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Defining Correctness

Constraint: Boolean predicate about DB 
state (both logical & physical data structures)

Consistent DB: satisfies all constraints
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Transaction: Collection of Actions 
that Preserve Consistency

Consistent DB Consistent DB’T
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Our Failure Model

processor

memory    disk

CPU

M D

Fail-stop failures of CPU & memory, but disk survives
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T1: Read (A,t);  t ¬ t´2 A=B
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)
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T1: Read (A,t);  t ¬ t´2 A=B
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
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A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
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<T1, start>
<T1, A, 8>
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16 <T1, B, 8>
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Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB
LOG
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Redo Logging (deferred modification)
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Redo Logging Rules

1. For every action, generate redo log record 
(containing new value)

2. Before X is modified on disk (in DB), all 
log records for transaction that modified X 
(including commit) must be on disk

3. Flush log at commit
4. Write END record after DB updates are  

flushed to disk
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Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> and no <Ti, end> in log

(2) For each <Ti, X, v> in log, in forward order
(earliest ® latest) do:

- if Ti Î S then  Write(X, v)
Output(X)

(3) For each Ti Î S, write <Ti, end>
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Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X
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Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> record (checkpoint)
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Solution: Checkpoints   

Simple, naïve checkpoint algorithm:
1. Stop accepting new transactions
2. Wait until all transactions finish
3. Flush all log records to disk (log)
4. Flush all buffers to disk (DB) (do not 

discard buffers)
5. Write “checkpoint” record on disk (log)
6. Resume transaction processing
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Redo Logging:
What To Do at Recovery?

Redo log (disk):
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Crash... ... ... ... ... ...

CS 245 23



Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash... ... ... ... ... ...

CS 245 24

T2 committed, so
REDO all its updates
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T3 didn’t commit,
so ignore it

T2 committed, so
REDO all its updates



Problems with Ideas So Far

Undo logging: need to wait for lots of I/O to 
commit; can’t easily have backup copies of DB

Redo logging: need to keep all modified 
blocks in memory until commit
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+ =
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Solution: Undo/Redo Logging!

Update = <Ti, X, new X val, old X val>

(X is the object updated)
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Undo/Redo Logging Rules

Object X can be flushed before or after Ti
commits

Log record (with undo/redo info) must be 
flushed before corresponding data (WAL)

Flush log up to commit record at Ti commit
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Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):
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REDO all its updates

T2 didn’t commit, so
UNDO all its updates
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Non-Quiescent Checkpoints

L
O
G

for dirty memory
undo pages flushed

Start-ckpt
active txs:
T1,T2,...

end
ckpt

.........

...
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Non-Quiescent Checkpoints
memory

checkpoint process:

for i := 1 to M do
Output(buffer i)

[transactions run concurrently]
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Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1 ... Ckpt
end ... T1,-

b...
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Example 1: How to Recover?

no T1 commit
L
O
G

T1,
a ... Ckpt

T1 ... Ckpt
end ... T1,

b...

Undo T1  (undo a,b)
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Example 2: How to Recover?

L
O
G

... T1
a ... ... T1

b ... ... T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1
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L
O
G

... T1
a ... ... T1

b ... ... T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

Redo T1  (redo b,c)

Example 2: How to Recover?
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What if a Checkpoint Did Not 
Complete?

... ckpt
start ... ... T1

b ... ... T1
c ...ckpt-

start
ckpt
end

L
O
G

start of last
complete

checkpoint

ckpt-
start

Start recovery from last complete checkpoint
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Undo/Redo Recovery Algorithm
Backward pass (end of log → latest valid checkpoint start)
» construct set S of committed transactions
» undo actions of transactions not in S

Undo pending transactions
» follow undo chains for transactions in

(checkpoint’s active list) - S

Forward pass (latest checkpoint start → end of log)
» redo actions of all transactions in S

backward pass
forward pass

start
check-
point
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External Actions

E.g., dispense cash at ATM

Ti = a1 a2 …... aj …... an

💵
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Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent
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Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent
ATM

Give $$
(amt, Tid, time)

$
give(amt)

lastTid:
time:

CS 245 44



How Would You Handle These 
Other External Actions?
Charge a customer’s credit card

Cancel someone’s hotel room

Send data into a streaming system
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Media Failure
(Loss of Nonvolatile Storage)

A: 16
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A: 16

Solution:  Make copies of data!

Media Failure
(Loss of Nonvolatile Storage)
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Naïve Way: Redundant Storage

Example: keep 3 copies on separate disks

Output(X) → three outputs

Input(X) → three inputs + vote

X1 X2 X3
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Better Way: Log-Based Backup

active
database

backup
database

log

If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log
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Backup Database

Just like a checkpoint, except that we write 
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]
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Backup Database

Just like a checkpoint, except that we write 
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

Restore from backup DB and log:
Similar to recovery from checkpoint and log
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When Can Logs Be Discarded?

check-
point

DB
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery
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Summary

Consistency of data: maintain constraints

One source of problems: failures
» Logging
» Redundancy

Another source of problems: data sharing
» We’ll cover this next!
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