
Concurrency Control

Instructor: Matei Zaharia

The Problem

T1 T2 … Tn

DB
(consistency
constraints)

Different transactions may need to access data
items at the same time, violating constraints

CS 245 2

Example

Constraint: all interns have equal salaries

T1: add $1000 to each intern’s salary

T2: double each intern’s salary

Salaries: 2000 2000 2000 2000 2000
3000 3000 400040003000

600060006000 5000 5000 😱
CS 245 3

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(“serial schedule”), but this has problems
» Too slow! Especially with external clients & IO

CS 245 4

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is the
same as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, …

CS 245 5

Fundamental Tradeoff

Weaker isolation
level

Stronger isolation
level

Easier to reason about
(can’t see others’ changes)

See others’ changes,
but more concurrency

CS 245 6

Interesting Fact

SQL standard defines serializability as “same
as a serial schedule”, but then also lists 3
types of “anomalies” to define levels:

Isolation Level Dirty Reads Unrepeatable
Reads

Phantom Reads

Read uncommitted Y Y Y
Read committed N Y Y
Repeatable read N N Y
Serializable N N N

CS 245 7

Interesting Fact

There are isolation levels other than
serializability that meet the last definition!
» I.e. don’t exhibit those 3 anomalies

Virtually no commercial DBs do serializability
by default, and some can’t do it at all

Time to call the lawyers?

CS 245 8

In This Course

We’ll first cover how to provide serializability,
then discuss other levels
» Many ideas apply to other isolation levels

CS 245 9

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 10

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 11

Example

T1: Read(A) T2: Read(A)
A ¬ A+100 A ¬ A´2
Write(A) Write(A)
Read(B) Read(B)
B ¬ B+100 B ¬ B´2
Write(B) Write(B)

Constraint: A=B

CS 245 12

Schedule A
T1 T2

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

CS 245 13

Schedule A
A B
25 25

125

125

250

250
250 250

T1 T2

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

CS 245 14

Schedule B
T1 T2

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

CS 245 15

Schedule B
T1 T2

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

A B
25 25

50

50

150

150
150 150

CS 245 16

Schedule C
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

CS 245 17

Schedule C
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

A B
25 25

125

250

125

250
250 250

CS 245 18

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

CS 245 19

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

CS 245 20

Schedule E
T1 T2’
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A+50;
Write(A);
Read(B); B ¬ B+50;
Write(B);

Read(B); B ¬ B+100;
Write(B);

Same as Schedule D
but with new T2’

CS 245 21

Schedule E
T1 T2’
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A+50;
Write(A);
Read(B); B ¬ B+50;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

175

75

175
175 175

Same as Schedule D
but with new T2’

CS 245 22

Want schedules that are “good”, regardless of
» initial state and
» transaction semantics

Only look at order of read & write operations

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Our Goal

We don’t know the logic
in external client apps!

CS 245 23

SC’ = r1(A)w1(A)r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 24

However, for SD:

SD = r1(A)w1(A)r2(A)w2(A)r2(B)w2(B)r1(B)w1(B)

Another way to view this:
» r1(B) after w2(B) means T1 should be after T2 in an

equivalent serial schedule (T2 ® T1)
» r2(A) after w1(A) means T2 should be after T1 in an

equivalent serial schedule (T1 ® T2)
» Can’t have both of these!

CS 245 25

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 26

Transaction: sequence of ri(x), wi(x) actions

Schedule: a chronological order in which all
the transactions’ actions are executed

Conflicting actions: r1(A) w1(A) w1(A)

w2(A) r2(A) w2(A)

pairs of actions that would change the
result of a read or write if swapped

CS 245 27

Concepts

Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?

S = … r1(x) … w2(b) …

CS 245 28

Question

What about conflicting, concurrent actions
on same object?

start r1(A) end r1(A)

start w2(A) end w2(A)

CS 245 29

time

Assume “atomic actions” that only occur at one
point in time (e.g. implement using locking)

Definition

Schedules S1, S2 are conflict equivalent if
S1 can be transformed into S2 by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations
in S1 to obtain S2)

CS 245 30

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

CS 245 31

Key idea:
» Conflicts “change” result of reads & writes
» Conflict serializable means there exists at

least one serial execution with same effects

How can we compute whether a schedule is
conflict serializable?

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 32

Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: Ti ® Tj whenever
» pi(A), qj(A) are actions in S
» pi(A) <S qj(A) (occurs earlier in schedule)
» at least one of pi, qj is a write (i.e. pi(A) and

qj(A) are conflicting actions)

CS 245 33

Exercise

What is P(S) for

S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

Is S serializable?

CS 245 34

Another Exercise

What is P(S) for

S = w1(A) r2(A) r3(A) w4(A)

CS 245 35

Lemma

S1, S2 conflict equivalent Þ P(S1) = P(S2)

CS 245 36

S1, S2 conflict equivalent Þ P(S1) = P(S2)

Proof:
Assume P(S1) ¹ P(S2)
Þ $ Ti: Ti ® Tj in S1 and not in S2

Þ S1 = …pi(A)... qj(A)… pi, qj

S2 = …qj(A)… pi(A)... conflict

Þ S1, S2 not conflict equivalent
CS 245 37

Lemma

Note: P(S1) = P(S2) Þ S1, S2 conflict equivalent

CS 245 38

Note: P(S1) = P(S2) Þ S1, S2 conflict equivalent

Counter example:

S1 = w1(A) r2(A) w2(B) r1(B)

S2 = r2(A) w1(A) r1(B) w2(B)

CS 245 39

P(S1) acyclic ÜÞ S1 conflict serializable

(Ü) Assume S1 is conflict serializable
Þ $ Ss (serial): Ss, S1 conflict equivalent
Þ P(Ss) = P(S1) (by previous lemma)
Þ P(S1) acyclic since P(Ss) is acyclic

CS 245 40

Theorem

(Þ) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!
CS 245 41

P(S1) acyclic ÜÞ S1 conflict serializable

Theorem
T1

T2 T3

T4

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 42

How to Enforce Serializable
Schedules?
Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good

CS 245 43

How to Enforce Serializable
Schedules?
Option 2: prevent P(S) cycles from occurring

T1 T2 ….. Tn

CS 245 44

Scheduler

DB

A Locking Protocol

Two new actions:

lock: li(A)

unlock: ui(A)

CS 245 45

scheduler

T1 T2

lock
table

Transaction i locks object A

Rule #1: Well-Formed
Transactions

Ti: … li(A) … ri(A) … ui(A) ...

CS 245 46

Transactions can only operate on locked items

Rule #2: Legal Scheduler

S = …….. li(A) ………... ui(A) ……...

CS 245 47

no lj(A)

Only one transaction can lock item at a time

Exercise
Which transactions are well-formed?
Which schedules are legal?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B) l2(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 48

Exercise
Which transactions are well-formed?
Which schedules are legal?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B)
l2(B) r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 49

u2(B) missing

T1 T2
l1(A);Read(A)
A←A+100;Write(A);u1(A)

l2(A);Read(A)
A←A´2;Write(A);u2(A)
l2(B);Read(B)
B←B´2;Write(B);u2(B)

l1(B);Read(B)
B←B+100;Write(B);u1(B)

Schedule F

CS 245 50

A B
25 25

125

250

50

150
250 150

Rule #3: 2-Phase Locking (2PL)

Ti = ……. li(A) ………... ui(A) ……...

CS 245 51

no unlocks no locks

Transactions must first lock all items they
need, then unlock them

locks
held by
Ti

Time

Growing Shrinking
Phase Phase

CS 245 52

2-Phase Locking (2PL)

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

CS 245 53

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B) delayed

CS 245 54

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

delayed

CS 245 55

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A´2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

l2(B);u2(A);Read(B)
B←B´2;Write(B);u2(B)

delayed

CS 245 56

Schedule G

T1 T2
l1(A); Read(A) l2(B); Read(B)
A←A+100; Write(A) B←B´2; Write(B)
l1(B) l2(A)

CS 245 57

Schedule H (T2 Ops Reversed)

delayed
(T1 holds A)

delayed
(T2 holds B)

Problem: Deadlock between the transactions

Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions
» The rolled back transaction no longer

appears in our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items Ti will need up front!

CS 245 58

Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules

CS 245 59

Conflict Rules for Lock Ops

li(A), lj(A) conflict

li(A), uj(A) conflict

Note: no conflict <ui(A), uj(A)>, <li(A), rj(A)>,...

CS 245 60

Theorem

Rules #1,2,3 Þ conflict-serializable schedule
(2PL)

CS 245 61

To help in proof:
Definition: Shrink(Ti) = SH(Ti) =

first unlock action of Ti

Lemma
Ti ® Tj in P(S) Þ SH(Ti) <S SH(Tj)

CS 245 62

Proof:
Ti ® Tj means that

S = … pi(A) … qj(A) …; p, q conflict
By rules 1, 2:

S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <S SH(Tj)

Theorem: Rules #1,2,3 Þ
Conflict Serializable Schedule
Proof:

(1) Assume P(S) has cycle

T1 ® T2 ®…. Tn ® T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) Þ S is conflict serializable
CS 245 63

2PL is a Subset of Conflict
Serializable

CS 245 64

2PL

Conflict
Serializable

S1: w1(X) w3(X) w2(Y) w1(Y)

CS 245 65

2PL

Conflict
Serializable

S1

S1 is conflict serializable: equivalent to T2,T1,T3.

But S1 cannot be achieved via 2PL:
» The lock by T1 for Y must occur after w2(Y), so the

unlock by T1 for X must occur after this point (and
before w1(X)). Thus, w3(X) cannot occur under 2PL
where shown in S1.

SC: w1(A) w2(A) w1(B) w2(B)

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

CS 245 66

If You Need More Practice

Optimizing Performance

Beyond this simple 2PL protocol, many ways
to improve performance & concurrency:
» Shared locks
» Multiple granularity
» Inserts, deletes and phantoms
» Other types of C.C. mechanisms

CS 245 68

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

CS 245 69

Shared Locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... l-S1(A) r1(A) l-S2(A) r2(A) …. u1(A) u2(A)

CS 245 70

Shared Locks

Multiple Lock Modes

Lock actions
l-mi(A): lock A in mode m (m is S or X)
u-mi(A): unlock mode m (m is S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

CS 245 71

Ti =... l-S1(A) … r1(A) … u1(A) …

Ti =... l-X1(A) … w1(A) … u1(A) …

CS 245 72

Rule 1: Well-Formed
Transactions

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 1: Request exclusive lock

T1 = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 245 73

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write

T1 = ...l-S1(A)…r1(A)...l-X1(A)…w1(A)...u1(A)…

CS 245 74

(Think of this as getting a 2nd lock, or dropping S to get X.)

Rule 2: Legal Scheduler

S = ... l-Si(A) … … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

no l-Xj(A)
no l-Sj(A)

CS 245 75

A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
S true false
X false false

CS 245 76

Lock
already
held in

New request

Rule 3: 2PL Transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S ® {S, X}) then no change!

(II) If upgrade releases read lock (e.g., S®X)

can be allowed in growing phase

CS 245 77

Proof: similar to X locks case

Detail:

l-mi(A), l-nj(A) do not conflict if compat(m,n)

l-mi(A), u-nj(A) do not conflict if compat(m,n)

CS 245 78

Rules 1,2,3 Þ Conf. Serializable
Schedules for S/X Locks

Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

CS 245 79

Example 1: Increment Lock

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition
is commutative!

CS 245 80

Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T

CS 245 81

Lock
already
held in

New request

A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---

CS 245 82

Update Locks

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

CS 245 83

compat S X U
S T F
X F F
U

Lock
already
held in

CS 245 84

Compatibility Matrix

New request

compat S X U
S T F T
X F F F
U F F F

Lock
already
held in

CS 245 85

Compatibility Matrix

New request

Note: asymmetric table!

Which Objects Do We Lock?

?

CS 245 86

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 87

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 88

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

CS 245 89

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

Example

CS 245 90

R1

t1
t2 t3

t4

Example

CS 245 91

R1

t1
t2 t3

t4

T1(IS)

T1(S)

Example

CS 245 92

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)

Example 2

CS 245 93

R1

t1
t2 t3

t4

T1(IS)

T1(S)

Example 2

CS 245 94

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Example 3

CS 245 95

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S) , T3(IX)?

compat Requester
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 96

Multiple Granularity Locks

compat Requester
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 97

Multiple Granularity Locks

