
Transactions and Failure
Recovery 2

Instructor: Matei Zaharia

CustomTable Showcase

CS 245 2

Outline

Recap from last time

Redo logging

Undo/redo logging

External actions

Media failures

CS 245 3

Outline

Recap from last time

Redo logging

Undo/redo logging

External actions

Media failures

CS 245 4

Defining Correctness

Constraint: Boolean predicate about DB
state (both logical & physical data structures)

Consistent DB: satisfies all constraints

CS 245 5

Transaction: Collection of Actions
that Preserve Consistency

Consistent DB Consistent DB’T

CS 245 6

Our Failure Model

processor

memory disk

CPU

M D

Fail-stop failures of CPU & memory, but disk survives

CS 245 7

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

CS 245 9

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 10

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 245 11

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 245 12

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 13

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

CS 245 14

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

CS 245 15

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

CS 245 16

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 245 17

Redo Logging Rules

1. For every action, generate redo log record
(containing new value)

2. Before X is modified on disk (in DB), all
log records for transaction that modified X
(including commit) must be on disk

3. Flush log at commit
4. Write END record after DB updates are

flushed to disk

CS 245 18

Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> and no <Ti, end> in log

(2) For each <Ti, X, v> in log, in forward order
(earliest ® latest) do:

- if Ti Î S then Write(X, v)
Output(X)

(3) For each Ti Î S, write <Ti, end>

CS 245 19

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 245 20

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> record (checkpoint)
CS 245 21

Solution: Checkpoints

Simple, naïve checkpoint algorithm:
1. Stop accepting new transactions
2. Wait until all transactions finish
3. Flush all log records to disk (log)
4. Flush all buffers to disk (DB) (do not

discard buffers)
5. Write “checkpoint” record on disk (log)
6. Resume transaction processing
CS 245 22

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 23

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 24

T2 committed, so
REDO all its updates

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 25

T3 didn’t commit,
so ignore it

T2 committed, so
REDO all its updates

Problems with Ideas So Far

Undo logging: need to wait for lots of I/O to
commit; can’t easily have backup copies of DB

Redo logging: need to keep all modified
blocks in memory until commit

CS 245 26

+ =

CS 245 27

Solution: Undo/Redo Logging!

Update = <Ti, X, new X val, old X val>

(X is the object updated)

CS 245 28

Undo/Redo Logging Rules

Object X can be flushed before or after Ti
commits

Log record (with undo/redo info) must be
flushed before corresponding data (WAL)

Flush log up to commit record at Ti commit

CS 245 29

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

CS 245 30

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

CS 245 31

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

T2 didn’t commit, so
UNDO all its updates

CS 245 32

Non-Quiescent Checkpoints

L
O
G

for dirty memory
undo pages flushed

Start-ckpt
active txs:
T1,T2,...

end
ckpt

.........

...

CS 245 33

Non-Quiescent Checkpoints
memory

checkpoint process:

for i := 1 to M do
Output(buffer i)

[transactions run concurrently]

CS 245 34

Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1 ... Ckpt
end ... T1,-

b...

CS 245 35

Example 1: How to Recover?

no T1 commit
L
O
G

T1,
a ... Ckpt

T1 ... Ckpt
end ... T1,

b...

Undo T1 (undo a,b)

CS 245 36

Example 2: How to Recover?

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

CS 245 37

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

Redo T1 (redo b,c)

Example 2: How to Recover?

CS 245 38

What if a Checkpoint Did Not
Complete?

... ckpt
start T1

b T1
c ...ckpt-

start
ckpt
end

L
O
G

start of last
complete

checkpoint

ckpt-
start

Start recovery from last complete checkpoint

CS 245 39

Undo/Redo Recovery Algorithm
Backward pass (end of log → latest valid checkpoint start)
» construct set S of committed transactions
» undo actions of transactions not in S

Undo pending transactions
» follow undo chains for transactions in

(checkpoint’s active list) - S

Forward pass (latest checkpoint start → end of log)
» redo actions of all transactions in S

backward pass
forward pass

start
check-
point

CS 245 40

Outline

Recap from last time

Redo logging

Undo/redo logging

External actions

Media failures

CS 245 41

External Actions

E.g., dispense cash at ATM

Ti = a1 a2 …... aj …... an

💵

CS 245 42

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent

CS 245 43

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent
ATM

Give $$
(amt, Tid, time)

$
give(amt)

lastTid:
time:

CS 245 44

How Would You Handle These
Other External Actions?
Charge a customer’s credit card

Cancel someone’s hotel room

Send data into a streaming system

CS 245 45

Outline

Recap from last time

Undo/redo logging

External actions

Media failures

CS 245 46

Media Failure
(Loss of Nonvolatile Storage)

A: 16

CS 245 47

A: 16

Solution: Make copies of data!

Media Failure
(Loss of Nonvolatile Storage)

CS 245 48

Naïve Way: Redundant Storage

Example: keep 3 copies on separate disks

Output(X) → three outputs

Input(X) → three inputs + vote

X1 X2 X3

CS 245 49

Better Way: Log-Based Backup

active
database

backup
database

log

If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

CS 245 50

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

CS 245 51

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

Restore from backup DB and log:
Similar to recovery from checkpoint and log
CS 245 52

When Can Logs Be Discarded?

check-
point

DB
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

CS 245 53

Summary

Consistency of data: maintain constraints

One source of problems: failures
» Logging
» Redundancy

Another source of problems: data sharing
» We’ll cover this next!

CS 245 54

