Data Storage Formats

Instructor: Mateil Zaharia

Outline

Overview

Record encoding
Collection storage
C-Store paper

Indexes

Outline

Overview

Record encoding
Collection storage
C-Store paper

Indexes

Designing Storage Formats

Key concerns:

» Access time: minimize # of random accesses,
bytes transferred, etc
* Main way: place co-accessed data together!

» Space: storage costs $
» Ease of updates

General Setup

Record collection

3%
N

Index

Secondary
index

Outline

Storage devices wrap-up
Record encoding
Collection storage
C-Store paper

Indexes

What Are the Data Items We
Want to Store?

a salary
a name
a date

a picture

What Are the Data Items We
Want to Store?

a salary

d Name

a date What we have available: bytes

a picture

bits

CS 245

Fixed-Length Items

Integer: fixed # of bytes (e.qg., 2 bytes)

e.g., 35is | 00000000 | 00100011

Floating-point: n-bit mantissa, m-bit exponent

Character: encode as integer (e.g. ASCII)

Variable-Length Items

String of characters:

» Null-terminated | c | a |t

» Length + data 3|lclalt

» Fixed-length

Bag of bits: | Length Bits

Representing

) I *
X

CS 245

11

Representing Nothing

NULL concept in SQL (not same as 0 or “”)

Physical representation options:
» Special “sentinel” value in fixed-length field
» Boolean “is null” flag
» Just skip the field in a sparse record format

Pretty common in practice!

Bigger Collections

Data ltems

|

Records

|

Blocks

|

Files

Record: Set Data Items (Fields)

E.g. employee record:
» hame field
» salary field

» date-of-hire field
» ...

Record Encodings

Fixed vs variable format

Fixed vs variable length

Fixed Format

A schema for all records in table specifies:
- # of fields
- type of each field
- order in record

- meaning of each field

Example: Fixed Format & Length

Employee record
(1) EID, 2 byte integer |

(2) Name, 10 chars > Schema

(3) Dept, 2 byte code)

5|5 S|rT|]i|.|:|I’.|| I I I I O|2

> Records

8|3 j|()|r]|e |S I I I I I O|1

Variable Format

Record itself contains format

“Self-describing”

Example: Variable Format & Length

46 |14 S 4 | F ORD

5

2

18 Jo yi1bus
7 adA1 buys
«— 8WeU JoJ 8p0H

— adAy Jebaju|

. @3 sepey
BulAynuspl epo)

<« SPISId #

Variable Format Useful For

“Sparse” records
Repeating fields

Evolving formats

But may waste space...

Many Variants Between Fixed
and Variable Format

Example: Include a record type in record

S5 | 27

b

record type record length

Type Is a pointer to one of several schemas

Outline

Overview

Record encoding
Collection storage
C-Store paper

Indexes

Collection Storage Questions

How do we place data items and records for
efficient access?

» Locality and searchability

How do we physically encode records in
blocks and files?

Placing Data for Efficient Access

Locality: which items are accessed together

» When you read one field of a record, you’re
likely to read other fields of the same record

» When you read one field of record 1, you’re
likely to read the same field of record 2

Searchability: quickly find relevant records
» E.g. sorting the file lets you do binary search

Locality Example: Row Stores
vs Column Stores

Row Store Column Store
name age state name age state
Alex 20 CA Alex 20 CA
Bob 30 CA Bob 30 CA
Carol 42 NY Carol 42 NY
David 21 MA David 21 MA
Eve 26 CA Eve 26 CA
Frances 56 NY Frances 56 NY

Gia 19 MA Gia 19 MA
Harold 28 AK Harold 28 AK
Ivan 41 CA lvan 41 CA
Fields stored contiguously Each column in a different file

in one file

Locality Example: Row Stores
vs Column Stores

Row Store

state
CA

name age
Alex 20

Bob 30 CA
Carol 42 NY
David 21 MA

Eve 26 CA

Frances 56 NY
Gia 19 MA
Harold 28 AK
lvan 41 CA

Fields stored contiguously
in one file

Column Store

name age state
‘ Alex \ ‘ 20 \ ‘ CA \
Bob
Carol 42 NY
David 21 MA
Eve 26 CA
Frances 56 NY
Gia 19 MA
Harold 28 AK
lvan 41 CA

Each column in a different file

Accessing all fields of one record: 1 random |/O for row, 3 for column

CS 245

30

Locality Example: Row Stores
vs Column Stores

Row Store

name age state

Column Store

name

Alex

Bob

Carol

David

Eve

Frances

Gia

Alex CA
Bob CA
Carol NY
David MA
Eve CA
Frances NY
Gia MA
Harold AK
lvan CA

Harold

Fields stored contiguously
in one file

lvan

age

state

CA

CA

NY

MA

CA

NY

MA

AK

CA

Each column in a different file

Accessing one field of all records: 3x less |I/O for column store

CS 245

31

Can We Have Hybrids
Between Row & Column?

Yes! For example, colocated column groups:

name age state
Alex 20 CA
Bob 30 CA
Carol 42 NY
David 21 MA
Eve 26 CA
Frances 56 NY
Gia 19 MA
Harold 28 AK
lvan 41 CA
File 1 File 2: age & state

Helpful if age & state are frequently co-accessed

Improving Searchability:
Ordering

Ordering the data by a field will give:

» Closer I/Os if queries tend to read data with
nearby values of the field (e.g. time ranges)

» Option to accelerate search via an ordered
index (e.g. B-tree), binary search, etc

What’s the downside of having an ordering?

CS 245 33

Improving Searchability:
Partitions

Just place data into buckets based on a field
(but not necessarily fine-grained order)

E.g. Hive table storage over a filesystem:

/my table/date=20150101/filel.parquet
/file2.parquet
/date=20190102/filel.parquet
/file2.parquet
/date=20190103/filel.parquet

Easy to add, remove & list files in any directory

Can We Have Searchability on
Multiple Fields at Once?

Yes! Many possible ways:

1) Multiple partition or sort keys (e.g.,
partition by date, then sort by userlD)

2) Interleaved orderings such as Z-ordering

Z-Ordering

/

dimension 1

\
i\%
MM

05 245 Image source: Wikipedia

36

How Do We Encode Records
into Blocks & Files?

7
Z

AN\ o A
N\ I

\\

y
?

records

.

blocks

a file

Questions in Storing Records

(1) separating records
(2) spanned vs. unspanned

(3) indirection

(1) Separating Records

PR ADADPAPLNADAD PO
Block 517 RO [ERMECcmtRe
V, AR P ANAIIIIL S D222

AN

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record

- In block header

(2) Spanned vs Unspanned

Unspanned: records must be within one block

block 1

block 2

R1 R2 R3 |R4|R5 7
Spanned:
block 1 block 2
R1 R2 f;? 2;:" R4| R5 | R6 fg
N/

need indication of partial record

(3) Indirection

How does one refer to other records?

RXx

Many options:
Physical <— Indirect

Purely Physical

.

Device ID
E.g., Record Cylinder #
» Block ID
Address = < Track #
or ID Block #
Offset in block

N

Fully Indirect

E.g., Record ID is arbitrary bit string

rec |ID
r

T~

map

Rec ID

Physical
addr.

T

address
a

Tradeoff

Flexibility == Cost

to move records of indirection

(for deletions, insertions)

Inserting Records

Easy case: records not ordered
» Insert record at end of file or in a free space
» Harder if records are variable-length

Hard case: records are ordered
» |f free space close by, not too bad...

» Otherwise, use an overflow area and
reorganize the file periodically

Deleting Records

Immediately reclaim space
OR

Mark deleted
— And keep track of freed spaces for later use

Interesting Problems

How much free space to
leave Iin each block, track,

cylinder, etc?

How often to reorganize
file + merge overflow?

Free)

space

)N
I m

Compressing Collections

Usually for a block at a time
» Benefits from placing similar items together

Can be integrated with execution (C-Store)

Summary

There are many ways to organize data on disk

Key tradeoffs:

Flexibility Space Utilization

>

Complexity Performance

CS 245 58

To Evaluate a Strategy, Compute:

Space used for expected data

Expected time to

- fetch record given key
- read whole file

- Insert record

- delete record

- update record

- reorganize file

Reading for Next Class

“Integrating Compression and Execution in
Column-Oriented Database Systems”

From the MIT
C-Store project
led to Vertica

CS 245

Integrating Compression and Execution in
Column-Oriented Database Systems

Daniel J. Abadi
MIT

dna@csail.mit.edu

ABSTRACT

Column-oriented database system architectures invite a re-
evaluation of how and when data in databases is compressed.
Storing data in a column-oriented fashion greatly increases
the similarity of adjacent records on disk and thus opportuni-
ties for compression. The ability to compress many adjacent
tuples at once lowers the per-tuple cost of compression, both
in terms of CPU and space overheads.

In this paper, we discuss how we extended C-Store (a
column-oriented DBMS) with a compression sub-system. We
show how compression schemes not traditionally used in row-
oriented DBMSs can be applied to column-oriented systems.
We then evaluate a set of compression schemes and show that
the best scheme depends not only on the properties of the
data but also on the nature of the query workload.

1. INTRODUCTION

Compression in traditional database systems is known to
improve performance significantly [13, 16, 25, 14, 17, 37]: it
reduces the size of the data and improves I/O performance
by reducing seek times (the data are stored nearer to each
other), reducing transfer times (there is less data to trans-
fer), and increasing buffer hit rate (a larger fraction of the
DBMS fits in buffer pool). For queries that are I/O limited,
the CPU overhead of decompression is often compensated

for by the 1/O improvements.

Samuel R. Madden
MIT

madden @csail.mit.edu

Miguel C. Ferreira
MIT

mferreira@alum.mit.edu

commercial arena [21, 1, 19], we believe the time is right to

isit the topic of compression in the context

systematically re
of these systems, particularly given that one of the oft-cited
advantages of column-stores is their compressibility.
Storing data in columns presents a number of opportuni-
ties for improved performance from compression algorithms
when compared to row-oriented architectures. In a column-
oriented database, compression schemes that encode multi-
ple values at once are natural. In a row-oriented database,
such schemes do not work as well because an attribute is
stored as a part of an entire tuple, so combining the same
attribute from different tuples together into one value would
require some way to “mix” tuple:
Compression techniques for row-stores often employ dic-
tionary schemes where a dictionary is used to code wide val-

ues in the attribute domain into smaller codes. Tor example,
a simple dictionary for a string-typed column of colors might
map “blue” to 0, ©
26, 11, 37). Sometimes these schemes employ pre
based on symbol frequencies (e.g., Huffman encoding [15])
or express values as small differences from some frame of ref-
erence and remove leading nulls from them (e , 14,
37]). In addition to these traditional techniques, column-
stores are also well-suited to compression schemes that com-
press values from more than one row at a time. This al-
lows for a larger variety of viable compression algorithms.
For example, run-length encoding (RLE), where repeats of

low” to 1, “green” to 2, and so on [13,

x-coding

