Query Optimization

Instructor: Mateil Zaharia



Query Execution Overview

Query representation
(e.g. SQL)

Loglcal query plan
(e.qg. relational algebra)

uoneziwndo Aisnp

Physmal plan
(code/operators to run)

{ i
I i




Outline

What can we optimize?
Rule-based optimization
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What Can We Optimize?

Operator graph: what operators do we run,
and in what order?

Operator implementation: for operators with
several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections,



Typical Challenge

There is an exponentially large set of
possible query plans

Result: we’ll need techniques to prune the
search space and complexity involved
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What is a Rule?

Procedure to replace part of the query plan
based on a pattern seen in the plan

Example: When | see for an
expression expr, replace this with



Implementing Rules

Each rule is typically a function that walks
through query plan to search for its pattern

void replaceOrTrue(Plan plan) { Or
for (node in plan.nodes) {
if (node instanceof Or) { r/////\\\\x
if (node.right == Literal(true
pian.replgce(node, Liteﬁal(tzaeg); expr TRUE
break;
}
// Similar code if node.left == Literal(true)
}
}

}



Implementing Rules

Rules are often grouped into phases

» E.g. simplify Boolean expressions, pushdown
selects, choose join algorithms, etc

Each phase runs rules till they no longer apply

plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);

}
if (plan was not changed by any rule) break;

}



Result

Simple rules can work together to optimize
complex query plans (if designed well):

SELECT * FROM users WHERE
(age>=16 && loc==CA) || (age>=16 && loc==NY) || age>=18

I

(age>=16) && (loc==CA || loc==NY) || age>=18

(age>=16 && || age>=18



Example Extensible Optimizer

For Thursday, you’ll read about Spark SQL’s
Catalyst optimizer

» Written in Scala using its pattern matching
features to simplify writing rules

» >500 contributors worldwide, >1000 types of
expressions, and hundreds of rules

We’ll modify Spark SQL in assignment 2



Q Search or jump to... Pull requests Issues Marketplace Explore

[ apache /spark ' Public ®Watch 27k ~ % Fork 25.1k Starred 319k  ~

<> Code 1 Pull requests 237 (® Actions {3 Projects @ security |~ Insights

¥ master v  spark [ sql / catalyst / src / main / scala / org [ apache [ spark / sql / catalyst / optimizer / Optimizer.scala Go to file

= wangyum [SPARK-37915][SQL] Combine unions if there is a project between them .. Latest commit ac2b@df 11 hours ago Y History
L

A4 125 contributors 9 ‘; @ \'7‘“‘- :\, i i ’ a f} & +75

2291 lines (2095 sloc) 97.7 KB Raw Bame I @ 2 O
1 /%
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 o
9 * http://www.apache.org/licenses/LICENSE-2.0
10 %
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.apache.spark.sql.catalyst.optimizer
19
20 import scala.collection.mutable
21

22 import org.apache.spark.sgl.catalyst.analysis._

23 import org.apache.spark.sgl.catalyst.catalog.{InMemoryCatalog, SessionCatalog}
24 import org.apache.spark.sgl.catalyst.expressions._

25 import org.apache.spark.sgl.catalyst.expressions.aggregate._

26 import org.apache.spark.sql.catalyst.plans.
27 import org.apache.spark.sql.catalyst.plans.logical.{RepartitionOperation, _}

28 import org.apache.spark.sql.catalyst.rules.
29 import org.apache.spark.sgl.catalyst.trees.AlwaysProcess

30 import org.apache.spark.sql.catalyst.trees.TreePattern._

31 import org.apache.spark.sql.connector.catalog.CatalogManager
32 import org.apache.spark.sql.errors.QueryCompilationErrors

33 import org.apache.spark.sgl.internal.SQLConf

34 import org.apache.spark.sql.types._

35 import org.apache.spark.sql.util.SchemaUtils._

36 import org.apache.spark.util.Utils



*/

def defaultBatches: Seq[Batch] = {

val operatorOptimizationRuleSet =

Sea(

// Operator push down
PushProjectionThroughUnion,
ReorderJoin,
EliminateOuterJoin,
PushDownPredicates,
PushDownLeftSemiAntiJoin,
PushLeftSemiLeftAntiThroughJoin,
LimitPushDown,
LimitPushDownThroughWindow,
ColumnPruning,
GenerateOptimization,

// Operator combine
CollapseRepartition,
CollapseProject,
OptimizeWindowFunctions,
CollapseWindow,
CombineFilters,
EliminateLimits,
CombineUnions,

// Constant folding and strength
OptimizeRepartition,
TransposeWindow,
NullPropagation,
NullDownPropagation,
ConstantPropagation,
FoldablePropagation,
Optimizeln,

ConstantFolding,
EliminateAggregateFilter,
ReorderAssociativeOperator,
LikeSimplification,
NotPropagation,
BooleanSimplification,
SimplifyConditionals,
PushFoldableIntoBranches,
RemoveDispensableExpressions,
SimplifyBinaryComparison,
ReplaceNullwWithFalseInPredicate,
SimplifyConditionalsInPredicate,
PruneFilters,

SimplifyCasts,

Defines the default rule batches in the Optimizer.

Implementations of this class should override this method, and [[nonExcludableRules]] if
necessary, instead of [[batches]]. The rule batches that eventually run in the Optimizer,
i.e., returned by [[batches]], will be (defaultBatches - (excludedRules - nonExcludableRules)).

reduction

SimplifyCaseConversionExpressions,

RewriteCorrelatedScalarSubquery,
RewritelLateralSubquery,



Common Rule-Based
Optimizations

Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string
expressions, etc

» Many redundancies because queries are
optimized for readability or produced by code

Simplifying relational operator graphs
» Select, project, join, etc

N These relational optimizations have the most impact



Common Rule-Based
Optimizations

Selecting access paths and operator _ Also very
implementations in simple cases high impact

» Index column predicate = use index
» Small table = use hash join against it

» Aggregation on field with few values = use
In-memory hash table

Rules also often used to do type checking
and analysis (easy to write recursively)



Common Relational Rules

Push selects as far down the plan as possible

Recall:

0,(R > S) =0,(R) < S if p only references R

04(R > S) = R <1 04(S) if g only references S
Oprg(R > S) = 0,(R) P 0,(S) ifponR,gonS

|dea: reduce # of records early to minimize work

In later ops; enable index access paths



Common Relational Rules

Push projects as far down as possible
Recall:
[1(0,(R)) = 1 (0,(11,,(R)) z = the fields in p

HXUy(R > S) = quy (I, (R)) < (HyUZ (S))

x =fieldsinR,y=in S, z = in both

ldea: don’t process fields you’ll just throw away



Project Rules Can Backfire!
Example: Rhasfields A, B, C, D, E

p: A=3 A B="cat”
X: {E}

IL(o,(R)) vs 1l (o,(ILsg5[R))



What if R has Indexes?

A=3\ /Bz cat

N/

Intersect buckets to get
pointers to matching tuples

In this case, should do o,(R) first!



Bottom Line

Many valid transformations will not always
Improve performance

Need more info to make good decisions

» Data statistics: properties about our input or
iIntermediate data to be used in planning

» Cost models: how much time will an operator
take given certain input data statistics?



Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models
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What Are Data Statistics?

Information about the tuples in a relation that
can be used to estimate size & cost

» Example: # of tuples, average size of tuples,
# distinct values for each attribute, % of null
values for each attribute

Typically maintained by the storage engine
as tuples are added & removed in a relation
» File formats like Parquet can also have them



Some Statistics We’ll Use

For a relation R,
T(R) = # of tuples in R
S(R) = average size of R’s tuples in bytes
B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R



Example

R:

A B|C|D
cat| 1 |10| a
cat| 1 |[20| b
dog 1 |30| a
dog 1 |40| c
pbat| 1 (50| d

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string



Example

R: |A|B|C|D A: 20 byte string
cat 11191a | B: 4 pyte integer
cat| 1 20| b
dog 1 30| a C: 8 byte date
dog 140/ ¢ | D: 5 pyte string
bat| 1 |50| d
T(R) =5 S(R) = 37




Challenge: Intermediate Tables

Keeping stats for tables on disk is easy, but
what about intermediate tables that appear
during a query plan?

Examples:

R . We already have T(R), S(R), V(R, a), etc,
Gp( ) but how to get these for tuples that pass p?

R p>q § — How many and what types of tuple pass
the join condition?

Shouldwedo (Rt S)<xtiTorRxt (S<xi T)or (R T) x1 S?



Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats

2) Low cost

3) Consistent estimates (e.g. different plans
for a subtree give same estimated stats)

Can’t always get all this!



Size Estimates for W = R, xR,



Size Estimates for W = R, xR,

S(W) = S(R,) + S(Ry)

T(W) = T(R,) x T(Ry)



Size Estimate for W = g,__(R)



Size Estimate for W = g,__(R)

_ . Not true if some variable-length fields
SW) = S(R) are correlated with value of A

T(W) =

CS 245 30



Example

R |A|B|C|D

cat| 1 (10| a

cati 1 (20| b

dog 1 |30| a

dog 1 (40| c

bat| 1 |50 | d
W=0,_,R  TW)
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Example

R A|lB|C|D
cat| 1 |10 a
cat| 1 [20| b
dog 1 |30 a
dog 1 40| ¢
pbat| 1 |50 d
W =0, R  TW)

CS 245
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Assumption:

Values in select expression Z=val are
uniformly distributed over all V(R, Z) values



Alternate Assumption:

Values in select expression Z=val are

uniformly distributed over a domain with
DOM(R, Z) values



Example

R |A|B|C|D

cat| 1 (10| a

cati 1 (20| b

dog 1 |30| a

dog 1 (40| c

bat| 1 |50 | d
W=0,_,R  TW)

Alternate assumption
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< <

(
(
(

<

R,A)=3,
R,B)=1,

DOM(
DOM
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DOM(
DOM(

R,A)="
R,B)="
R,C)="
R,D)="

o o © O



Example

R A|lB|C|D
cat| 1 |10 a
cat| 1 [20| b
dog 1 |30 a
dog 1 40| ¢
pbat| 1 |50 d
W =0, R  TW)

Alternate assumption

V(R,A)=3,
(R,B)=1,
(R,C)=5,
(R,D)=4,

< <

<

DOM(
DOM

(
DOM(
DOM(

what is probability this

tuple will be in answer?

R,A)="
R,B)="
R,C)="
R,D)="

o o o O



Example

Alternate assumption

R AlBlc|D| V(QR,A=3, DOM(
catf 1 /10| a | V(R,B)=1, DOM(
;’at 1 gg b | V(R,C)=5, DOM(
0g a
God 1140 ¢ V(R,D)=4, DOM(
pat| 1 |50 d
T(R
W=0, 0@  TW)= =t

R,A)="
R,B)="
R,C)="

R,D)="

o o © O



Selection Cardinality

SC(R, A) = average # records that satisfy
equality condition on R.A

SC(R,A) = <
T(R)
_ DOM(R,A)




What About W = o, /,.(R)?

T(W) = ?



What About W = g, . ..(R)?

T(W) = ?
Solution 1: T(W) = T(R) / 2



What About W =0, . ,.((R)?
T(W) = ?
Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3



Solution 3: Estimate Fraction of
Values in Range

Example: R Z
Min=1  V(R,2)=10
I W =0, 15(R)
Max=20

f=20-15+1= 6 (fraction of range)
20-1+1 20

T(W) = f x T(R)



Solution 3: Estimate Fraction of
Values in Range

Equivalently, if we know values in column:

f = fraction of distinct values > val



What About More Complex
Expressions?

E.g. estimate selectivity for

SELECT * FROM R
WHERE user defined func(a) > 10



[ postgres / postgres @Waich~v 267  J Star 2547  YFork 820

<> Code 'l Pull requests 0 1"l Projects 0 4~ Pulse ili Graphs
Tree: 4cbe3abb31 v  postgres / src / backend / optimizer / path / clausesel.c Find file = Copy path
a bmomijian pgindent run for 9.4 0a78320 on May 6, 2014

5 contributors ~k= ﬂ ..

785 lines (733 sloc) 21.6 KB Raw Blame History L » M

else if (is_funcclause(clause))

f
/*
* This is not an operator, so we guess at the selectivity. THIS IS A
* HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE
* SELECTIVITIES THEMSELVES. -- JMH 7/9/92
*/
sl = (Selectivity) 0.3333333;
}

CS 245 48



1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
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1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

function_selectivity(PlannerInfo *root,
0id funcid,
List *args,
0id inputcollid,
bool is_join,
int varRelid,
JoinType jointype,
SpecialJoinInfo *sjinfo)

RegProcedure prosupport = get_func_support(funcid);
SupportRequestSelectivity req;
SupportRequestSelectivity *sresult;

* If no support function is provided, use our historical default
* estimate, ©.3333333. This seems a pretty unprincipled choice, but
* Postgres has been using that estimate for function calls since 1992.
* The hoariness of this behavior suggests that we should not be in too
* much hurry to use another value.
*/
if (!prosupport)
return (Selectivity) 0.3333333;

req.type = T_SupportRequestSelectivity;

req.root = root;

req.funcid = funcid;

req.args = args;

req.inputcollid = inputcollid;

req.is_join = is_join;

req.varRelid = varRelid;

req.jointype = jointype;

req.sjinfo = sjinfo;

req.selectivity = -1; /* to catch failure to set the value */

sresult = (SupportRequestSelectivity *)
DatumGetPointer(OidFunctionCalll(prosupport,
PointerGetDatum(&req)));

/* If support function fails, use default */
if (sresult != &req)

return (Selectivity) ©.3333333;

if (reqg.selectivity < 0.0 || req.selectivity > 1.8)
elog(ERROR, "invalid function selectivity: %f", req.selectivity);

return (Selectivity) req.selectivity;



Size Estimate for W = R, I R,

Let X = attributes of R,

Y = attributes of R,

Case1: XNnY = 0:

Same as Ry x R,



Casez:W=R1[><]R2,XﬂY=A

R, | A| B|C R, A D




Casez:W=R1[><]R2,XﬂY=A

R, | A| B|C R, A D

Assumption (“containment of value sets”):

V(R{, A) <V(R,, A) = Every AvalueinR;isin R,
V(R,, A) <V(R{, A) = Every Avaluein R, isin R;



Computing T(W) when
V(R‘I! A) < V(R25 A)

R, | A |B |C R, | A| D

-—_—

Take A\ .
1 tuple < B Match

1 tuple matches with  T(R,) tuples...
V(R;, A)
so T(W) = T(R4) x T(R,)
V(R;, A)




VR, A) < V(R,, A) = TW) = TR,) x T(R,)

V(RQ’ A)

V(R,, A) < V(R{, A) = TW) = TR,) x T(R,)

V(R,, A)



In General for W = R, I R,

TW) = TRy x T(R,)
max(V(Ry, A), V(R,, A)

Where A Is the common attribute set



Case 2 with Alternate Assumption
Values uniformly distributed over domain

R, A| B | C R, LA| D
- B

This tuple matches T(R,) / DOM(R,, A), so

T(W) = T(R1) T(Rz) = T(R1) T(RZ)
DOMR,, A) DOM(R;, A)
™~ —

Assume these are the same




Tuple Size after Join

In all cases:

S(W) = S(Ry) + S(Ry) — S(A)
™.
size of attribute A



Using Similar Ideas, Can
Estimate Sizes of:

[Tp g(R)

Op=axB=b(R)
R <1 S with common attributes A, B, C

Set union, intersection, difference, ...



For Complex Expressions, Need
Intermediate T, S, V Results

E.g. W= 0,_,(Ry) ™M R,

\ )
Y

Treat as relation U

TU) =TR)/VR, A SU)=SR,)

Also need V(U, *) !l



To Estimate V

E.g., U= 0p,(R))
Say R, has attributes A, B, C, D



Example

R

A/ B C|D
cat| 1 |10 /10
cat| 1 |20 20
dog 1 |30(10
dog 1 40|30
pbat| 1 |50|10




Example

R1 A/ B C|D

cat| 1 |10 /10

cat| 1 |20 20

dog 1 |30(10

dog 1 40|30

pbat| 1 |50|10
VU,A)=1 VU, B) =1

VU, C) = T(R1)

\ 7 VR1A

V(U, D) = somewhere in between...



Possible Guess in U = 0,__(R)

V(U, A) = V(R, A) / 2
V(U, B) = V(R, B)



For Joins: U = R,(A,B) > R,(A,C)

We'll use the following estimates:
V(U, A) = min(V(R4, A), V(R,, A))
V(U, B) = V(R,, B)

V(U, C) = V(R,, C)

Called “preservation of value sets”



Example:

Z = R,(A,B) <1 R,(B,C) i<l R,4(C,D)

Ri | T(Ry)=1000 V(R{,A)=50 V(R;,B)=100

R, | T(R,)=2000 V(R,,B)=200 V(R,,C)=300

Rs T(R3) = 3000 V(R;,C)=90 V(R;,D)=500




Partial Result: U = R, < R,

T(U) = 1000x2000  V(U,A) = 50
200 V(U,B) = 100
V(U,C) = 300




End Result: Z=U X< R;

T(Z) = 1000x2000x3000  V(Z,A) = 50
200x300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500



Another Statistic: Histograms

number of tuples

in R with A value
15 In a given range
12

10 GA>a(R) —

10 20 30 40

Requires some care to set bucket boundaries

CS 245 68
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