Query Optimization 2

Instructor: Matei Zaharia

Recap: Data Statistics

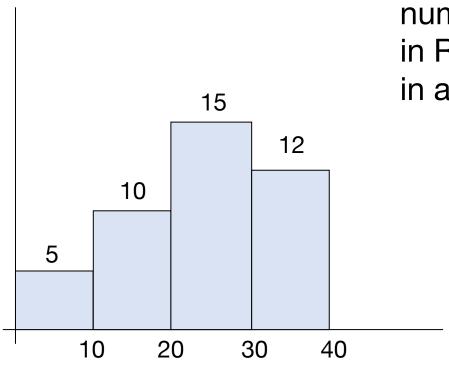
Information about tuples in a table that we can use to estimate costs

» Must be approximated for intermediate tables

We saw one way to do this for 4 statistics:

- T(R) = # of tuples in R
- » S(R) = average size of tuples in R
- » B(R) = # of blocks to hold R's tuples
- » V(R, A) = # distinct values of attribute A in R

Another Type of Data Stats: Histograms



number of tuples in R with A value in a given range

$$\sigma_{A>a}(R) = ?$$

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL

Cost Models

How do we measure a query plan's cost?

Many possible metrics:

- » Number of disk I/Os
 - ← We'll focus on this
- » Number of compute cycles
- » Combined time metric
- » Memory usage
- » Bytes sent on network
- **>>** ...

Example: Index vs Table Scan

Our query: $\sigma_p(R)$ for some predicate p

s = p's selectivity (fraction tuples passing)

Table scan:

block size

R has $B(R) = T(R) \times S(R)/b$ blocks on disk

Cost: B(R) I/Os

Index search:

Index lookup for p takes L I/Os

We then have to read part of R; Pr[read block i]

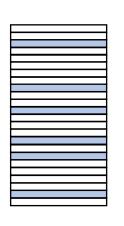
≈ 1 - Pr[no match]^{records in block}

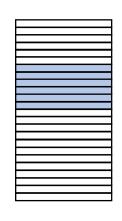
$$= 1 - (1-s)^{b / S(R)}$$

Cost: L + $(1-(1-s)^{b/S(R)})$ B(R)

What If Results Were Clustered?

Unclustered: records that match p are spread out uniformly





Clustered: records that match p are close together in R's file

We'd need to change our estimate of C_{index}:

$$C_{index} = L + s B(R)$$
Fraction of R's blocks read

Less than C_{index} for unclustered data

Join Operators

Join **orders** and **algorithms** are often the choices that affect performance the most

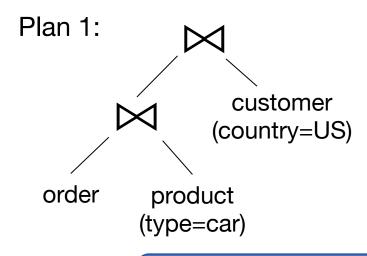
For a multi-way join R ⋈ S ⋈ T ⋈ ..., each join is selective, and order matters a lot » Try to eliminate lots of records early

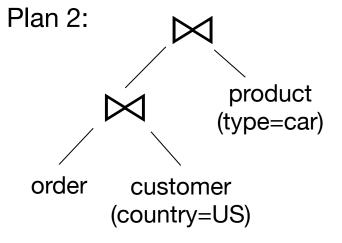
Even for one join $R \bowtie S$, algorithm matters

Example

```
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = "car"
AND customer.country = "US"

selection predicates
```





Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join

Iteration Join

```
for each r∈R₁:
  for each s∈R₂:
   if r.C == s.C then output (r, s)
```

I/Os: one scan of R_1 and $T(R_1)$ scans of R_2 , so $cost = B(R_1) + T(R_1) B(R_2)$ reads

Improvement: read M **blocks** of R_1 in RAM at a time then read R_2 : $B(R_1) + B(R_1) B(R_2) / M$

Note: cost of writes is always $B(R_1 \bowtie R_2)$

Merge Join

```
if R_1 and R_2 not sorted by C then sort them i, j = 1 while i \leq T(R_1) && j \leq T(R_2): if R_1[i].C = R_2[j].C then outputTuples else if R_1[i].C > R_2[j].C then j += 1 else if R_1[i].C < R_2[j].C then i += 1
```

Merge Join

```
procedure outputTuples: while R_1[i].C == R_2[j].C && i \leq T(R_1): jj = j while R_1[i].C == R_2[jj].C && jj \leq T(R_2): output (R_1[i], R_2[jj]) jj += 1 i += i+1
```

Example

i	R ₁ [i].C	$R_2[j].C$	j
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

Cost of Merge Join

If R₁ and R₂ already sorted by C, then

$$cost = B(R_1) + B(R_2)$$
 reads

(+ write cost of B(R₁ \bowtie R₂))

Cost of Merge Join

If R_i is not sorted, can sort it in 4 B(R_i) I/Os:

- » Read runs of tuples into memory, sort
- » Write each sorted run to disk
- » Read from all sorted runs to merge
- » Write out results

Join with Index

```
for each r \in R_1:
list = index_lookup(R_2, C, r.C)
for each s \in list:
output (r, s)
```

Read I/Os: 1 scan of R_1 , $T(R_1)$ index lookups on R_2 , and $T(R_1)$ data lookups

$$cost = B(R_1) + T(R_1) (L_{index} + L_{data})$$

Can be less when R₁ is sorted/clustered by C!

Hash Join (R₂ Fits in RAM)

```
hash = load R₂ into RAM and hash by C
for each r∈R₁:
  list = hash_lookup(hash, r.C)
  for each s∈list:
   output (r, s)
```

Read I/Os: $B(R_1) + B(R_2)$

Hash Join on Disk

Can be done by hashing both tables to a common set of buckets on disk

» Similar to merge sort: $4 (B(R_1) + B(R_2))$

Trick: hash only (key, pointer to record) pairs

» Can then sort the pointers to records that match and fetch them near-sequentially

Summary

Join algorithms can have different performance in different situations

In general, the following are used:

- » Index join if an index exists
- » Merge join if at least one table is sorted
- » Hash join if both tables unsorted

Outline

What can we optimize?

Rule-based optimization

Data statistics

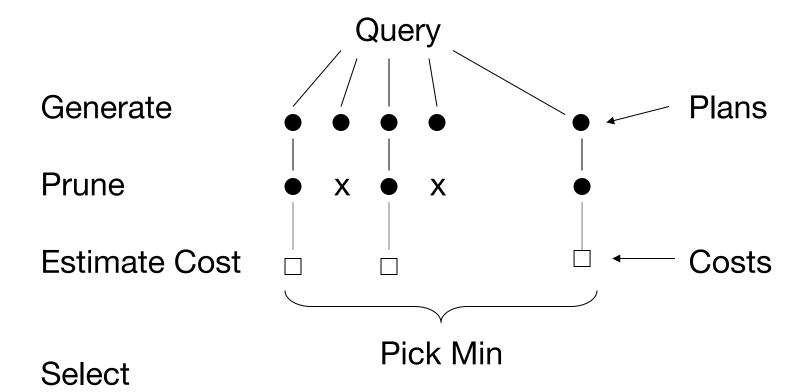
Cost models

Cost-based plan selection

Spark SQL

Complete CBO Process

Generate and compare possible query plans



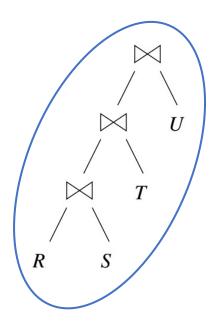
How to Generate Plans?

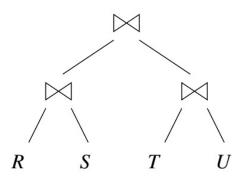
Simplest way: recursive search of the options for each planning choice

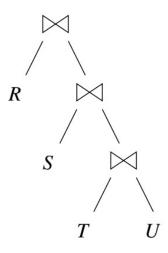
```
Access paths for table 1 × Access paths for join 1 × Algorithms for join 2 × Algorithms
```

How to Generate Plans?

Can limit search space: e.g. many DBMSes only consider "left-deep" joins







How to Generate Plans?

Can prioritize searching through the most impactful decisions first

» E.g. join order is one of the most impactful

How to Prune Plans?

While computing the cost of a plan, throw it away if it is worse than best so far

Start with a **greedy algorithm** to find an "OK" initial plan that will allow lots of pruning

Memoization and Dynamic Programming

During a search through plans, many subplans will appear repeatedly

Remember cost estimates and statistics (T(R), V(R, A), etc) for those: "memoization"

Can pick an order of subproblems to make it easy to reuse results (dynamic programming)

Resource Cost of CBO

It's possible for cost-based optimization itself to take longer than running the query!

Must design optimizer to not take too long » That's why we have shortcuts in stats, etc

Luckily, a few "big" decisions drive most of the execution cost (e.g. join order)

Outline

What can we optimize?

Rule-based optimization

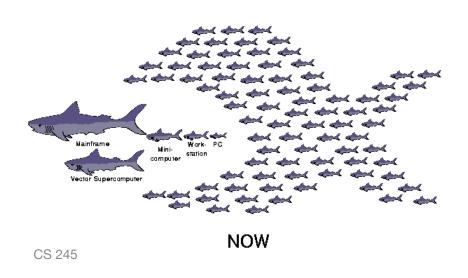
Data statistics

Cost models

Cost-based plan selection

Spark SQL

- **2004:** MapReduce published, enables writing large scale data apps on *commodity clusters*
 - » Cheap but unreliable "consumer" machines, so system emphasizes fault tolerance
 - » Focus on C++/Java programmers



2006: Apache Hadoop project formed as an open source MapReduce + distributed FS

- » Started in Nutch open source search engine
- » Soon adopted by Yahoo & Facebook

2006: Amazon EC2 service launched as the newest attempt at "utility computing"

2007: Facebook starts Hive (later Apache Hive) for SQL on Hadoop

- » Other SQL-on-MapReduces existed too
- » First steps toward "data lake" architecture

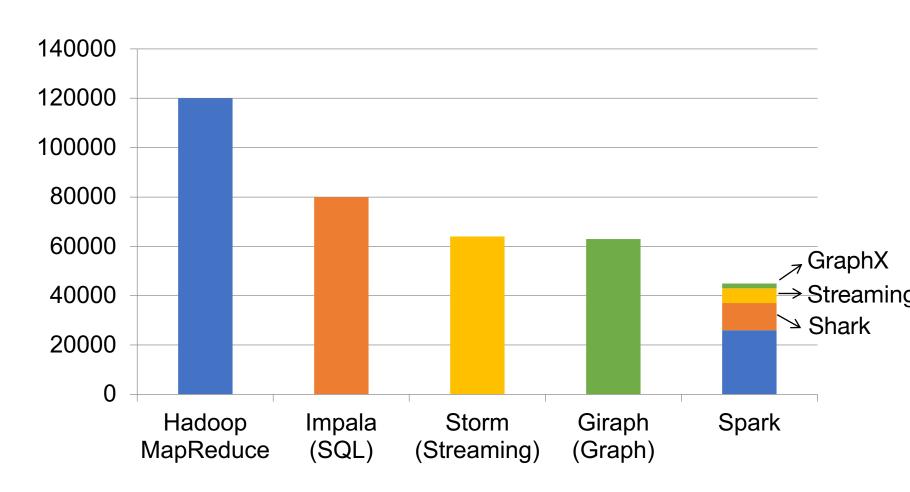
2006-2012: Many other cluster programming models to bring MR's benefits to other apps

2010: Spark engine released, built around MapReduce + in-memory computing

» Motivation: interactive queries + iterative algorithms such as graph analytics and ML

Spark then moves to be a general ("unified") engine, covering existing ones

Code Size Comparison (2013)



non-test, non-example source lines

Background

2012: Shark starts as a port of Hive on Spark

2014: Spark SQL starts as a SQL engine built directly on Spark (but interoperable w/ Hive)

» Also adds DataFrames for integrating relational ops in Scala/Java/Python programs

CS 245

Original Spark API

Resilient Distributed Datasets (RDDs)

- » Immutable collections of objects that can be stored in memory or disk across a cluster
- » Built via parallel transformations (map, filter, ...)
- » Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
Cache 1
                                                Transformed RDD
lines = spark.textFile("hdfs://...")
                                                                     Worker
                                                            results
errors = lines.filter(s => s.startswith("ERROR"))
messages = errors.map(s => s.split('\t')(2))
                                                               tasks
                                                                     Block 1
                                                      Driver
messages cache()
                                                      Action
messages.filter(s => s.contains("foo")).count()
messages.filter(s => s.contains("bar")).count()
                                                                        Cache 2
                                                                    Worker
                                                      Cache 3
                                                                    Block 2
                                                   Worker
    Interactive ad-hoc queries in your
```

Block 3

Interactive ad-hoc queries in your favorite language

Challenges with Spark's Functional API

Looks high-level, but hides many semantics of computation from engine

- » Functions passed in are arbitrary code
- » Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways

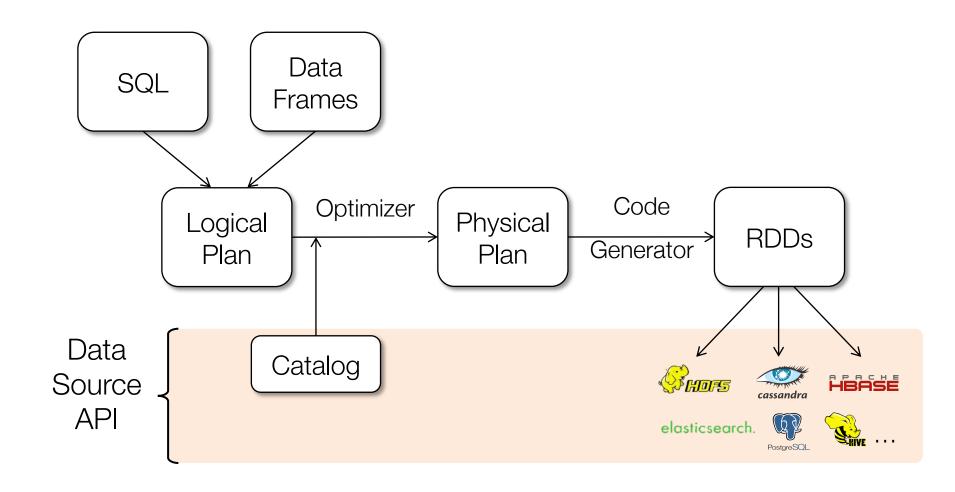
Example Problem

Spark SQL & DataFrames

Efficient library for working with structured data

- » 2 interfaces: SQL for data analysts and external apps, DataFrames for complex programs
- » Optimized computation & storage underneath

Spark SQL Architecture



DataFrame API

DataFrames hold rows with a known **schema** and offer **relational operations** through a DSL

```
c = HiveContext()
users = c.sql("select * from users")

ma_users = users[users.state == "MA"]

ma_users.count()

Expression AST

ma_users.groupBy("name").avg("age")

ma_users.map(lambda row: row.user.toUpper())
```

API Details

Based on data frame concept in R, Pandas

» Spark is the first to make this declarative

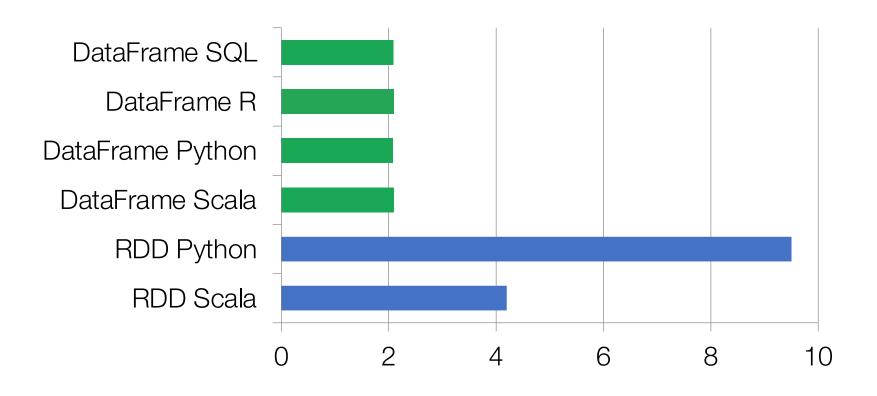
Integrated with the rest of Spark

- » ML library takes DataFrames as input/output
- » Easily convert RDDs 🖾 DataFrames

What DataFrames Enable

- 1. Compact binary representation
 - Columnar, compressed cache; rows for processing
- 2. Optimization across operators (join reordering, predicate pushdown, etc)
- 3. Runtime code generation

Performance

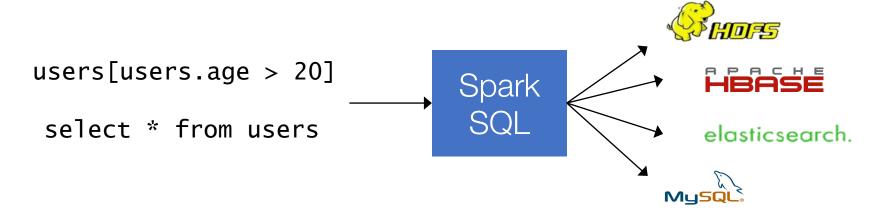


Time for aggregation benchmark (s)

Data Sources

Uniform way to access structured data

- » Apps can migrate across Hive, Cassandra, JSON, Parquet, …
- » Rich semantics allows query pushdown into data sources



Examples

JSON:

select user.id, text from tweets

JDBC:

select age from users where lang = "en"

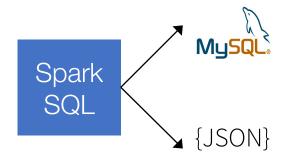
Together:

select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = "en"

```
{
    "text": "hi",
    "user": {
        "name": "bob",
        "id": 15 }
}
```

tweets.json

select id, age from users where lang="en"



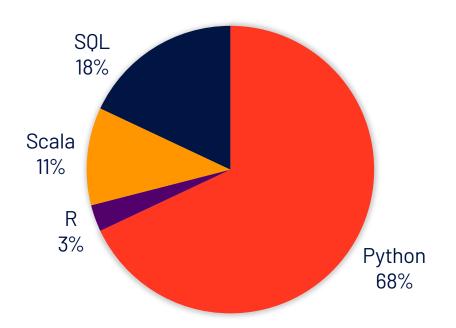
Extensible Optimizer

Uses Scala pattern matching (see demo!)

CS 245

Spark Usage Today

Languages Used in Databricks Notebooks



>90%

of API calls run via Spark SQL engine

Extensions to Spark SQL

Structured Streaming (streaming SQL)

Many data sources using the pushdown API

Interval queries on genomic data

Geospatial package (Magellan)

CS 245