natural images, the spectral functions we encounter are a subset of all possible functions
- they are smooth
- There is so much regularity, that we can accurately summarize these functions by the weighted $\left(\mathrm{w}_{\mathrm{i}}\right)$ sum of a small number (N) of spectral basis functions (B_{i})

The basis functions are fixed - so each spectral function is summarized by only the N -weights

- Compact representation of the data
- Work smoothly with conventional linear matrix computations
- Help make design decisions such as the number of sensors needed to measure a set of signals: One for each basis function
Spectral \quad Basis functions Weights
function
$\left(\begin{array}{c}\mid \\ s_{j}(\lambda) \\ \mid\end{array}\right) \approx\left(\begin{array}{cc}\mid & \mid \\ B_{1}(\lambda) & B_{2}(\lambda) \\ \mid & \mid\end{array}\right)\binom{w_{1, j}}{w_{2, j}}$

The original data contain (W x S) values The linear model representation contains $(\mathrm{N} x \mathrm{~S})+(\mathrm{W} x \mathrm{~N})=(\mathrm{S}+\mathrm{W}) \times \mathrm{N}$

Suppose we have W = 76wavelength (samples, 400:4:700) and $\mathrm{S}=1000$ measurements $(76,000)$ data values.

If we can approximate with a three dimensional $(\mathrm{N}=3)$ linear model, then we need 3228 values, a reduction by a factor of 20 .

For an N -dimensional linear model, we find the basis functions and weights that minimizes the error across samples (j)

$$
\sum_{j}\left(\sum_{\lambda}\left[S_{j}(\lambda)-\sum_{i=1}^{N} B_{i}(\lambda) w_{i}\right]^{2} \begin{array}{c}
\text { Linear model } \\
\text { approximation }
\end{array}\right)
$$

- The SVD is a solution for finding the basis functions that achieve the best leastsquares approximation
- The data are placed in the columns of a matrix, D. Typically, the mean is removed first, but not always.
- The SVD is a matrix factorization into three terms; two orthonormal matrices (U, V) and one diagonal matrix (S)
- The basis functions and weights correspond to the groupings at the right

SVD definition
$D=U S V^{t}$
$U U^{t}=U^{t} U=$ Identity
$V V^{t}=V^{t} V=$ Identity
Sis diagonal with $s_{i} \geq s_{i+1}$

We reduce the dimensionality by zeroing out all but the first N of the diagonal weights

The first N columns of U are the basis functions

The product $\left(\mathrm{SV}^{\mathrm{t}}\right)$ is the weights

CIE daylight

$$
E(\lambda) \approx B_{0}+\sum_{i=1,2} w_{i} B_{i}(\lambda)
$$

Mean and two bases

$\times 10^{-3} \quad$ Outside my window

Wavelength(nm)

Macbeth (Gretag) ColorChecker

- Reflectances chosen to match difficult to reproduce natural objects
- Neutral series
- Simple and widely used
- Reflectance functions published along with (x, y) values

Reflectance functions

ref = macbethReadReflectance(wave);
[U S V]= svd(ref);
plot(wave,U(:,1:4))

MCC approximations

Macbeth approximations: Appearance

Future: depth and viewing angle

- 3D representations of the scene account for defocus and depth of field
- Lift the Lambertian assumption to use full bidirectional reflectance distribution functions (BRDF); allows highlights

The bidirectional reflectance distribution function (BRDF; $f_{r}\left(\omega_{i}, \omega_{o}\right)$) is a four-dimensional function that defines how light is reflected at an opaque surface. The function takes an incoming light direction, ω_{i}, and outgoing direction, ω_{o}, both defined with respect to the surface normal n, and returns the ratio of reflected radiance exiting along ω_{o} to the irradiance incident on the surface from direction ω_{i}. Note that each direction ω is itself parameterized by azimuth angle pand zenith angle θ, therefore the BRDF as a whole is 4-dimensional. The BRDF has units sr^{-1}, with steradians (sr) being a unit of solid angle.

Illuminant changes

Illuminant changes

Illuminant changes

Illuminant changes

Radiance

Functions of wavelength

Radiant flux

Light emitted from a point in all directions

Radiance
Light scattered from an extended source in a given direction

Radiant intensity

Light emitted from a point in a solid angle

Irradiance

Total light falling on a surface (from all directions) per unit area

Tutorial: Imaging Lab Values

Tutorial: Imaging Lab Values

```
% You should understand these from basic color matching
rgb2xyz = XYZ'*phosphors;
xyz2rgb = inv(rgb2xyz);
whiteRGB = (xyz2rgb*whiteXYZ)'
whiteMax = max(whiteRGB)
varyRGB = (xyz2rgb*varyXYZ);
varyRGB = varyRGB/whiteMax;
% Use these routines to correct for gamma
invGamTable = mkInvGammaTable(monitorGam,1000);
fbRGB = round(dac2rgb(varyRGB',invGamTable))
% Display fbRGB values (see right)
```


Red-green

Blue-yellow

