Concurrency Control 3

Instructor: Mateil Zaharia

Outline

Concurrency control + recovery

Beyond serializability

Concurrency Control & Recovery

Example: T, T,
w;(A) E
r(A)
Commit T,
Abort T,

avoided by

Non-persistent commit (bad!) recoverable
schedules

CS 245 3

Concurrency Control & Recovery

Example: T, T;
wi(A) :
. ri(A)
w;(B)
Abort T,
[Commit T}]
avoided by
_ avoids-cascading
Cascading rollback (bad!) -rollback (ACR)

Cs 245 schedules ,

Core Problem

Schedule is conflict serializable

Tj _’Ti

But not recoverable

To Resolve This

Need to mark the “final” decision for each
transaction in our schedules:
» Commit decision: system guarantees
transaction will or has completed

» Abort decision: system guarantees
transaction will or has been rolled back

Model This as 2 New Actions:

c; = transaction T, commits

a; = transaction T, aborts

Back to Example

C; <— can we commit here?

Definition
T, reads from T,in S (T, =g T) if:
1. wi(A) <5 1i(A)
2. & %S r(A) (§/S does not precede)

3. If wi(A) <s Wi (A) <s (A) then a, <g ,(A)

Definition

Schedule S is recoverable if

whenever T, =g T; and j#iandc e S

then ¢; <5 ¢

Notes

In all transactions, reads and writes must
precede commits or aborts

& Ifc e T, thenr(A) <c, w,(A) <C,
< Ifa €T, thenr(A) <a, w(A) <a

Also, just one of ¢;, a, per transaction

How to Achieve Recoverable
Schedules?

With 2PL, Hold Write Locks
Until Commit (“Strict 2PL”)

With Validation, No Change!

Each transaction’s validation point is its
commit point, and only write after

Definitions

S is recoverable if each tx commits only after
all txs from which it read have committed

S avoids cascading rollback if each tx may
read only values written by committed txs

S is strict if each tx may read and write only

items previously written by committed txs
(= strict 2PL)

Relationship of Recoverable,
ACR & Strict Schedules

Recoverable

ACR

Strict

Serial

00000

Examples

Recoverable:
w4(A) w1(B) wa(A) rx(B) ¢4

Avoids Cascading Rollback:
w4(A) w(B) w,(A) ¢4 ry(B) C,

Strict:
w4(A) wy(B) c1 wy(A) ry(B) ¢,

Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based
on the order of commit points

» Only read/write from previously committed
transactions

Recoverability & Serializability

Serializable
Strict
ACR
Recoverable

Outline

Concurrency control + recovery

Beyond serializability

Weaker Isolation Levels

Dirty reads: Let transactions read values
written by other uncommitted transactions

» EqQuivalent to having long-duration write locks,
but no read locks

Read committed: Can only read values from
committed transactions, but they may change

» EqQuivalent to having long-duration write locks
(X) and short-duration read locks (S)

Weaker Isolation Levels

Repeatable reads: Can only read values from
committed transactions, and each value will
be the same if read again

» EQuivalent to having long-duration read &
write locks (X/S) but not table locks for insert

Remaining problem: phantoms!

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)

» Often implemented with multi-version
concurrency control (MVCC)

Still has some anomalies! Example?

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)

» Often implemented with multi-version
concurrency control (MVCC)

Write skew anomaly: txs write different values
» Constraint: A+B >0
» T1: read A, B; if A+B = 1, subtract 1 from A
» To: read A, B; if A+B = 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?

Interesting Fact

Oracle calls its snapshot isolation level
“serializable”, and doesn’t have the real thing!

Distributed Databases

Instructor: Mateil Zaharia

Why Distribute Our DB?

Store the same data item on multiple nodes to
survive node failures (replication)

Divide data items & work across nodes to
increase scale, performance (partitioning)

Related reasons:
» Maintenance without downtime
» Elastic resource use (don’t pay when unused)

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

Replication

General problems:
» How to tolerate server failures?
» How to tolerate network failures?

The Eight Fallacies of
Distributed Computing

Peter Deutsch

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the
long run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous
For more details, read the article by Arnon Rotem-Gal-Oz

Replication

Store each data item on multiple nodes!

Question: how to read/write to them?

Primary-Backup

Elect one node “primary”
Store other copies on “backup”

Send requests to primary, which then
forwards operations or logs to backups

Backup coordination is either:
» Synchronous (write to backups before acking)
» Asynchronous (backups slightly stale)

Quorum Replication

Read and write to intersecting sets of
servers; no one “primary”

Common: majority quorum
» More exotic ones exist, like grid quorums

Surprise: primary-backup

: C1: Write
IS a quorum too!

C2: Read

What If We Don’t Have
Intersection?

What If We Don’t Have
Intersection?

Alternative: “eventual consistency”

» If writes stop, eventually all replicas will
contain the same data

» Basic idea: asynchronously broadcast all
writes to all replicas

When is this acceptable?

How Many Replicas?

In general, to survive F fail-stop failures, we
need F+1 replicas

Question: what if replicas fail arbitrarily?
Adversarially?

What To Do During Failures?

Cannot contact primary?

What To Do During Failures?

Cannot contact primary?
» |Is the primary failed?
» Or can we simply not contact it?

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

Solution to Failures

Traditional DB: page the DBA

Distributed computing: use consensus
» Several algorithms: Paxos, Raft

» Today: many implementations
* Apache Zookeeper, etcd, Consul
» |[dea: keep a reliable, distributed shared
record of who is “primary”

Consensus in a Nutshell

Goal: distributed agreement
» On one value or on a log of events

Participants broadcast votes [for each event]

» [f a majority of notes ever accept a vote v,
then they will eventually choose v

» In the event of failures, retry that round
» Randomization greatly helps!

Take CS 244B for more details

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

Consensus can provide an answer!
» Although we may need to stall...
» (More on that later)

Replication Summary

Store each data item on multiple nodes!

Question: how to read/write to them?
» Answers: primary-backup, quorums

» Use consensus to agree on operations or on
system configuration

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

Partitioning

General problem:
» Databases are big!

» What if we don’t want to store the whole
database on each server?

Partitioning Basics

Split database into chunks called “partitions”
» Typically partition by row
» Can also partition by column (rare)

Place one or more partitions per server

Partitioning Strategies

Hash keys to servers
» Random assignment

Partition keys by range
» Keys stored contiguously

What if servers fail (or we add servers)?
» Rebalance partitions (use consensus!)

Pros/cons of hash vs range partitioning?

CS 245 48

What About Distributed
Transactions?

Replication:
» Must make sure replicas stay up to date

» Need to reliably replicate the commit log!
(use consensus or primary/backup)

Partitioning:
» Must make sure all partitions commit/abort
» Need cross-partition concurrency control!

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

So, What’s Hard?

So, What’s Hard?

All the problems of consensus...

...plus, if any node votes to abort, all must
decide to abort

» In consensus, simply need agreement on
“some” value

Two-Phase Commit

Canonical protocol for atomic commitment
(developed 1976-1978)

Basis for most fancier protocols
Widely used in practice

Use a transaction coordinator
» Usually client — not always!

Two Phase Commit (2PC)

1. Transaction coordinator sends prepare
message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

Informal Example

Matel

Alice

Confirmed

Pizza tonight?
Sure

<
<

CS 245

PizzaSpot

56

Case 1: Commit

Coordinator

|

Participant
Request-to-Prepare >
< Prepared
Commit >
Done

UW CSE545

Case 2: Abort

Coordinator

|

Participant
Request-to-Prepare >
< No
Abort >
Done

UW CSE545

2PC + Validation

Participants perform validation upon receipt
of prepare message

Validation essentially blocks between
prepare and commit message

2PC + 2PL

Traditionally: run 2PC at commit time

» 1.e., perform locking as usual, then run 2PC
to have all participants agree that the
transaction will commit

Under strict 2PL, run 2PC before unlocking
the write locks

2PC + Logging

Log records must be flushed to disk on each
participant before it replies to prepare

» The participant should log how it wants to
respond + data needed if it wants to commit

2PC + Logging Example

Participant 1

read, write, etc

<T1, Obj1, ...> «— log records
<T1, Obj2, ...>

Coordinator

Participant 2

<T1, Obj3, ...>
<T1, Obj4, ...>

2PC + Logging Example

Participant 1

<T1, Obj1, ...> «— log records
<T1, Obj2, ...>
<T1, ready>

Coordinator

<T1, commit> S

Participant 2

<T1, Obj3, ...>
<T1, Obj4, ...>
<T1, ready>

2PC + Logging Example

Participant 1

<T1, Obj1, ...> «— log records
<T1, Obj2, ...>

<T1, ready>

<T1, commit>

Coordinator

<T1, commit>

Participant 2

<T1, Obj3, ...>
<T1, Obj4, ...>
<T1, ready>

<T1, commit>

Optimizations Galore

Participants can send prepared messages to
each other:

» Can commit without the client
» Requires O(P2) messages

Piggyback transaction’s last command on
prepare message

2PL.: piggyback lock “unlock” commands on
commit/abort message

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator

]

PREPARED PREPARED What if we don’t
\ hear back?

Participant Participant Participant

CS 245 67

Case 1: Participant
Unavailable

We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» WIll receive the abort message

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator does not reply!

PR

PREPARED PREPARED PREPARED

|

s

Participant

Participant

Participant

CS 245

70

Case 2: Coordinator
Unavailable

Participants cannot make progress

But: can agree to elect a new coordinator,
never listen to the old one (using consensus)

» Old coordinator comes back? Overruled by
participants, who reject its messages

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator does not reply!

/T No contact with

PREPARED PREPARED third
\ participant!

Participant Participant Participant

CS 245 73

Case 3: Coordinator and
Participant Unavailable

Worst-case scenario:

» Unavailable/unreachable participant voted to
prepare

» Coordinator hears back all prepare,
broadcasts commit

» Unavailable/unreachable participant commits

Rest of participants must wait!!!

Other Applications of 2PC

The “participants” can be any entities with
distinct failure modes; for example:

» Add a new user to database and queue a
request to validate their email

» Book a flight from SFO -> JFK on United and
a flight from JFK -> LON on British Airways

» Check whether Bob is in town, cancel my
hotel room, and ask Bob to stay at his place

Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:

» Asynchronous network behavior (e.g.,
unbounded delays)
« Cannot distinguish between delay and failure

» Failing nodes
* [f nodes never failed, could just wait

Cool: actual theorem!

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel processing

CS 245

77

CONTACT US INKTOMI WORLDWIDE <+ TECH SUPPORT

I nktomi®

PRODUCTS SOLUTIONS SERVICES CUSTOMERS PARTNERS COMPANY NEWS & EVENTS

- = == 4

= Home > Solutions > Customer Self-Service

INKTOMI SOLUTIONS FOR SELF-SERVICE

SEARCH THIS SITE
—) ¢
)
powesres hy
Inktomli®

ENTERPRISE PORTALS The Problem
GUSTOMER SELF SERVIGE

Customer satisfaction is directly related to h
| answer questions,

CALL CENTERS

SYSTEMS MAIN

Inktomi Files for $26 Millio
AOL Software Deal

Dow Jones Newswires
Updated April 16,1998 2:06 p.m. ET

WASHINGTON -- The software concern Inktomi Corp. said Thursd
it plans to sell up to 2.2 million shares in an initial public offering o

stock tateould raise between $26.4 million and $30.8 million. EriC Brewer

Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages
and failed nodes in a finite amount of time

CAP Theorem

In an asynchronous network, a distributed
database can either:

» guarantee a response from any replica in a
finite amount of time (“availability”) OR

» guarantee arbitrary “consistency”
criteria/constraints about data

but not both

CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”
» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value “Matel”

“CAP” is a reminder:
» No free lunch for distributed systems

Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

Seth Gilbert and Nancy Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
sethglmit.edu,lynch@theory.lcs.mit.edu

Abstract

When designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three. In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk [2], made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

e Consistency
e Availability
e Partition-tolerance

All three of these properties are desirable — and expected — from real-world web services. In
this note, we will first discuss what Brewer meant by the conjecture; next we will formalize these
concepts and prove the conjecture; finally, we will describe and attempt to formalize some real-world
solutions to this practical difficulty.

'Eric Brewer is a professor at the University of California, Berkeley, and the co-founder and Chief Scientist of
Inktomi.

Why CAP is Important

Pithy reminder: “consistency” (serializability,
various integrity constraints) is expensive!
» Costs us the ability to provide “always on”
operation (availability)
» Requires expensive coordination

(synchronous communication) even when we
don’t have failures

