Concurrency Control

Instructor: Mateil Zaharia

The Problem
T, T, .. T

TN
S

DB
(consistency
constraints)

~

Different transactions may need to access data

items at the same time, violating constraints

CS 245 5

Example

Constraint: all interns have equal salaries
add $1000 to each intern’s salary

T,: double each intern’s salary

Salaries: 2000 2000 2000 2000 20060
3800 3660 3600 4600 _4600
6000 6000 6000 N9/

CS 245 3

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(“serial schedule”), but this has problems

» Too slow! Especially with external clients & |O

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is the
same as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, ...

Fundamental Tradeoff

Stronger isolation Weaker isolation
level level

C——

Easier to reason about See others’ changes,
(can’t see others’ changes) but more concurrency

CS 245 5

Interesting Fact

SQL standard defines serializability as “same
as a serial schedule”, but then also lists 3
types of “anomalies” to define levels:

Isolation Level Dirty Reads Unrepeatable Phantom Reads

Reads

Read uncommitted Y Y Y
Read committed N Y Y
Repeatable read N N Y
Serializable N N N

Interesting Fact

There are isolation levels other than
serializability that meet the last definition!
» |.e. don’t exhibit those 3 anomalies

Virtually no commercial DBs do serializability
by default, and some can’t do it at all

Time to call the lawyers?

In This Course

We'll first cover how to provide serializability,
then discuss other levels

» Many ideas apply to other isolation levels

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks

» Lock tables and multi-level locking

Optimistic concurrency with validation

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks

» Lock tables and multi-level locking

Optimistic concurrency with validation

Example

T,: Read(A) T,: Read(A)
A «— A+100 A «— Ax2

Write(A) Write(A)
Read(B) Read(B)
B <« B+100 B <« Bx2
Write(B) Write(B)

Constraint: A=B

Schedule A

Schedule A

A B
Read(A); A <« A+100
Write(A); 125
Read(B); B « B+100;
Write(B); 125
Read(A); A < Ax2;
Write(A); 250
Read(B); B «— Bx2;
Write(B); 250
250 | 250

Schedule B

T,

Ts

Read(A); A < A+100
)

Read

(A)
) .

A« Ax2;

Schedule B

A B

T. T, 25 |25

Read(A); A « Ax2;

Write(A); 50

Read(B); B « Bx2;

Write(B); >0
Read(A); A < A+100
Write(A);
Read(B); B «— B+100; >
Write(B); 150

150 | 150

Schedule C

T1 12

Read(A); A < A+100
Write(A);

Read(A); A « AX2;
Write(A);

Read(B); B « B+100;
Write(B);

Read(B); B « Bx2;
Write(B);

Schedule C

A B
A = 25 | 25
Read(A); A« A+100 . |
Write(A); e
Read(A); A «— Ax2;
Write(A); 250
Read(B); B < B+100;
Write(B); 105
Read(B); B «<— Bx2;
Write(B); 250
250 | 250

Schedule D

T1 12

Read(A); A < A+100

Write(A);
Read(A); A « Ax2;
Write(A);
Read(B); B <« Bx2;
Write(B);

Read(B); B <+ B+100;
Write(B);

Schedule D

A B
T+ To 20 | 25
Read(A); A < A+100
Write(A); 125
Read(A); A « Ax2;
Write(A); 250
Read(B); B « Bx2;
Write(B); 50
Read(B); B <~ B+100;
Write(B); 199
250 150

Schedule E “%iiinnonts

T1 T2’

Read(A); A < A+100

Write(A);
Read(A); A « A+50;
Write(A);
Read(B); B « B+50;
Write(B);

Read(B); B <+ B+100;
Write(B);

S Schedule D
Schedule E | "G uinnew >

A B
T+ To’ 20 | 25
Read(A); A < A+100
Write(A); 125
Read(A); A <« A+50;
Write(A): 175
Read(B); B « B+50;
Write(B): 5
Read(B); B <~ B+100;
Write(B); 175
175 175

Our Goal

Want schedules that are “good”, regardless of

» Initial Ste_lte and _ We don’t know the logic
» transaction semantics “ in external client apps!

Only look at order of read & write operations
Example:

Sc = rA)W1(A)r(A)W,(A)r(B)w4(B)ra(B)w,(B)

Example:

00000

ro(B)w,(B)
\
ro(A)wa(A)rz2(B)wz(B)
- ~

However, for Sp:

Sp = r(A)W (A (A)Wo(A)r(B)w,o(B)ry(B)w,(B)

N J
Y
‘N L
\/
/\

Another way to view this:

» rq(B) after w,(B) means T, should be after T, in an
equivalent serial schedule (T, — T,)

» I(A) after w4(A) means T, should be after T, in an
equivalent serial schedule (T; > T))

» Can’t have both of these!

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks

» Lock tables and multi-level locking

Optimistic concurrency with validation

Concepts

Transaction: sequence of r,(x), wi(x) actions

Schedule: a chronological order in which all
the transactions’ actions are executed

Conflicting actions: r,(A) w,A) w,(A)

<<

Wo(A) 1(A) Wy(A)

pairs of actions that would change the
result of a read or write if swapped

Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?

Question

What about conflicting, concurrent actions
on same object?

start r,(A) end ry(A)

. .
t t

start w,(A) end w,(A)

time

Assume “atomic actions” that only occur at one

point in time (e.g. implement using locking)

CS 245 29

Definition

Schedules S, S, are conflict equivalent if
S, can be transformed into S, by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations
in S, to obtain S,)

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

Key idea:

» Conflicts “change” result of reads & writes

» Conflict serializable means there exists at
least one serial execution with same effects

How can we compute whether a schedule is

conflict serializable?

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks

» Lock tables and multi-level locking

Optimistic concurrency with validation

Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: T, — T, whenever
» Pi(A), q;(A) are actions in S
» Pi(A) <g q;(A) (occurs earlier in schedule)

» at least one of p;, q; is a write (i.e. p;(A) and
q;(A) are conflicting actions)

Exercise

What is P(S) for

S = w(A) Wy(C) rq(A) wy(B) r1(C) wa(A) ra(A) w,(D)

Is S serializable?

Another Exercise

What is P(S) for

S = W;(A) ra(A) r3(A) wy(A)

Lemma

Sy, S, conflict equivalent = P(S,) = P(S,)

Lemma

Sy, S, conflict equivalent = P(S,) = P(S,)

Proof:

Assume P(S,) = P(S,)
=3 T: T,—> T inS;and not in S,

= S, = ...p(A)... gA)... <” P, 0

S, = ...qi(A)... pi(A)... conflict

.

= 54, S, not conflict equivalent

Note: P(S,) = P(S,) =¥'S,, S, conflict equivalent

Note: P(S,) = P(S,) =¥'S,, S, conflict equivalent

Counter example:
S1 = W4(A) ra(A) wy(B) rq(B)

S, = 1p(A) W4(A) 14(B) wy(B)

Theorem

P(S,) acyclic <= S, conflict serializable

(<) Assume S, is conflict serializable

= 3 S (serial): S, S, conflict equivalent
= P(Sy) = P(S,4) (by previous lemma)

= P(S;) acyclic since P(S,) is acyclic

Theorem

P(S,) acyclic &= S, conflict serializable T4

/N
(=) Assume P(S1) is acyclic To T3
Transform S1 as follows: / \T4/

(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks

» Lock tables and multi-level locking

Optimistic concurrency with validation

How to Enforce Serializable
Schedules?

Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good

How to Enforce Serializable
Schedules?

Option 2: prevent P(S) cycles from occurring

T, To ... T,
N\ o
Scheduler

A Locking Protocol

Two new actions:

lock: Ii(A) <— Transaction i locks object A

unlock: u(A)

T1l Jz

scheduler

]

lock
table

Rule #1: Well-Formed
Transactions

Ti: ... (A ... F(A) ... u(A) ...

Transactions can only operate on locked items

CS 245

Rule #2: Legal Scheduler

Only one transaction can lock item at a time

CS 245

Exercise

Which transactions are well-formed?
Which schedules are legal?

S

11(A) 11(B) r4(A) w4(B) 15(B) u4(A) u4(B)
r,(B) wa(B) us(B) 15(B) r5(B) us(B)

11(A) r1(A) w(B)
W,(B) I3(B) r3(B)

11(A)
ro(B)

So

1(A) u4(B) Ix(B) r(B)
3(B)

(A) uq(A) 11(B) w4(B) u4(B) 1x(B)
2(B) Ux(B) |

u
u

Ss

s 30

Exercise

Which transactions are well-formed?
Which schedules are legal?

S1 = (A 1(B) ry(A w11(A) u(B)
r(B) wa(B) uy(B) 13(B) r3(B) us(B)

Sy = 14(A) ry(A 1(A) U4(B) 15(B) ry(B)
w,(B 3(B) Us(B) u,(B) missing

) u1(A) 141(B) w4(B) u4(B)
15(B) ra(B) wa(B) uy(B) 15(B) r3(B) us(B)

Schedule F

A B
T1 T2 25 25
l1(A;Read |
A<—A+100;Write(A);u1(A) 125
12(A);Read(A)
A—Ax2;Write(A);u2(A) 250
12(B);Read(B)
B—Bx2;Write(B);u2(B) 50
11(B);Read(B)
B—B+100;Write(B);u1(B) 150
250 | 150

Rule #3: 2-Phase Locking (2PL)

Nno unlocks no locks

Transactions must first lock all items they
need, then unlock them

CS 245 51

2-Phase Locking (2PL)

locks
held by
T

» Time

Growing
Phase

Schedule G

11 12

11(A);Read(A)
A<—A+100;Write(A)
11(B);u1(A)

Schedule G

11 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
|2(B) <— delayed

Schedule G

11 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
|2(B) <— delayed
Read(B);B<—B+100
Write(B);u1(B)

Schedule G

11 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) «— delayed
Read(B);B<—B+100
Write(B);u1(B)
12(B);u2(A);Read(B)
B—Bx2;Write(B);u2(B)

Schedule H (T, Ops Reversed)

T1 T2

11(A); Read(A) 12(B); Read(B)

A—A+100; Write(A) | B«—Bx2; Write(B)

11(B) <+ delayed I2(A) «+— delayed
(T2 holds B) (T1 holds A)

Problem: Deadlock between the transactions

CS 245 57

Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions

» The rolled back transaction no longer
appears in our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items T, will need up front!

Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules

Conflict Rules for Lock Ops

L(A), 1(A) contlict

L(A), ui(A) conflict

Note: no conflict <u(A), u(A)>, <l(A), r,(A)>,...

Theorem

Rules #1,2,3 = conflict-serializable schedule
(2PL)

To help in proof:

Definition: Shrink(T;) = SH(T) =
first unlock action of T,

Lemma

T, = T,in P(S) = SH(T)) <g SH(T)

Proof:
T; —> T, means that

S=...pA) ... gA)...; p,qconflict
By rules 1, 2:

S=..pA) ... yA) ... (A) ... q(A) ...

By rule‘3: SH(T) SH(T))
So, SH(T;) <g SH(T))

Theorem: Rules #1,2,3 =
Conflict Serializable Schedule

Proof:
(1) Assume P(S) has cycle
Tio T, >....T,> T,
(2) By lemma: SH(T,) < SH(T,) < ... < SH(T,)
(3) Impossible, so P(S) acyclic

(4) = S is conflict serializable

2PL is a Subset of Conflict
Serializable

Conflict
Serializable

00000

Conflict

Serializable
s

S;: wy(X) wi(X) wy(Y) w,(Y)

S, is conflict serializable: equivalent to T,,T4,T5.

But S, cannot be achieved via 2PL.:

» The lock by T4 for Y must occur after w,(Y), so the
unlock by T, for X must occur after this point (and
before w4(X)). Thus, w;(X) cannot occur under 2PL
where shown in S;.

If You Need More Practice

Are our schedules S and Sy 2PL schedules?

Sci W4(A) wy(A) wy(B) wy(B)

Sp: W1(A) W,(A) wy(B) wy(B)

Optimizing Performance

Beyond this simple 2PL protocol, many ways
to improve performance & concurrency:

» Shared locks

» Multiple granularity

» Inserts, deletes and phantoms

» Other types of C.C. mechanisms

Shared Locks

So far:

S = ..hi(A) r(A) u1(A) ... 1o(A) ra(A) Ux(A) ...

~

Do not conflict

Shared Locks

So far:
S = ...14(A) ri(A) us(A) ... 1x(A) ra(A) ux(A) ...

~

Do not conflict

Instead:
S=... I-S;(A) r{(A) I-S,(A) r5(A) ... us(A) U,(A)

Multiple Lock Modes

Lock actions
I-m.(A): lock A in mode m (m is S or X)
u-m.(A): unlock mode m (mis S or X)

Shorthand:
u(A): unlock whatever modes T, has locked A

Rule 1: Well-Formed
Transactions

T = -S,(A) .. (A ... uy(A) ..
To= XA .. W(A) ... Uy(A) ...

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

CS 245 .

Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 1: Request exclusive lock

Ty = =X, (A) oo 1 (A) . Wy(A) ... U(A) ...

Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write

(Think of this as getting a 2"d lock, or dropping S to get X.)

Rule 2: Legal Scheduler

S=..1-S(A) .. u(A)
<no -X(A)

S = ... -X(A) .. u(A)
r‘10 -X.(A)

A Way to Summarize Rule #2

Lock mode compatibility matrix

New request
A

r A
compat = S X
~
Lock S | true false
already <

held in X | false | false

Rule 3: 2PL Transactions

No change except for upgrades:
() If upgrade gets more locks

(e.g., S — {S, X}) then no change!
(Il) If upgrade releases read lock (e.g., S—X)

can be allowed in growing phase

Rules 1,2,3 = Conf. Serializable
Schedules for S/X Locks

Proof: similar to X locks case

Detail:

I-m(A), I-n,(A) do not conflict if compat(m,n)

I-m;(A), u-n(A) do not conflict if compat(m,n)

Lock Modes Beyond S/X

Examples:
(1) increment lock

(2) update lock

Example 1: Increment Lock

Atomic addition action: IN,(A)
{Read(A); A « A+k; Write(A)}

IN;(A), IN;(A) do not conflict, because addition
IS commutative!

Compatibility Matrix

compat

Lock

already <

held In

New request

A

-

S

X

N

F

F

T
F
F

Update Locks

A common deadlock problem with upgrades:

T1 T2
I-S1(A)

I-S2(A)
I-X1(A)

I-X2(A)

--- Deadlock ---

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

Compatibility Matrix

New request
A

-

compat S | X | U
(S| T |F
Lock
alrcégdy < X F F
held in U

Compatibility Matrix

New request
A

compat S| X | U
S| T| F | T

Lock
a|ready < X F F F
held in i U = = =

Note: asymmetric table!

CS 245

Which Objects Do We Lock?

Table A Tuple A Disk
Tuple B block
Table B Tuple C A
Disk
block
B

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

If we lock large objects (e.g., relations)
— Need few locks
— Low concurrency

If we lock small objects (e.g., tuples, fields)
— Need more locks
— More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

Stall 1 Stall 2 | Stall 3 Stall 4

restroom

Example

Example

00000

Example

CCCCC

00000

Example 2
(1 @

CCCCC

, T2(IX)

Example 3
T1(1S), T2(S) , T3(IX)?

CCCCC

Multiple Granularity Locks

compat Requester
IS IX S SIX X
1S
Holder IX
S
SIX
X

Multiple Granularity Locks

compat Requester
S IX S SIX X

S| T | T |T|T]|F

Holder IXIT| T|F|F|F
S TIEITIEIF
SIX|T|F|F|F|F
YIFIF|F|IFI|F

