Query Optimization 2

Instructor: Mateil Zaharia

Recap: Data Statistics

Information about tuples in a table that we can
use to estimate costs
» Must be approximated for intermediate tables

We saw one way to do this for 4 statistics:
» T(R) = # of tuples in R
» S(R) = average size of tuples in R
» B(R) = # of blocks to hold R’s tuples
» V(R, A) = # distinct values of attribute A in R

Another Type of Data Stats:

Histograms

10

15

12

number of tuples
In R with A value
In a given range

0A>a(R) =7

10

20

30

40

Outline

Cost models

Cost-based plan selection

Spark SQL

Outline

Cost models

Cost-based plan selection

Spark SQL

Cost Models

How do we measure a query plan’s cost?

Many possible metrics:

| » Number of disk I/Os |— we'll focus on this
» Number of compute cycles
» Combined time metric
» Memory usage

» Bytes sent on network
) S

CS 245

Example: Index vs Table Scan

Our query: o,(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

Table scan: block Size Index search:
R has B(R) = T(R)xS(R)/b Index lookup for p takes L I/Os

| .
blocks on disk We then have to read part of R;

Cost: B(R) I/Os Pr[read block i]
~ 1 — Pr[no match]records in block
=1 - (1 _S)b/S(R)

Cost: L + (1-(1-s)>/SR) B(R)

What If Results Were Clustered?

Unclustered: Clustered:
records that records that
match p are match p are
spread out close together
uniformly in R’s file

We’d need to change our estimate of G, ..

Cindex = L + s B(R) Less than C, ., for

A

Fraction of R's blocks read unclustered data

CS 245 8

Join Operators

Join orders and algorithms are often the
choices that affect performance the most

For a multi-way join R S T X ..., each
join is selective, and order matters a lot

» Try to eliminate lots of records early

Even for one join R < S, algorithm matters

Example

SELECT order.date, product.price, customer.name
FROM order, product, customer

WHERE order.product id = product.product id
AND order.cust _id = customer.cust _id
AND product.type = “car”
AND customer.country = “US”

:}jon1condMOns

} selection predicates

Plan 1: Plan 2:
/ \ / \
customer product
/// (country=US) /// (type=car)
order product order customer
(type=car) (country=US)

os 245 When is each plan better? .

Common Join Algorithms

lteration (nested loops) join
Merge join
Join with index

Hash join

Iteration Join

for each reR;:
for each seR,:
if r.C == s.C then output (r, s)

I/Os: one scan of R, and T(R) scans of R,, so
cost = B(Ry) + T(R,) B(R,) reads

Improvement: read M blocks of R; in RAM at
a time then read R,: B(R,) + B(Ry) B(R,) / M

Note: cost of writes is always B(R; > R,)

CS 245 12

Merge Join

if R; and R, not sorted by C then sort them

i, j =1

while i < T(R;) & & j < T(R,):
if R;[1].C = R,[j].C then outputTuples
else if R;[i].C > R,[j].C then j += 1
else if R;[i].C < R,[j].C then i += 1

Merge Join

procedure outputTuples:
JjJ =3
while R,;[1].C == R,[j]j].C && jj < T(R,):
output (Ry[1], R[JJ])
jj +=1
1 += 1+1

Example

i R[].C R,[.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5
50 6
!

52

Cost of Merge Join

If R, and R, already sorted by C, then
cost = B(R,) + B(R,) reads

(+ write cost of B(R, > R,))

CS 245

16

Cost of Merge Join

If R is not sorted, can sort it in 4 B(R) |/Os:
» Read runs of tuples into memory, sort
» Write each sorted run to disk
» Read from all sorted runs to merge
» Write out results

Join with Index

for each reR;:
list = index_lookup(R,, C, r.C)

for each selist:
output (r, s)

Read I/Os: 1 scan of R4, T(R,) index lookups
on R,, and T(R,) data lookups

cost = B(R1) + T(R1) (Lindex + Ldata)

Can be less when R, is sorted/clustered by C!

CS 245 18

Hash Join (R, Fits in RAM)

hash = load R, into RAM and hash by C

for each reR;:
list = hash _lookup(hash, r.C)

for each selist:
output (r, s)

Read I/Os: B(R,) + B(R,)

Hash Join on Disk

Can be done by hashing both tables to a
common set of buckets on disk

» Similar to merge sort: 4 (B(R,) + B(R,))

Trick: hash only (key, pointer to record) pairs

» Can then sort the pointers to records that
match and fetch them near-sequentially

Summary

Join algorithms can have different
performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted

Outline

Cost models

Cost-based plan selection

Spark SQL

Complete CBO Process

Generate and compare possible query plans

Query
Generate S e o .\. __— Plans
Prune ® X O X o
Estimate Cost O [] L «— Costs
\ /
~
Pick Min

Select

How to Generate Plans?

Simplest way: recursive search of the
options for each planning choice

How to Generate Plans?

Can limit search space: e.g. many DBMSes
only consider “left-deep” joins

> >
RN / \
> > R X
/N /N /\N

How to Generate Plans?

Can prioritize searching through the most
impactful decisions first

» E.g. join order is one of the most impactful

How to Prune Plans?

While computing the cost of a plan, throw it
away if it is worse than best so far

Start with a greedy algorithm to find an
“OK?” initial plan that will allow lots of pruning

Memoization and Dynamic
Programming

During a search through plans, many
subplans will appear repeatedly

Remember cost estimates and statistics
(T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it
easy to reuse results (dynamic programming)

Resource Cost of CBO

It’s possible for cost-based optimization
itself to take longer than running the query!

Must design optimizer to not take too long
» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of
the execution cost (e.g. join order)

Outline

Cost models

Cost-based plan selection

Spark SQL

Background

2004: MapReduce published, enables writing
large scale data apps on commodity clusters

» Cheap but unreliable “consumer” machines,
so system emphasizes fault tolerance

» Focus on C++/Java programmers

CS 245

Background

2006: Apache Hadoop project formed as an
open source MapReduce + distributed FS

» Started in Nutch open source search engine
» Soon adopted by Yahoo & Facebook

A DAPACHE
S"?‘Inadaap

2006: Amazon EC2 service launched as the
newest attempt at “utility computing”

Background

2007: Facebook starts Hive (later Apache
Hive) for SQL on Hadoop

» Other SQL-on-MapReduces existed too
» First steps toward “data lake” architecture

&

=IVE

Background

2006-2012: Many other cluster programming
models to bring MR’s benefits to other apps

APACHE ! .;_. ,."A P A C H E
o) STORM"™ CraphLab® #agGIRAPH
Google Google \(B¥ Microsoft

3
Pregel Dremel i Dryad

CS 245 35

Background

2010: Spark engine released, built around
MapReduce + in-memory computing

» Motivation: interactive queries + iterative
algorithms such as graph analytics and ML

Spark then moves to be a general (“unified”)
engine, covering existing ones

Code Size Comparison (2013)

140000

120000 -

100000 -

80000 -

60000 -

g GraphX
~— — Streaminc
™ Shark

40000 -
20000 -

0 - x
Hadoop Impala Storm Giraph Spark
MapReduce (SQL) (Streaming) (Graph)

non-test, non-example source lines

Background

2012: Shark starts as a port of Hive on Spark

2014: Spark SQL starts as a SQL engine built
directly on Spark (but interoperable w/ Hive)

» Also adds DataFrames for integrating
relational ops in Scala/Java/Python programs

Original Spark API

Resilient Distributed Datasets (RDDs)

» Immutable collections of objects that can be
stored in memory or disk across a cluster

» Built via parallel transformations (map, filter, ...)
» Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

errors = lines.filter(s => s.startswith(“ERROR”))
messages = errors.map(s => s.split(‘\t")(2))

messages.cache() Driver
_ _ JaYejilolg
messages.filter(s => s.contains(“foo”)).count() L

messages.filter(s => s.contains(“bar”)).count()

Interactive ad-hoc queries in your

favorite language

Block 3
|

Challenges with Spark’s
Functional API

Looks high-level, but hides many semantics
of computation from engine

» Functions passed in are arbitrary code
» Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways

Example Problem

pairs = data.map(word => (word, 1))
groups = pairs.groupByKey()

groups.map((k, vs) => (k, vs.sum))

Spark SQL & DataFrames

Efficient library for working with structured data

» 2 interfaces: SQL for data analysts and external
apps, DataFrames for complex programs

» Optimized computation & storage underneath

Spark SQL Architecture

{ o } { Data }
Frames

N

|

Logical) Optimizer \(Physicalw Code (

Plan J Generator L RDDs }

Plan
Data { Catalo] / l \
Source _ J S R Y TEEE
AP

DataFrame API

DataFrames hold rows with a known schema
and offer relational operations through a DSL

Cc = HiveContext()
users = c.sql(“select * from users”)

ma_users = users[users.state == “MA”]
ma_users.count()
ma_users.groupBy(“name”) .avg(“age”)

ma_users.map(lambda row: row.user.toUpper())

API Details

Based on data frame concept in R, Pandas
» Spark is the first to make this declarative

Integrated with the rest of Spark

» ML library takes DataFrames as input/output
» Easily convert RDDs &d DataFrames

What DataFrames Enable

1. Compact binary representation

* Columnar, compressed cache; rows for
processing

2. Optimization across operators (join
reordering, predicate pushdown, etc)

3. Runtime code generation

Performance

DataFrame SQL _

DataFrame R
DataFrame Python
DataFrame Scala

RDD Python

RDD Scala “

[

0

[[

2 4 0 38

Time for aggregation benchmark (s)

10

Data Sources

Uniform way to access structured data

» Apps can migrate across Hive, Cassandra,
JSON, Parquet, ...

» Rich semantics allows query pushdown into
data sources

A P A CHE

HBRASE

users[users.age > 20]

—

select * from users

elasticsearch.

N

Mysal)

Examples

) \§
“text”: “hi”,
JSON: user”: |
“name”: “bob”,
select user.id, text from tweets } “id”: 15 }
JDBC: tweets.json

select age from users where lang = “en

Together:

select id, age from

select t.text, u.age users where lang="en”
from tweets t, users u X\
where t.user.id = u.1id
1] ” MHSQL®
and u.lang = “en

{JSON}

Extensible Optimizer

Uses Scala pattern matching (see demo!)

Spark Usage Today

Languages Used in Databricks
Notebooks

>90%

of APl calls run via
Spark SQL engine

Scala
N%

Python
68%

CS 245 54

Extensions to Spark SQL

Structured Streaming (streaming SQL)
Many data sources using the pushdown API
Interval queries on genomic data

Geospatial package (Magellan)

