Transactions and Failure
Recovery 2

Instructor: Mateil Zaharia

CustomTable Showcase

Outline

Recap from last time
Redo logging
Undo/redo logging
External actions

Media failures

Outline

Recap from last time
Redo logging
Undo/redo logging
External actions

Media failures

Defining Correctness

Constraint: Boolean predicate about DB
state (both logical & physical data structures)

Consistent DB: satisfies all constraints

Transaction: Collection of Actions
that Preserve Consistency

ConsistentDB)—— T Consistent DB’

Our Failure Model

@ .~ Processor

Fail-stop failures of CPU & memory, but disk survives

CS 245 -

Undo Logging (immediate modification)

T1: Read (A)1); t « tx2 A=B
Write (A,1);
Read (B,1); t « tx2
Write (B,1);
Output (A); AT
Output (B); ~—
T
~
A8 A:8
B:8 B:8
-~ v

memory disk log

Undo Logging (immediate modification)

R
S

<T1, start>
<T1, A, 8>

T1: Read (A,t); t <« tx2 A=B
Write (A,1);
Read (B,1); t « tx2
Write (B,1);
Output (A);
Output (B);
T
~
A8 16 A8
B:8 16 B:8
~

memory disk

~_
log

Undo Logging (immediate modification)

R
S

<T1, start>
<T1, A, 8>

<T1, B, 8>

T1: Read (A,t); t <« tx2 A=B
Write (A,1);
Read (B,1); t « tx2
Write (B,1);
Output (A);
Output (B);
T
~
A:8" 16 A8 16
B:8 16 B8
~

memory disk

~_
log

Undo Logging (immediate modification)

R
S

<T1, start>
<T1, A, 8>

<T1, B, 8>

T1: Read (A,t); t <« tx2 A=B
Write (A,1);
Read (B,1); t « tx2
Write (B,1);
Output (A);
Output (B);
T
~
A:8" 16 A8 16
B:8 16 B:8 16
~

memory disk

~_
log

Undo Logging (immediate modification)

T1:

CS 245

R
S

<T1, start>
<T1, A, 8>

<T1, B, 8>
<T1, commit>

Read (At); t « tx2 A=B
Write (A,1);
Read (B,1); t « tx2
Write (B,t);
Output (A);
Output (B);
T
~
A:8" 16 A8 16
B:8 16 B:8 16
~
disk

memory

~_
log

13

Redo Logging (deferred modification)

T1: Read(A,t); t — tx2; write (A,t);
Read(B,t); t «— tx2; write (B,1);

Output(A); Output(B) ©
i
A: 8 A: 8
B: 8 B: 8
~N_
memory DB ~

LOG

Redo Logging (deferred modification)

T1: Read(A,t); t — tx2; write (A,t);
Read(B,t); t «— tx2; write (B,1);

Y

Output(A); Output(B) N
N <T1, start>
_ D <T1, A, 16>
A: 816 A: 8 <T1, B, 16>

B: 8716 B: 8 <T1, commit>

N
memory DB ~_

LOG

Redo Logging (deferred modification)

T1: Read(A,t); t — tx2; write (A,t);
Read(B,t); t «— tx2; write (B,1);

N
Output(A); Output(B) N
e <T1, start>
output < 3 <T1, A, 16>
AZ16 ——, A:. 816 <T1, B, 16>
B: 816 B: 816 <T1, commit>
N
memory DB ~_

LOG

CS 245 16

Redo Logging (deferred modification)

T1: Read(A,t); t — tx2; write (A,t);
Read(B,t); t «— tx2; write (B,1);

TN
Output(A); Output(B) N
e <T1, start>
output < 3 <T1, A, 16>
AZ16 — A 816 <T1, B, 16>
B: 816 B: 816 <T1, commit>
e T1, end>
memory DB &/

LOG

CS 245 17

Redo Logging Rules

1.

For every action, generate redo log record
(containing new value)

Before X is modified on disk (in DB), all
log records for transaction that modified X
(including commit) must be on disk

Flush log at commit

Write END record after DB updates are
flushed to disk

Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> and no <Ti, end> Iin log

(2) For each <Ti, X, v> in log, in forward order
(earliest — latest) do:

- if Ti € S then| Write(X, v)
<
 Output(X)

(3) For each Ti € S, write <Ti, end>

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Actions:

T | erte X
'Say X is branch balance: |
T1: ... update X... e U %
T2 ..updateX.. — R
' T3: ... update X... \ writpe X

T4:... update X... —_ | output X
write X

output X

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Actions:
T | erte X
'Say X is branch balance: |
T1: ... update X... e P
T2:..update X.. —

T3:..update X... —— 1 O

'T4: ... update X... =
T p __________________________________ : \G-H-t-ﬁtl‘t*’

write X
output X

combined <end> record (checkpoint)

Solution: Checkpoints

Simple, naive checkpoint algorithm:
1. Stop accepting new transactions
2. Wait until all transactions finish
3. Flush all log records to disk (log)
4

. Flush all buffers to disk (DB) (do not
discard buffers)

. Write “checkpoint” record on disk (log)
. Resume transaction processing

o Ol

Redo Logging:
What To Do at Recovery?

Redo log (disk):

Crash

<T1,A,16>
<T1,commit>

<checkpoint>
<12,B,17>

<T2,commit>
<T13,C,21>

Redo Logging:
What To Do at Recovery?

Redo log (disk):

Crash

<T1,A,16>
<T1,commit>
<checkpoint>

<12,B,17>
<T2,commit>

<T13,C,21>

T2 committed, so
REDO all its updates

Redo Logging:
What To Do at Recovery?

Redo log (disk):

Crash

<T1,A,16>
<T1,commit>
<checkpoint>

<12,B,17>
<T2,commit>

<T13,C,21>

T2 committed, so T3 didn’t commit,
REDO all its updates so ignore it

Problems with Ideas So Far

Undo logging: need to wait for lots of I/O to
commit; can’t easily have backup copies of DB

Redo logging: need to keep all modified
blocks in memory until commit

27

Solution: Undo/Redo Logging!

Update = <Ti, X, new X val, old X val>

(X is the object updated)

Undo/Redo Logging Rules

Object X can be flushed before or after Ti
commits

Log record (with undo/redo info) must be
flushed before corresponding data (WAL)

Flush log up to commit record at Ti commit

Undo/Redo Logging:
What to Do at Recovery?

Undo/redo log (disk):

Crash

<checkpoint>
<T1, B, 20, 23>
<T1, commit>
<12, C, 30, 38>
<12, D, 40, 41>

<T1, A, 10, 15>

Undo/Redo Logging:
What to Do at Recovery?

Undo/redo log (disk):

Crash

<checkpoint>
<T1, B, 20, 23>
<T1, commit>
<T2, C, 30, 38>
<T2, D, 40, 41>

<T1, A, 10, 15>

T1 committed, so
REDO all its updates

Undo/Redo Logging:
What to Do at Recovery?

Undo/redo log (disk):

A 5 & 2 & 2
_'E 1“—) [Q\| é 4P <t
O - N . -~

() o c o o
3 = N Q @ ¥ | Crash
O - O -
o) < m o @) A
S| Il |El |R| |8 |8
V v v V Y v

T1 committed, so T2 didn’t commit, so

REDO all its updates UNDO all its updates

Non-Quiescent Checkpoints

L Start-ckpt
. _ end
O ... |active txs:
L T2, ckpt
G =V
for dirty memory

undo pages flushed

Non-Quiescent Checkpoints

memory

checkpoint process:

fori:=1toMdo
Output(buffer i)

[transactions run concurrently]

Example 1: How to Recover?

MOOor

no T1 commit

Ckpt
T1

Ckpt

end

T1,-
b

Example 1: How to Recover?

no T1 commit

L
O 11, Ckpt Ckpt 11,

a [] T1 [N end [N b
G L

Undo T1 (undo a,b)

Example 2: How to Recover?

OOr

T1 ckpt-
g |l T b

ckpt-

|l end

T1

= lomtl

Example 2: How to Recover?

T1 ckpt- T1 ckpt4 | T1 T1
gl =T el ~lendr | c | lemt

OOr

7

Redo T1 (redo b,c)

What if a Checkpoint Did Not
Complete?

ckpt ckpt T1 ckpt- T1
stat | |end | | b | lstartt | ¢ |

1

start of last
complete
checkpoint

OOor

Start recovery from last complete checkpoint

CS 245 39

Undo/Redo Recovery Algorithm

Backward PAass (end of log — latest valid checkpoint start)
» construct set S of committed transactions
» undo actions of transactions notin S

Undo pending transactions

» follow undo chains for transactions in
(checkpoint’s active list) - S

Forward PAasSsS (latest checkpoint start — end of log)
» redo actions of all transactions in S

backward pass

forward pass I

Outline

Recap from last time
Redo logging
Undo/redo logging
External actions

Media failures

External Actions

E.g., dispense cash at ATM

Ti=a,a,......a

-

Es3

dn

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent

ATM
lastTid:
Give $$ ‘ time:
(amt, Tid, time) | give(amt)
$

-

How Would You Handle These
Other External Actions?

Charge a customer’s credit card
Cancel someone’s hotel room

Send data into a streaming system

Outline

Recap from last time
Undo/redo logging
External actions

Media failures

Media Failure
(Loss of Nonvolatile Storage)

T
—

A: 16

Media Failure
(Loss of Nonvolatile Storage)

T
—

A: 16

~

Solution: Make copies of data!

Naive Way: Redundant Storage

Example: keep 3 copies on separate disks
Output(X) — three outputs

Input(X) — three inputs + vote

Y Y Y
~ ~ ~
X1 X2 X3

Better Way: Log-Based Backup

3 i
active backup
database database

log

If active database is lost,
— restore active database from backup
— bring up-to-date using redo entries in log

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

fori:=1to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

fori:=1to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

Restore from backup DB and log:
Similar to recovery from checkpoint and log

When Can Logs Be Discarded?
'BVERN [>

\
last last heck-
log needed DB needed c e.C
undo dump undo point
) ! ! i : t|me
not needed for | | | .

media recovery

<
<«

not needed for
media recovery redo

P
<

not needed for undo
after system failure

A

not needed for
redo after system failure

Summary

Consistency of data: maintain constraints

One source of problems: failures

» Logging
» Redundancy

Another source of problems: data sharing
» We’ll cover this next!

