
Concurrency Control

Instructor: Matei Zaharia



Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
CS 245 2



Recap: Schedules

Sequence of actions from transactions, e.g.:

r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Serializable schedule: result is the same as 
some serial schedule

CS 245 3



# locks
held by
Ti

Time
Growing Shrinking

Phase Phase
CS 245 4

Recap: 2-Phase Locking (2PL)
Schedules that satisfy three rules: 

1. Well-formed transactions (lock items before use)
2. Legal scheduler
3. 2-phase locking pattern



2PL Schedules are a Subset 
of Serializable

CS 245 5

2PL

Conflict
Serializable

Serializable



How Is 2PL Implemented In 
Practice?
Every system is different, but we’ll show one 
simplified way

CS 245 6



Sample Locking System

1. Don’t ask transactions to request/release 
locks: just get a lock for each action they do

2. Hold all locks until a transaction commits

CS 245 7

#
locks

time



Sample Locking System

Under the hood: lock manager that keeps 
track of which objects are locked
» E.g., hash table

Also need ways to block transactions until 
locks are available, and to find deadlocks

CS 245 8



Optimizing Performance

Beyond the base 2PL protocol, many ways to 
improve performance & concurrency:
» Shared locks
» Multiple granularity
» Inserts, deletes and phantoms
» Other types of C.C. mechanisms

CS 245 9



So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

CS 245 10

Shared Locks



So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... l-S1(A) r1(A) l-S2(A) r2(A) …. u1(A) u2(A) 

CS 245 11

Shared Locks



Multiple Lock Modes

Lock actions
l-mi(A): lock A in mode m (m is S or X)
u-mi(A): unlock mode m (m is S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

CS 245 12



Ti =... l-S1(A) … r1(A) …  u1(A) …

Ti =... l-X1(A) … w1(A) …  u1(A) …

CS 245 13

Rule 1: Well-Formed 
Transactions

Transactions must acquire the right lock type 
for their actions (S for read only, X for r/w).



Rule 1: Well-Formed 
Transactions
What about transactions that read and write 
same object?

Option 1: Request exclusive lock

T1 = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 245 14



Rule 1: Well-Formed 
Transactions
What about transactions that read and write 
same object?

Option 2: Upgrade lock to X on write

T1 = ...l-S1(A)…r1(A)...l-X1(A)…w1(A)...u1(A)…

CS 245 15

(Think of this as replacing S lock with X lock.)



Rule 2: Legal Scheduler

S = ... l-Si(A) …    … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) …    … ui(A) …

no l-Xj(A)
no l-Sj(A)

CS 245 16



A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
S    true false
X false false

CS 245 17

Lock 
already
held in

New request



Rule 3: 2PL Transactions

No change except for upgrades: allow 
upgrades from S to X only in growing phase

CS 245 18



Proof: similar to X locks case

Detail:

l-mi(A), l-nj(A) do not conflict if compat(m,n)

l-mi(A), u-nj(A) do not conflict if compat(m,n)

CS 245 19

Rules 1,2,3 Þ Conf. Serializable 
Schedules for S/X Locks



Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

(3) hierarchical locks (paper!)

CS 245 20



Increment Locks

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition 
is commutative!

CS 245 21



Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T

CS 245 22

Lock 
already
held in

New request



A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---

CS 245 23

Update Locks



Solution

If Ti wants to read A and knows it may later 
want to write A, it requests an update lock
(not shared lock)

CS 245 24



compat S X U
S T F
X F F
U   

Lock 
already
held in

CS 245 25

Compatibility Matrix

New request



compat S X U
S T F T
X F F F
U F F F

Lock 
already
held in

CS 245 26

Compatibility Matrix

New request

Note: asymmetric table!



Which Objects Do We Lock?

?

CS 245 27

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk 
block

A

Disk 
block

B

...

DB DB DB



Which Objects Do We Lock?

Locking works in any case, but should we 
choose small or large objects?

CS 245 28



Which Objects Do We Lock?

Locking works in any case, but should we 
choose small or large objects?

CS 245 29

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency



We Can Have It Both Ways!

Ask any janitor to give you the solution...

CS 245 30

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom



Example

CS 245 31

R1

t1
t2 t3

t4



Example

CS 245 32

R1

t1
t2 t3

t4

T1(IS)

T1(S)



Example

CS 245 33

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)



Example 2

CS 245 34

R1

t1
t2 t3

t4

T1(IS)

T1(S)



Example 2

CS 245 35

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(X)



Example 3

CS 245 36

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S) , T3(IX)?



compat Requester
IS   IX   S   SIX  X

IS
Holder       IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 37

Multiple Granularity Locks



Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none

CS 245 38

Rules Within A Transaction



Multi-Granularity 2PL Rules
1. Follow multi-granularity compat function
2. Lock root of tree first, any mode
3. Node Q can be locked by Ti in S or IS only if 

parent(Q) locked by Ti in IX or IS
4. Node Q can be locked by Ti in X, SIX, IX only if 

parent(Q) locked by Ti in IX, SIX
5. Ti is two-phase
6. Ti can unlock node Q only if none of Q’s      

children are locked by Ti

CS 245 39



Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?

CS 245 40

R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)



Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?

CS 245 41

R1

t1
t2 t3

t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)



Exercise:
Can T2 access object f3.1 in X mode? What 
locks will T2 get?

CS 245 42

R1

t1
t2 t3

t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)



Exercise:
Can T2 access object f2.2 in S mode? What 
locks will T2 get?

CS 245 43

R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)



Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?

CS 245 44

R1

t1
t2 t3

t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)



Insert + Delete Operations

Insert

CS 245 45

A

Z
a

...



Changes to Locking Rules:

1. Need exclusive lock on A to delete A

2. When Ti inserts an object A, Ti receives an 
exclusive lock on A

CS 245 46



Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id name ….
o1 55 Smith
o2 75 Jones

CS 245 47



T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
l-S1(o1) l-S2(o1)
l-S1(o2) l-S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...

CS 245 48



Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode

CS 245 49

R1

t1 t2 t3



Back to Example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2
l-X1(R)

Check constraint
Insert<12,Mary>
U1(R)

l-X2(R)
Check constraint
Oops! id=12 already in R!

l-X2(R) delayed

CS 245 50



Instead of Locking All of R, 
Can Lock Ranges of Keys

Example:

CS 245 51

...

...

...

R

Index
100<id≤200

Index
0<id≤100

id=2 id=5 id=107 id=109



Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
CS 245 52



Validation Overview
Transactions have 3 phases:
1. Read
» Read all DB values needed
» Write to temporary storage
» No locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» If validate OK, write to DB

CS 245 53



Key Idea

Make validation atomic

If the validation order is T1, T2, T3, …, then 
resulting schedule will be conflict equivalent 
to Ss = T1, T2, T3, …

CS 245 54



Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are fully done

VAL = transactions that have successfully
finished phase 2 (validation)

CS 245 55



Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}

CS 245 56

time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅



T2
finish

phase 3

Example That Validation Must Allow:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}

CS 245 57

time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅



Another Thing Validation Must Prevent:

RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 58



RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD:  w3(D)  w2(D)

CS 245 59

Another Thing Validation Must Prevent:



RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 60

Another Thing Validation Must Allow:



Validation Rules for Tj:

when Tj starts phase 1: 
ignore(Tj) ¬ FIN

at Tj Validation:
if Check(Tj) then 

VAL ¬ VAL ∪ {Tj}
do write phase
FIN ¬ FIN ∪ {Tj}

CS 245 61



Check(Tj)

for Ti Î VAL – ignore(Tj) do
if (WS(Ti) ∩ RS(Tj) ≠ ∅ or

(Ti Ï FIN and WS(Ti) ∩ WS(Tj) ≠ ∅))
then return false

return true

CS 245 62



Exercise

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CS 245 63



Is Validation = 2PL?

CS 245 64

2PL
Val

2PL
Val

2PL
Val

Val
2PL



S: w2(y) w1(x) w2(x)

Achievable with 2PL?

Achievable with validation? 

CS 245 65



S: w2(y) w1(x) w2(x)

S can be achieved with 2PL:
l2(y) w2 (y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(x) u2(y)

S cannot be achieved by validation:
The validation point of T2, val2, must occur before w2(y) 
since transactions do not write to the database until after 
validation. Because of the conflict on x, val1 < val2, so we 
must have something like:

S:  val1 val2 w2(y)  w1(x)  w2(x)

With the validation protocol, the writes of T2 should not 
start until T1 is all done with writes, which is not the case. 

CS 245 66



Validation Subset of 2PL?
Possible proof (Check!):
» Let S be validation schedule
» For each T in S insert lock/unlocks, get S’:
• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

» Clearly transactions well-formed and 2PL
» Must show S’ is legal (next slide)

CS 245 67



Say S’ not legal (due to w-r conflict):
S’: ... l1(x)     w2(x)  r1(x)   val1 u1(x) ...
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) Ç RS(T1) ¹ Æ
» contradiction!

Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x)     w2(x)  w1(x)   u1(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate:

T2 Ï FIN  AND WS(T1) Ç WS(T2) ¹ Æ)
» contradiction!

CS 245 68

Validation Subset of 2PL?



Is Validation = 2PL?

CS 245 69

2PL
Val

2PL
Val

2PL
Val

Val
2PL



When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints

CS 245 70



Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
CS 245 72



Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…

CS 245 73

Non-persistent commit (bad!)
avoided by
recoverable
schedules



Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…

CS 245 74

Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules



Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable

CS 245 75



To Resolve This

Need to mark the “final” decision for each 
transaction in our schedules:
» Commit decision: system guarantees 

transaction will or has completed
» Abort decision: system guarantees 

transaction will or has been rolled back

CS 245 76



Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 77



...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example

CS 245 78



Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2.  aj <S r(A)        (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A) 

CS 245 79



Definition

Schedule S is recoverable if 

whenever Tj ÞS Ti and  j ¹ i and ci Î S

then cj <S ci

CS 245 80



Notes

In all transactions, reads and writes must 
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction

CS 245 81



How to Achieve Recoverable 
Schedules?

CS 245 82



With 2PL, Hold Write Locks 
Until Commit (“Strict 2PL”)

Tj Ti

Wj(A)

Cj

uj(A)
ri(A)

CS 245 83

...
...

...
...

...
...



With Validation, No Change!

Each transaction’s validation point is its 
commit point, and only write after

CS 245 84



Definitions
S is recoverable if each transaction commits 
only after all transactions from which it read 
have committed

S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions

S is strict if each transaction may read and 
write only items previously written by 
committed transactions (≡ strict 2PL)
CS 245 85



Relationship of Recoverable, 
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial

CS 245 86



Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1  r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2

CS 245 87



Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based 
on the order of commit points
» Only read/write from previously committed 

transactions

CS 245 88



Recoverability & Serializability

CS 245 89



CS 245

Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability

90



Weaker Isolation Levels

Dirty reads: Let transactions read values 
written by other uncommitted transactions
» Equivalent to having long-duration write locks, 

but no read locks

Read committed: Can only read values from 
committed transactions, but they may change
» Equivalent to having long-duration write locks 

(X) and short-duration read locks (S)

CS 245 91



Weaker Isolation Levels

Repeatable reads: Can only read values from 
committed transactions, and each value will 
be the same if read again
» Equivalent to having long-duration read & 

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!

CS 245 92



Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Still has some anomalies! Example?

CS 245 93



Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?

CS 245 94


