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Recap: Schedules

Sequence of actions from transactions, e.g.:

r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Serializable schedule: result is the same as 
some serial schedule
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Recap: 2-Phase Locking (2PL)
Schedules that satisfy three rules: 

1. Well-formed transactions (lock items before use)
2. Legal scheduler
3. 2-phase locking pattern



2PL Schedules are a Subset 
of Serializable
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2PL

Conflict
Serializable

Serializable



How Is 2PL Implemented In 
Practice?
Every system is different, but we’ll show one 
simplified way
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Sample Locking System

1. Don’t ask transactions to request/release 
locks: just get a lock for each action they do

2. Hold all locks until a transaction commits
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#
locks

time



Sample Locking System

Under the hood: lock manager that keeps 
track of which objects are locked
» E.g., hash table

Also need ways to block transactions until 
locks are available, and to find deadlocks
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Optimizing Performance

Beyond the base 2PL protocol, many ways to 
improve performance & concurrency:
» Shared locks
» Multiple granularity
» Inserts, deletes and phantoms
» Other types of C.C. mechanisms
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So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict
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Shared Locks



So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... l-S1(A) r1(A) l-S2(A) r2(A) …. u1(A) u2(A) 
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Shared Locks



Multiple Lock Modes

Lock actions
l-mi(A): lock A in mode m (m is S or X)
u-mi(A): unlock mode m (m is S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A
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Ti =... l-S1(A) … r1(A) …  u1(A) …

Ti =... l-X1(A) … w1(A) …  u1(A) …
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Rule 1: Well-Formed 
Transactions

Transactions must acquire the right lock type 
for their actions (S for read only, X for r/w).



Rule 1: Well-Formed 
Transactions
What about transactions that read and write 
same object?

Option 1: Request exclusive lock

T1 = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …
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Rule 1: Well-Formed 
Transactions
What about transactions that read and write 
same object?

Option 2: Upgrade lock to X on write

T1 = ...l-S1(A)…r1(A)...l-X1(A)…w1(A)...u1(A)…
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(Think of this as replacing S lock with X lock.)



Rule 2: Legal Scheduler

S = ... l-Si(A) …    … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) …    … ui(A) …

no l-Xj(A)
no l-Sj(A)
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A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
S    true false
X false false
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already
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Rule 3: 2PL Transactions

No change except for upgrades: allow 
upgrades from S to X only in growing phase
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Proof: similar to X locks case

Detail:

l-mi(A), l-nj(A) do not conflict if compat(m,n)

l-mi(A), u-nj(A) do not conflict if compat(m,n)
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Rules 1,2,3 Þ Conf. Serializable 
Schedules for S/X Locks



Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

(3) hierarchical locks (paper!)
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Increment Locks

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition 
is commutative!
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Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T
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Lock 
already
held in

New request



A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---
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Update Locks



Solution

If Ti wants to read A and knows it may later 
want to write A, it requests an update lock
(not shared lock)
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compat S X U
S T F
X F F
U   

Lock 
already
held in
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Compatibility Matrix

New request



compat S X U
S T F T
X F F F
U F F F

Lock 
already
held in
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Compatibility Matrix

New request

Note: asymmetric table!



Which Objects Do We Lock?

?
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Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk 
block

A

Disk 
block

B

...

DB DB DB



Which Objects Do We Lock?

Locking works in any case, but should we 
choose small or large objects?

CS 245 28



Which Objects Do We Lock?

Locking works in any case, but should we 
choose small or large objects?

CS 245 29

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency



We Can Have It Both Ways!

Ask any janitor to give you the solution...
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hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom



Example
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R1

t1
t2 t3

t4



Example
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R1

t1
t2 t3

t4

T1(IS)

T1(S)



Example
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R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)



Example 2
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R1

t1
t2 t3

t4

T1(IS)

T1(S)



Example 2
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R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(X)



Example 3
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R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S) , T3(IX)?



compat Requester
IS   IX   S   SIX  X

IS
Holder       IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 37

Multiple Granularity Locks



Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none
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Rules Within A Transaction



Multi-Granularity 2PL Rules
1. Follow multi-granularity compat function
2. Lock root of tree first, any mode
3. Node Q can be locked by Ti in S or IS only if 

parent(Q) locked by Ti in IX or IS
4. Node Q can be locked by Ti in X, SIX, IX only if 

parent(Q) locked by Ti in IX, SIX
5. Ti is two-phase
6. Ti can unlock node Q only if none of Q’s      

children are locked by Ti
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Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?
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R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)



Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?

CS 245 41

R1

t1
t2 t3

t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)



Exercise:
Can T2 access object f3.1 in X mode? What 
locks will T2 get?
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R1

t1
t2 t3

t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)



Exercise:
Can T2 access object f2.2 in S mode? What 
locks will T2 get?
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R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)



Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?
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R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)



Insert + Delete Operations

Insert
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A

Z
a

...



Changes to Locking Rules:

1. Need exclusive lock on A to delete A

2. When Ti inserts an object A, Ti receives an 
exclusive lock on A
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Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id name ….
o1 55 Smith
o2 75 Jones
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T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
l-S1(o1) l-S2(o1)
l-S1(o2) l-S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...
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Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode
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R1

t1 t2 t3



Back to Example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2
l-X1(R)

Check constraint
Insert<12,Mary>
U1(R)

l-X2(R)
Check constraint
Oops! id=12 already in R!

l-X2(R) delayed
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Instead of Locking All of R, 
Can Lock Ranges of Keys

Example:
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...

...

...

R

Index
100<id≤200

Index
0<id≤100

id=2 id=5 id=107 id=109



Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
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Validation Overview
Transactions have 3 phases:
1. Read
» Read all DB values needed
» Write to temporary storage
» No locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» If validate OK, write to DB
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Key Idea

Make validation atomic

If the validation order is T1, T2, T3, …, then 
resulting schedule will be conflict equivalent 
to Ss = T1, T2, T3, …
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Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are fully done

VAL = transactions that have successfully
finished phase 2 (validation)
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Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}
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time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅



T2
finish

phase 3

Example That Validation Must Allow:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}
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time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅



Another Thing Validation Must Prevent:

RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2
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RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD:  w3(D)  w2(D)
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Another Thing Validation Must Prevent:



RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2
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Another Thing Validation Must Allow:



Validation Rules for Tj:

when Tj starts phase 1: 
ignore(Tj) ¬ FIN

at Tj Validation:
if Check(Tj) then 

VAL ¬ VAL ∪ {Tj}
do write phase
FIN ¬ FIN ∪ {Tj}
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Check(Tj)

for Ti Î VAL – ignore(Tj) do
if (WS(Ti) ∩ RS(Tj) ≠ ∅ or

(Ti Ï FIN and WS(Ti) ∩ WS(Tj) ≠ ∅))
then return false

return true
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Exercise

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish
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Is Validation = 2PL?
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2PL
Val

2PL
Val

2PL
Val

Val
2PL



S: w2(y) w1(x) w2(x)

Achievable with 2PL?

Achievable with validation? 
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S: w2(y) w1(x) w2(x)

S can be achieved with 2PL:
l2(y) w2 (y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(x) u2(y)

S cannot be achieved by validation:
The validation point of T2, val2, must occur before w2(y) 
since transactions do not write to the database until after 
validation. Because of the conflict on x, val1 < val2, so we 
must have something like:

S:  val1 val2 w2(y)  w1(x)  w2(x)

With the validation protocol, the writes of T2 should not 
start until T1 is all done with writes, which is not the case. 
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Validation Subset of 2PL?
Possible proof (Check!):
» Let S be validation schedule
» For each T in S insert lock/unlocks, get S’:
• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

» Clearly transactions well-formed and 2PL
» Must show S’ is legal (next slide)
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Say S’ not legal (due to w-r conflict):
S’: ... l1(x)     w2(x)  r1(x)   val1 u1(x) ...
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) Ç RS(T1) ¹ Æ
» contradiction!

Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x)     w2(x)  w1(x)   u1(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate:

T2 Ï FIN  AND WS(T1) Ç WS(T2) ¹ Æ)
» contradiction!
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Validation Subset of 2PL?



Is Validation = 2PL?
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2PL
Val

2PL
Val

2PL
Val

Val
2PL



When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints

CS 245 70



Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
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Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…
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Non-persistent commit (bad!)
avoided by
recoverable
schedules



Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…
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Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules



Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable

CS 245 75



To Resolve This

Need to mark the “final” decision for each 
transaction in our schedules:
» Commit decision: system guarantees 

transaction will or has completed
» Abort decision: system guarantees 

transaction will or has been rolled back
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Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 77



...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example
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Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2.  aj <S r(A)        (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A) 
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Definition

Schedule S is recoverable if 

whenever Tj ÞS Ti and  j ¹ i and ci Î S

then cj <S ci
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Notes

In all transactions, reads and writes must 
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction
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How to Achieve Recoverable 
Schedules?
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With 2PL, Hold Write Locks 
Until Commit (“Strict 2PL”)

Tj Ti

Wj(A)

Cj

uj(A)
ri(A)
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...
...

...
...

...
...



With Validation, No Change!

Each transaction’s validation point is its 
commit point, and only write after
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Definitions
S is recoverable if each transaction commits 
only after all transactions from which it read 
have committed

S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions

S is strict if each transaction may read and 
write only items previously written by 
committed transactions (≡ strict 2PL)
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Relationship of Recoverable, 
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial
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Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1  r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2
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Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based 
on the order of commit points
» Only read/write from previously committed 

transactions
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Recoverability & Serializability

CS 245 89



CS 245

Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability

90



Weaker Isolation Levels

Dirty reads: Let transactions read values 
written by other uncommitted transactions
» Equivalent to having long-duration write locks, 

but no read locks

Read committed: Can only read values from 
committed transactions, but they may change
» Equivalent to having long-duration write locks 

(X) and short-duration read locks (S)
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Weaker Isolation Levels

Repeatable reads: Can only read values from 
committed transactions, and each value will 
be the same if read again
» Equivalent to having long-duration read & 

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Still has some anomalies! Example?
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?
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