
Transactions and Failure
Recovery

Instructor: Matei Zaharia

Spark SQL Wrap-Up

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

Data
Source
API

SQL Data
Frames

Code

Generator

Data Sources
Uniform way to access structured data
» Apps can migrate across Hive, Cassandra,

JSON, Parquet, …
» Rich semantics allows query pushdown into

data sources

Spark
SQL

users[users.age > 20]

select * from users

Extensible Optimizer

Uses Scala pattern matching (see demo!)

CS 245 4

Spark Usage Today

CS 245 5

Python
68%

R
3%

Scala
11%

SQL
18%

Languages Used in Databricks
Notebooks

>90%
of API calls run via
Spark SQL engine

Outline

Defining correctness

Transaction model

Hardware failures

Recovery with logs

CS 245 6

Outline

Defining correctness

Transaction model

Hardware failures

Recovery with logs

CS 245 7

Focus of This Part of Course

Correctness in case of failures & concurrency
» There’s no point running queries quickly if the

input data is wrong!

CS 245 8

Correctness of Data

Would like all data in our system to be
“accurate” or “correct” at all times
» Both logical data model and physical structs

Employees

CS 245 9

Name
Smith
Green
Chen

Age
52

3421
1

Idea: Integrity or Consistency
Constraints
Predicates that data structures must satisfy

Examples:
» X is an attribute of relation R
» Domain(X) = {student, prof, staff}
» If X = prof in a record then office != NULL in it
» T is valid B-tree index for attribute X of R
» No staff member should make more than twice

the average salary

CS 245 10

Definition

Consistent state: satisfies all constraints

Consistent DB: DB in consistent state

CS 245 11

Constraints (As We Use Here)
May Not Capture All Issues

Example 1: transaction constraints

When a salary is updated,
new salary > old salary

When an account record is deleted,
balance = 0

CS 245 12

Constraints (As We Use Here)
May Not Capture All Issues

Note: some transaction constraints could be
“emulated” by simple constraints, e.g.,

account

CS 245 13

acct # … balance is_deleted

Constraints (As We Use Here)
May Not Capture All Issues
Example 2: database should reflect real world

CS 245 14

DB Reality

Constraints (As We Use Here)
May Not Capture All Issues
Example 2: database should reflect real world

CS 245 15

DB Reality

In Any Case, Continue with
Constraints...

CS 245 16

In Any Case, Continue with
Constraints...
Observation: DB can’t always be consistent!

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2 ¬ a2 + 100
TOT ¬ TOT + 100

CS 245 17

a2

TOT

..
50
..

1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2 ¬ a2 + 100
TOT ¬ TOT + 100

CS 245 18

Transaction: Collection of Actions
that Preserve Consistency

CS 245 19

Consistent DB Consistent DB’T

Big Assumption:

If T starts with a consistent state

+ T executes in isolation

Þ T leaves a consistent state

CS 245 20

Correctness (Informally)

If we stop running transactions, the database
is left consistent

Each transaction sees a consistent DB

CS 245 21

More Detail: Transaction API

CS 245 22

DB
Client App

Start Transaction

Read

Write

⋮
Commit

More Detail: Transaction API

CS 245 23

DB
Client App

Start Transaction

Read

Write

⋮
Abort

Both clients and system can abort transactions

How Can Constraints Be
Violated?
Transaction bug

DBMS bug

Hardware failure
» e.g., disk crash alters balance of account

Data sharing
» e.g.: T1: give 10% raise to programmers,

T2: change programmers Þ marketers
CS 245 24

We Won’t Consider:

How to write correct transactions

How to check for DBMS bugs

Constraint verification & repair
» That is, the solutions we’ll study do not

need to know the constraints!

CS 245 25

Failure Recovery

First order of business: Failure Model

CS 245 26

Events Desired

Undesired Expected

Unexpected

CS 245 27

Failure Models

Our Failure Model

processor

memory disk

CS 245 28

CPU

M D

Our Failure Model

Desired Events: see product manuals….

Undesired Expected Events:
» System crash (“fail-stop failure”)
•CPU halts, resets
•Memory lost

CS 245 29

Undesired Unexpected: Everything else!
that’s it!!

Undesired Unexpected:
Everything Else!

Examples:
» Disk data is lost
» Memory lost without CPU halt
» CPU implodes wiping out the universe….

CS 245 30

Is This Model Reasonable?

Approach: Add low-level checks + redundancy
to increase probability that model holds

E.g., Replicate disk storage (stable store)

Memory parity

CPU checks

CS 245 31

Second Order of Business:

Storage hierarchy

CS 245 32

Memory Disk

x x

Operations

Input(x): block containing x ® memory

Output(x): block containing x ® disk

Read(x,t): do input(x) if necessary
t ¬ value of x in block

Write(x,t): do input(x) if necessary
value of x in block ¬ t

CS 245 33

Key Problem: Unfinished
Transaction

Example Constraint: A=B

T1: A ¬ A ´ 2
B ¬ B ´ 2

CS 245 34

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 245 35

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 245 36

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

CS 245 37

Need: Atomicity

Execute all the actions in a transaction
together, or none at all

CS 245 38

One Solution

Undo logging (immediate modification)

Due to: Hansel and Gretel, 1812 AD

Updated to durable undo
logging in 1813 AD

CS 245 39

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

CS 245 40

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 41

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 245 42

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 245 43

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 44

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 45

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 46

16
BAD STATE

1

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 47

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

...

Undo Logging Rules

1. For every action, generate undo log record
(containing old value)

2. Before X is modified on disk, log records
pertaining to X must be on disk (“write
ahead logging”: WAL)

3. Before commit record is flushed to log, all
writes of transaction must be on disk

CS 245 48

(1) Let S = set of transactions with
<Ti, start> in log,
but no <Ti, commit> or <Ti, abort> in log

(2) For each <Ti, X, v> in log, in reverse order
(latest ® earliest), do:

- if Ti Î S then - write (X, v)
- output (X)

(3) For each Ti Î S do
- write <Ti, abort> to log

CS 245 49

Recovery Rules: Undo Logging

Question

Can our writes of <Ti, abort> records be
done in any order (in Step 3)?
» Example: T1 and T2 both write A
» T1 executed before T2
» T1 and T2 both rolled-back
» <T1, abort> written but NOT <T2, abort>?
» <T2, abort> written but NOT <T1, abort>?

CS 245 50

T1 write A T2 write A time/logA=1 A=2 A=3

What If We Crash During
Recovery?
No problem! → Undo is idempotent

(same effect if you do it twice)

CS 245 51

Any Downsides to Undo
Logging?

CS 245 52

Any Downsides to Undo
Logging?

Have to do a lot of I/O to commit (write all
updated objects to disk first)

Hard to replicate database to another disk
(must push all changes across the network)

CS 245 53

To Discuss

Redo logging

Undo/redo logging

CS 245 54

Redo Logging

First send Gretel up with no rope,
then Hansel goes up safely with rope!

CS 245 55

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 56

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 57

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 58

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 59

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

Redo Logging Rules

1. For every action, generate redo log record
(containing new value)

2. Before X is modified on disk (in DB), all
log records for transaction that modified X
(including commit) must be on disk

3. Flush log at commit
4. Write END record after DB updates are

flushed to disk

CS 245 60

Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> and no <Ti, end> in log

(2) For each <Ti, X, v> in log, in forward order
(earliest ® latest) do:

- if Ti Î S then Write(X, v)
Output(X)

(3) For each Ti Î S, write <Ti, end>

CS 245 61

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 245 62

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> record
CS 245 63

Solution: Checkpoints

Simple, naïve checkpoint algorithm:
1. Stop accepting new transactions
2. Wait until all transactions finish
3. Flush all log records to disk (log)
4. Flush all buffers to disk (DB) (do not

discard buffers)
5. Write “checkpoint” record on disk (log)
6. Resume transaction processing
CS 245 64

Example:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

C
he

ck
po

in
t

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 65

Any Disadvantages to Redo
Logging?

CS 245 66

Any Disadvantages to Redo
Logging?
Need to keep all modified blocks in memory
until commit
» Might take up a lot of space, or waste time

CS 245 67

Problems with Ideas So Far

Undo logging: need to wait for lots of I/O to
commit; can’t easily have backup copies of DB

Redo logging: need to keep all modified
blocks in memory until commit

CS 245 68

+ =

CS 245 69

Solution: Undo/Redo Logging!

Update = <Ti, X, new X val, old X val>

(X is the object updated)

CS 245 70

Undo/Redo Logging Rules

Object X can be flushed before or after Ti
commits

Log record (with undo/redo info) must be
flushed before corresponding data (WAL)

Flush log up to commit record at Ti commit

CS 245 71

Example: Undo/Redo Logging
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

CS 245 72

Example: Undo/Redo Logging
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

CS 245 73

Example: Undo/Redo Logging
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

T2 didn’t commit, so
UNDO all its updates

CS 245 74

Non-Quiescent Checkpoints

L
O
G

for dirty memory
undo pages flushed

Start-ckpt
active txs:
T1,T2,...

end
ckpt

.........

...

CS 245 75

Non-Quiescent Checkpoints
memory

checkpoint process:
for i := 1 to M do

output(buffer i)

[transactions run concurrently]

CS 245 76

Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

CS 245 77

Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

Undo T1 (undo a,b)

CS 245 78

Example 2: How to Recover?

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

CS 245 79

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

Redo T1: (redo b,c)

Example 2: How to Recover?

CS 245 80

What if a Checkpoint Does
Not Complete?

... ckpt
start T1

b T1
c ...ckpt-

start
ckpt
end

L
O
G

start of last
complete

checkpoint

ckpt-
start

Start recovery from last complete checkpoint

CS 245 81

Undo/Redo Recovery Process
Backward pass (end of log → latest valid checkpoint start)
» construct set S of committed transactions
» undo actions of transactions not in S

Undo pending transactions
» follow undo chains for transactions in

(checkpoint’s active list) - S

Forward pass (latest checkpoint start → end of log)
» redo actions of all transactions in S

backward pass
forward pass

start
check-
point

CS 245 82

