Query Optimization

Instructor: Matei Zaharia

Query Execution Overview

Outline

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

Outline

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

What Can We Optimize?

Operator graph: what operators do we run, and in what order?

Operator implementation: for operators with several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections,

Typical Challenge

There is an exponentially large set of possible query plans
$\begin{gathered}\text { Access paths } \\ \text { for table 1 }\end{gathered} \times \begin{gathered}\text { Access paths } \\ \text { for table 2 }\end{gathered} \times \underset{\text { for join 1 }}{\text { Algorithms }} \times \underset{\text { for join 2 }}{\text { Algorithms }} \times \underset{\ldots}{ }$

Result: we'll need techniques to prune the search space and complexity involved

Outline

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

What is a Rule?

Procedure to replace part of the query plan based on a pattern seen in the plan

Example: When I see expr OR TRUE for an expression expr, replace this with TRUE

Implementing Rules

Each rule is typically a function that walks through query plan to search for its pattern

```
void replaceOrTrue(Plan plan) {
    for (node in plan.nodes) {
        if (node instanceof Or) {
            if (node.right == Literal(true))
                plan.replace(node, Literal(true));
                break;
            }
            // Similar code if node.left == Literal(true)
        }
    }
}
```


Implementing Rules

Rules are often grouped into phases
» E.g. simplify Boolean expressions, pushdown selects, choose join algorithms, etc

Each phase runs rules till they no longer apply

```
plan = originalPlan;
while (true) {
    for (rule in rules) {
        rule.apply(plan);
    }
    if (plan was not changed by any rule) break;
}
```


Result

Simple rules can work together to optimize complex query plans (if designed well):

Example Extensible Optimizer

For Thursday, you'll read about Spark SQL's Catalyst optimizer
» Written in Scala using its pattern matching features to simplify writing rules
" >500 contributors worldwide, >1000 types of expressions, and hundreds of rules

We'll modify Spark SQL in assignment 2

§ master～spark／sql／catalyst／src／main／scala／org／apache／spark／sql／catalyst／optimizer／Optimizer．scala

R2 125 contributors © 9 \＆ 8 （2）+75

```
\begin{tabular}{|c|c|}
\hline 2291 lines（2095 sloc） & 97.7 KB \\
\hline
\end{tabular}
    /*
    * Licensed to the Apache Software Foundation (ASF) under one or more
    * contributor license agreements. See the NOTICE file distributed with
    * this work for additional information regarding copyright ownership.
    * The ASF licenses this file to You under the Apache License, Version 2.0
    * (the "License"); you may not use this file except in compliance with
    * the License. You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.optimizer
import scala.collection.mutable
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.catalog.{InMemoryCatalog, SessionCatalog}
4 \text { import org.apache.spark.sql.catalyst.expressions._}
import org.apache.spark.sql.catalyst.expressions.aggregate.
26 import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical.{RepartitionOperation, _}
2 8 ~ i m p o r t ~ o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . r u l e s . - ~
import org.apache.spark.sql.catalyst.trees.AlwaysProcess
30 import org.apache.spark.sql.catalyst.trees.TreePattern._
31 import org.apache.spark.sql.connector.catalog.CatalogManager
32 import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.internal.SQLConf
34 import org.apache.spark.sql.types._
35 import org.apache.spark.sql.util.SchemaUtils._
36 import org.apache.spark.util.Utils
```

* Defines the default rule batches in the Optimizer.
*
* Implementations of this class should override this method, and [[nonExcludableRules]] if
* necessary, instead of [[batches]]. The rule batches that eventually run in the Optimizer,
* i.e., returned by [[batches]], will be (defaultBatches - (excludedRules - nonExcludableRules)).
*/
def defaultBatches: Seq[Batch] = \{
val operatorOptimizationRuleSet $=$ Seq(
// Operator push down
PushProjectionThroughUnion,
ReorderJoin,
EliminateOuterJoin,
PushDownPredicates,
PushDownLeftSemiAntiJoin,
PushLeftSemiLeftAntiThroughJoin,
LimitPushDown,
LimitPushDownThroughWindow,
ColumnPruning,
GenerateOptimization,
// Operator combine
CollapseRepartition,
CollapseProject,
OptimizeWindowFunctions,
CollapseWindow,
CombineFilters,
EliminateLimits,
CombineUnions,
// Constant folding and strength reduction
OptimizeRepartition,
TransposeWindow,
NullPropagation,
NullDownPropagation,
ConstantPropagation,
FoldablePropagation,
OptimizeIn,
ConstantFolding,
EliminateAggregateFilter,
ReorderAssociativeOperator,
LikeSimplification,
NotPropagation,
BooleanSimplification,
SimplifyConditionals,
PushFoldableIntoBranches,
RemoveDispensableExpressions,
SimplifyBinaryComparison,
ReplaceNullWithFalseInPredicate,
SimplifyConditionalsInPredicate,
PruneFilters,
SimplifyCasts,
SimplifyCaseConversionExpressions,
RewriteCorrelatedScalarSubquery,
RewriteLateralSubquery,

Common Rule-Based Optimizations

Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string expressions, etc
» Many redundancies because queries are optimized for readability or produced by code

Simplifying relational operator graphs
" Select, project, join, etc
These relational optimizations have the most impact

Common Rule-Based Optimizations

Selecting access paths and operator _Also very implementations in simple cases
» Index column predicate \Rightarrow use index
» Small table \Rightarrow use hash join against it
» Aggregation on field with few values \Rightarrow use in-memory hash table

Rules also often used to do type checking and analysis (easy to write recursively)

Common Relational Rules

Push selects as far down the plan as possible
Recall:
$\sigma_{p}(R \bowtie S)=\sigma_{p}(R) \bowtie S \quad$ if p only references R
$\sigma_{q}(R \bowtie S)=R \bowtie \sigma_{q}(S) \quad$ if q only references S

$$
\sigma_{p \wedge q}(R \bowtie S)=\sigma_{p}(R) \bowtie \sigma_{q}(S) \quad \text { if } p \text { on } R, q \text { on } S
$$

Idea: reduce \# of records early to minimize work in later ops; enable index access paths

Common Relational Rules

Push projects as far down as possible
Recall:

$$
\begin{array}{ll}
\Pi_{x}\left(\sigma_{p}(R)\right)=\Pi_{x}\left(\sigma_{p}\left(\Pi_{x \cup z}(R)\right)\right) & z=\text { the fields in } p \\
\Pi_{x \cup y}(R \bowtie S)=\Pi_{x \cup y}\left(\left(\Pi_{x \cup z}(R)\right) \bowtie\left(\Pi_{y \cup z}(S)\right)\right)
\end{array}
$$

$\mathrm{x}=$ fields in $\mathrm{R}, \mathrm{y}=$ in $\mathrm{S}, \mathrm{z}=$ in both

Idea: don't process fields you'll just throw away

Project Rules Can Backfire!

Example: $\quad R$ has fields A, B, C, D, E $p: A=3 \wedge B=" c a t "$ x: $\{E\}$

$$
\Pi_{x}\left(\sigma_{p}(\mathrm{R})\right) \quad \text { vs } \quad \Pi_{\mathrm{x}}\left(\sigma_{\mathrm{p}}\left(\Pi_{\{\mathrm{A}, \mathrm{~B}, \mathrm{E}\}}(\mathrm{R})\right)\right)
$$

What if R has Indexes?

Bottom Line

Many valid transformations will not always improve performance

Need more info to make good decisions
» Data statistics: properties about our input or intermediate data to be used in planning
" Cost models: how much time will an operator take given certain input data statistics?

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

What Are Data Statistics?

Information about the tuples in a relation that can be used to estimate size \& cost
» Example: \# of tuples, average size of tuples, \# distinct values for each attribute, \% of null values for each attribute

Typically maintained by the storage engine as tuples are added \& removed in a relation
» File formats like Parquet can also have them

Some Statistics We'll Use

For a relation R ,
$\mathbf{T}(\mathbf{R})=$ \# of tuples in R
$\mathbf{S}(\mathbf{R})=$ average size of R's tuples in bytes
$\mathbf{B}(\mathbf{R})=$ \# of blocks to hold all of R's tuples
$\mathbf{V}(\mathbf{R}, \mathbf{A})=$ \# distinct values of attribute A in R

Example

$R:$| A | B | C | D |
| :---: | :---: | :---: | :---: |
| cat | 1 | 10 | a |
| cat | 1 | 20 | b |
| dog | 1 | 30 | a |
| dog | 1 | 40 | c |
| bat | 1 | 50 | d |

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

Example

R: | A | B | C | D |
| :---: | :---: | :---: | :---: |
| cat | 1 | 10 | a |
| cat | 1 | 20 | b |
| dog | 1 | 30 | a |
| dog | 1 | 40 | c |
| bat | 1 | 50 | d |

$$
\begin{array}{ll}
T(R)=5 & S(R)=37 \\
V(R, A)=3 & V(R, C)=5 \\
V(R, B)=1 & V(R, D)=4
\end{array}
$$

Challenge: Intermediate Tables

Keeping stats for tables on disk is easy, but what about intermediate tables that appear during a query plan?

Examples:

$\sigma_{p}(R) \leftarrow \begin{aligned} & \text { We already have } T(R), S(R), V(R, a) \text {, etc, } \\ & \text { but how to get these for tuples that pass } p \text { ? }\end{aligned}$
$R \bowtie S \leftarrow$ How many and what types of tuple pass the join condition?

Should we do $(R \bowtie S) \bowtie T$ or $R \bowtie(S \bowtie T)$ or $(R \bowtie T) \bowtie S$?

Stat Estimation Methods

Algorithms to estimate subplan stats
An ideal algorithm would have:

1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans for a subtree give same estimated stats)

Can't always get all this!

Size Estimates for $\mathbf{W}=\mathbf{R}_{\mathbf{1}} \times \mathbf{R}_{\mathbf{2}}$

$\mathrm{S}(\mathrm{W})=$

$T(W)=$

Size Estimates for $\mathbf{W}=\mathbf{R}_{\mathbf{1}} \times \mathbf{R}_{\mathbf{2}}$

$$
S(W)=S\left(R_{1}\right)+S\left(R_{2}\right)
$$

$$
T(W)=T\left(R_{1}\right) \times T\left(R_{2}\right)
$$

Size Estimate for $\mathbf{W}=\sigma_{A=a}(R)$

$\mathrm{S}(\mathrm{W})=$

$T(W)=$

Size Estimate for $\mathbf{W}=\sigma_{A=a}(R)$

$S(W)=S(R) \longleftarrow$ Not true if some variable-length fields

 are correlated with value of $A$$T(W)=$

Example

R	A	B	C	D	$V(R, A)=3$
	cat	1	10	a	$V(R, B)=1$
	cat	1	20	b	
	dog	1	30	a	
	dog	1	40	c	R,D)=4
	bat	1	50	d	

$\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=$

Example

$\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=$

Example

R	A	B	C	D	$V(R, A)=3$
	cat	1	10	a	$V(R, B)=1$
	cat	1	20	b	$V(\mathrm{R}, \mathrm{C})=5$
	dog	1	30	a	
	dog	1	40	c	
	bat	1	50	d	

$W=\sigma_{Z=\text { val }}(R) \quad T(W)=\frac{T(R)}{V(R, Z)}$

Assumption:

Values in select expression $\mathrm{Z}=$ val are uniformly distributed over all $V(R, Z)$ values

Alternate Assumption:

Values in select expression $\mathrm{Z}=\mathrm{val}$ are uniformly distributed over a domain with
$\operatorname{DOM}(R, Z)$ values

Example

Alternate assumption

R | A | B | C | D |
| :---: | :---: | :---: | :---: |
| cat | 1 | 10 | a |
| cat | 1 | 20 | b |
| dog | 1 | 30 | a |
| dog | 1 | 40 | c |
| bat | 1 | 50 | d |

$V(R, A)=3, \operatorname{DOM}(R, A)=10$
$V(R, B)=1, D O M(R, B)=10$
$V(R, C)=5, \operatorname{DOM}(R, C)=10$
$V(R, D)=4, \operatorname{DOM}(R, D)=10$
$\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=$

Example

Alternate assumption

R	A	B	C	D	$V(R, A)=3, \operatorname{DOM}(\mathrm{R}, \mathrm{A})=10$
	cat	1	10	a	$V(R, B)=1, \operatorname{DOM}(\mathrm{R}, \mathrm{B})=10$
	cat	1	20	b	$V(\mathrm{R}, \mathrm{C})=5, \mathrm{DOM}(\mathrm{R}, \mathrm{C})=10$
	dog	1	30	a	$V(R, D)=4, \operatorname{DOM}(\mathrm{R}, \mathrm{D})=10$
(dog 1					
50 d what is probability this					
	(pal				

Example

Alternate assumption

$R \quad$| A | B | C | D |
| :---: | :---: | :---: | :---: |
| cat | 1 | 10 | a |
| cat | 1 | 20 | b |
| dog | 1 | 30 | a |
| dog | 1 | 40 | c |
| bat | 1 | 50 | d |

$V(R, A)=3, D O M(R, A)=10$
$V(R, B)=1, D O M(R, B)=10$
$V(R, C)=5, \operatorname{DOM}(R, C)=10$
$\mathrm{V}(\mathrm{R}, \mathrm{D})=4, \mathrm{DOM}(\mathrm{R}, \mathrm{D})=10$
$\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R})$

$$
T(W)=\frac{T(R)}{\operatorname{DOM}(R, Z)}
$$

Selection Cardinality

SC(R, A) = average \# records that satisfy equality condition on R.A
$S C(R, A)=\left\{\begin{array}{l}\frac{T(R)}{V(R, A)} \\ \frac{T(R)}{D O M(R, A)}\end{array}\right.$

What About $W=\sigma_{z \geq \text { val }}(R) ?$

$\mathrm{T}(\mathrm{W})=$?

What About $W=\sigma_{z \geq \text { val }}(R)$?

$\mathrm{T}(\mathrm{W})=$?
Solution 1: $\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 2$

What About $W=\sigma_{z \geq \text { val }}(R)$?

$\mathrm{T}(\mathrm{W})=$?
Solution 1: $\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 2$
Solution 2: $\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 3$

Solution 3: Estimate Fraction of Values in Range

Example: R

$\operatorname{Min}=1 \quad V(R, Z)=10$ $\downarrow \quad W=\sigma_{z \geq 15}(R)$
$\operatorname{Max}=20$
$f=\frac{20-15+1}{20-1+1}=\frac{6}{20}$
(fraction of range)
$T(W)=f \times T(R)$

Solution 3: Estimate Fraction of Values in Range

Equivalently, if we know values in column:
$f=$ fraction of distinct values \geq val
$T(W)=f \times T(R)$

What About More Complex Expressions?

E.g. estimate selectivity for

SELECT * FROM R
WHERE user_defined_func(a) > 10

1926
1927
function_selectivity(PlannerInfo *root,
Oid funcid,
List *args,
Oid inputcollid,
bool is_join,
int varRelid,
JoinType jointype,
SpecialJoinInfo *sjinfo)

RegProcedure prosupport = get_func_support(funcid);
SupportRequestSelectivity req;
SupportRequestSelectivity *sresult;
/*

* If no support function is provided, use our historical default
* estimate, 0.3333333 . This seems a pretty unprincipled choice, but
* Postgres has been using that estimate for function calls since 1992.
* The hoariness of this behavior suggests that we should not be in too
* much hurry to use another value.
*/
if (!prosupport)
return (Selectivity) 0.3333333;
req.type $=$ T_SupportRequestSelectivity;
req. root $=$ root;
req.funcid $=$ funcid;
req.args = args;
req.inputcollid $=$ inputcollid;
req.is_join = is_join;
req.varRelid = varRelid;
req.jointype $=$ jointype;
req.sjinfo $=$ sjinfo;
req. selectivity $=-1 ; \quad / *$ to catch failure to set the value $* /$
sresult $=($ SupportRequestSelectivity $*)$
DatumGetPointer(OidFunctionCall1(prosupport,
PointerGetDatum(\&req)));
/* If support function fails, use default */
if (sresult != \&req)
return (Selectivity) 0.3333333;
if (req.selectivity < 0.0 || req. selectivity > 1.0)
elog(ERROR, "invalid function selectivity: \%f", req.selectivity);
return (Selectivity) req.selectivity;

Size Estimate for $\mathbf{W}=\mathbf{R}_{1} \bowtie \mathbf{R}_{2}$

Let $X=$ attributes of R_{1}
$Y=$ attributes of R_{2}

Case 1: $\mathrm{X} \cap \mathrm{Y}=\emptyset:$
Same as $\mathrm{R}_{1} \times \mathrm{R}_{2}$

Case 2: $\mathbf{W}=\mathbf{R}_{1} \bowtie \mathbf{R}_{2}, \mathbf{X} \cap \mathbf{Y}=\mathbf{A}$

R_{1}	A	B	C	R_{2}	A	D

Case 2: $\mathbf{W}=\mathbf{R}_{1} \bowtie R_{\mathbf{2}}, \mathrm{X} \cap \mathrm{Y}=\mathrm{A}$

Assumption ("containment of value sets"):
$V\left(R_{1}, A\right) \leq V\left(R_{2}, A\right) \Rightarrow$ Every A value in R_{1} is in R_{2} $V\left(R_{2}, A\right) \leq V\left(R_{1}, A\right) \Rightarrow$ Every A value in R_{2} is in R_{1}

Computing T(W) when $\mathrm{V}\left(\mathrm{R}_{1}, \mathrm{~A}\right) \leq \mathrm{V}\left(\mathrm{R}_{2}, \mathrm{~A}\right)$

1 tuple matches with $\quad T\left(R_{2}\right)$ tuples...
$\mathrm{V}\left(\mathrm{R}_{2}, \mathrm{~A}\right)$
$\begin{array}{cc}\text { so } \\ \text { cs } 245\end{array} \quad T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{2}, A\right)}$

$$
\begin{aligned}
& V\left(R_{1}, A\right) \leq V\left(R_{2}, A\right) \Rightarrow T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{2}, A\right)} \\
& V\left(R_{2}, A\right) \leq V\left(R_{1}, A\right) \Rightarrow T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{1}, A\right)}
\end{aligned}
$$

In General for $\mathbf{W}=\mathbf{R}_{\mathbf{1}} \bowtie \mathbf{R}_{\mathbf{2}}$

$$
T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{\max \left(V\left(R_{1}, A\right), V\left(R_{2}, A\right)\right)}
$$

Where A is the common attribute set

Case 2 with Alternate Assumption

Values uniformly distributed over domain

This tuple matches $T\left(R_{2}\right) / \operatorname{DOM}\left(R_{2}, A\right)$, so

$$
T(W)=\frac{T\left(R_{1}\right) T\left(R_{2}\right)}{\operatorname{DOM}\left(R_{2}, A\right)}=\frac{T\left(R_{1}\right) T\left(R_{2}\right)}{\operatorname{DOM}\left(R_{1}, A\right)}
$$

Tuple Size after Join

In all cases:

$$
S(W)=S\left(R_{1}\right)+S\left(R_{2}\right)-S(A)
$$

Using Similar Ideas, Can Estimate Sizes of:

$\Pi_{A, B}(R)$
$\sigma_{A=a \wedge B=b}(R)$
$R \bowtie S$ with common attributes A, B, C
Set union, intersection, difference, ...

For Complex Expressions, Need Intermediate T, S, V Results

$$
\text { E.g. } W=\sigma_{A=a}\left(R_{1}\right) \bowtie R_{2}
$$

Treat as relation U

$$
T(U)=T\left(R_{1}\right) / V\left(R_{1}, A\right) \quad S(U)=S\left(R_{1}\right)
$$

Also need V(U, *) !!

To Estimate V

E.g., $U=\sigma_{A=a}\left(R_{1}\right)$

Say R_{1} has attributes A, B, C, D

$$
\begin{aligned}
& V(U, A)= \\
& V(U, B)= \\
& V(U, C)= \\
& V(U, D)=
\end{aligned}
$$

Example

$$
\begin{aligned}
& V\left(R_{1}, A\right)=3 \\
& V\left(R_{1}, B\right)=1 \\
& V\left(R_{1}, C\right)=5 \\
& V\left(R_{1}, D\right)=3 \\
& U=\sigma_{A=a}\left(R_{1}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& V\left(R_{1}, A\right)=3 \\
& V\left(R_{1}, B\right)=1 \\
& V\left(R_{1}, C\right)=5 \\
& V\left(R_{1}, D\right)=3 \\
& U=\sigma_{A=a}\left(R_{1}\right) \\
& V(U, A)=1 \quad V(U, B)=1 \quad V(U, C)=\frac{T(R 1)}{V(R 1, A)}
\end{aligned}
$$

$\mathrm{V}(\mathrm{U}, \mathrm{D})=$ somewhere in between..

Possible Guess in $U=\sigma_{A \geq a}(R)$

$V(U, A)=V(R, A) / 2$
$V(U, B)=V(R, B)$

For Joins: $\mathbf{U}=\mathbf{R}_{\mathbf{1}}(\mathrm{A}, \mathrm{B}) \bowtie \mathbf{R}_{\mathbf{2}}(\mathrm{A}, \mathrm{C})$

We'll use the following estimates:
$\mathrm{V}(\mathrm{U}, \mathrm{A})=\min \left(\mathrm{V}\left(\mathrm{R}_{1}, A\right), \mathrm{V}\left(\mathrm{R}_{2}, A\right)\right)$
$\mathrm{V}(\mathrm{U}, \mathrm{B})=\mathrm{V}\left(\mathrm{R}_{1}, \mathrm{~B}\right)$
$V(U, C)=V\left(R_{2}, C\right)$

Called "preservation of value sets"

Example:

$$
Z=R_{1}(A, B) \bowtie R_{2}(B, C) \bowtie R_{3}(C, D)
$$

R_{1}
$T\left(R_{1}\right)=1000 \quad V\left(R_{1}, A\right)=50 \quad V\left(R_{1}, B\right)=100$
R_{2}
$T\left(R_{2}\right)=2000 V\left(R_{2}, B\right)=200 V\left(R_{2}, C\right)=300$
R_{3}
$T\left(R_{3}\right)=3000 \quad V\left(R_{3}, C\right)=90 \quad V\left(R_{3}, D\right)=500$

Partial Result: U = $\mathbf{R}_{1} \bowtie \mathbf{R}_{\mathbf{2}}$

$$
\begin{aligned}
& T(U)=\frac{1000 \times 2000}{200} \\
& V(U, A)=50 \\
& V(U, B)=100 \\
& V(U, C)=300
\end{aligned}
$$

End Result: Z = U $\bowtie \mathbf{R}_{3}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{Z})=\frac{1000 \times 2000 \times 3000}{200 \times 300} \quad & V(Z, A)=50 \\
& V(Z, B)=100 \\
& V(Z, C)=90 \\
& V(Z, D)=500
\end{aligned}
$$

Another Statistic: Histograms

$$
\begin{aligned}
& \sigma_{A \geq a}(R)=? \\
& \sigma_{A=a}(R)=?
\end{aligned}
$$

Requires some care to set bucket boundaries

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

