
CS 245 Midterm Exam
Winter 2022

● Please read all instructions carefully. In case of any ambiguity, write any assumptions you
made in your answer. We can’t guarantee that we can answer questions from students live
during the test, but tell us about anything you found unclear later (in a private Ed post).

● There are five problems for a total of 65 points. You have two hours to take and upload
the test and mark which answers correspond to each question in Gradescope (please
give yourself ~5-10 minutes to upload/mark answers within the 2 hours). If you have
issues uploading the test on Gradescope within the two hours, please email it to Prof.
Zaharia at matei@cs.stanford.edu as quickly as you can after that.

● The test is open-book, but you are not allowed to communicate with other people to do it.
This includes asking public questions on Ed. You may also use the Internet during the
test, but keep in mind that many online resources might use terms differently from our
course, and that directly copying an online resource is considered plagiarism and is not
allowed. We don’t think you will need resources other than the course materials.

● You may complete this test digitally (e.g., using the Annotate tools in Acrobat Reader), or
print it, handwrite your answers legibly and scan it using a scanner or a mobile app such
as GeniusScan, or upload a list of answers, with the same numbering, as a separate
document. Ensure that the file you upload to Gradescope is sharp, legible, and aligned,
and you save time to mark which answers correspond to which questions.

● Solutions will be graded on correctness and clarity. For the long-answer problems, please
show your intermediate work. Each problem has a relatively simple to explain solution,
and we may deduct points if your solution is much more complex than necessary. Partial
solutions will be graded for partial credit.

NAME: __

SUID: ___

In accordance with both the letter and spirit of the Stanford Honor Code, I have neither given nor
received assistance on this test. A typed signature is fine. If uploading answers as a separate
document, please include your Name, SUID, and Signature clearly on your submission.

SIGNATURE: ___

mailto:matei@cs.stanford.edu

Problem 1: Short Answers (16 points)
a) (2 points) Which of the following are drawbacks of the XRM data model used by System R
used in phase 0, which motivated the change to indices in phase 1? (Check all that apply.)

Cost of creating and manipulating TID lists.
Separation of data from tuples in TID lists when a query is extremely selective and the
data values themselves are relatively large.
Separation of data from tuples when data values are relatively small.
Since data is stored separately from the records in the TID lists, commonly used values
can be stored once.

b) (2 points) What combination of techniques would most likely perform better in an analytical
DBMS? (Choose 1 answer.)

(a) B-tree indexes, coarse grained locks, shadow pages for recovery
(b) Row oriented storage, fine grained locks, logging of writes
(c) Column oriented storage, hierarchical locks, logging of queries
(d) Column oriented storage, coarse grained locks, logging of queries

c) (5 points) Consider the following desired behaviors, and check off in each corresponding box
whether RAID 0, RAID 1, or RAID 5 provides the given behavior/scenario. Assume a single
disk can read/write data sequentially at a rate of 200 MB/s.

Data format Raid 0 (with 2
disks)

Raid 1 (with
2 disks)

Raid 5 (with
4 disks)

Tolerance of 1 disk failure

Tolerance of 2 disk failures

>= 400 MB/s maximum read throughput

>= 400 MB/s maximum write throughput

>= 800 MB/s maximum write throughput

d) (2 points) Suppose you want to store a table where each record contains five string fields, and
the fields are rarely null. You also do not plan to compress the table. What kind of storage format
for records would you expect to use the least space for this table? (Choose 1 answer.)

(a) Fixed-format, fixed-length
(b) Fixed-format, variable-length
(c) Variable-format, fixed-length
(d) Variable-format, variable-length

e) (5 points) Consider the following B+ tree with order 3:

Follow the same rules taught in class for changing the tree. Two of the records’ keys changed,
and we would like to update the tree using these operations: DELETE(433), INSERT(515),
DELETE(480), INSERT(450).

During all the operations, there are (fill in a number in each blank):

_______ leaf overflow(s) _______ non-leaf overflow(s)

_______ leaf coalesce(s) _______ non-leaf coalesce(s)

After all the operations, the root node’s key value(s) are ______________ .

Problem 2: Indexes (14 points)
Gogo Maps would like to help users pick the best gas station. A gas station is stored with 3 fields
(latitude, longitude, gas price in cents), and there are N gas stations on file. We would like to find
the best way to index the gas station data to answer the following queries:

● Which gas station whose gas price < user-specified threshold is closest to the user?
● Which gas station is closest to the user?

Suppose that we index the data in a B+ tree whose key is the gas price.

a) (2 points) If we insert the keys into the tree one by one, constructing the tree would take a
total of [O(N log(N)) | O(N) | O(log(N))] time. It then takes [O(N log(N)) | O(N) | O(log(N))]
time to update the tree if one gas station’s price changes. (Circle one choice for each case.)

b) (2 points) Use X and N to fill in the blanks below. Assume worst-case scenarios, and start at
the root node.

Suppose there are X gas stations whose gas price < user-specified threshold. We need to traverse
____________ pointers in the B+ tree to answer the first query.

We need to traverse ____________ pointers in the B+ tree to answer the second query.

Suppose instead that we index the data in a k-d tree whose keys are (latitude, longitude) pairs.

c) (2 points) Since all gas stations’ locations are unique and known beforehand, we would like to
construct the tree so that it is balanced. First, we pick the gas station with the [mean | median]
latitude to be our root node. Constructing the balanced tree with pre-sorting the points in each
dimension would take [O(N log(N)) | O(N) | O(log(N))] time. (Circle one choice each case.)

d) (4 points) Circle the correct options to complete this algorithm for finding the single closest
gas station to the user using a k-d tree (Circle one choice for each case):

1. Create variables called closestStation to store the closest gas station found so far, and
closestDistance to store the distance from closestStation to the user. Set both to null.

2. Start at root and then traverse down the tree recursively:

a. If we reach a null node, [do nothing | jump to step 3]

b. Calculate the distance between the non-null node and the user’s location.

c. Update closest_gas_station and closestDistance if closestStation is null or the
node is [closer | farther] to the user than closestStation.

d. Compare the cutting dimension (level 1 is latitude, level 2 is longitude, level 3 is
latitude etc.) value of the node to the user location. Let diff = user’s cutting
dimension’s value - the node’s cutting dimension. If diff <= 0, then we traverse
the [left | right] subtree first, and [left | right] subtree second.

e. We can skip the second subtree if [absolute(diff) | 2 * absolute(diff) | diff * diff] is
larger than closestDistance.

3. Return closestStation.

e) (2 points) Use X and N to fill the blanks below. Assume worst-case scenarios, and assume
that the search starts at the root node.

Suppose there are X gas stations whose gas price < user-specified threshold. We need to traverse
____________ nodes in the balanced k-d tree to answer the first query.

We need to traverse ____________ nodes in the balanced k-d tree to answer the second query.

f) (2 points) Which of the two storage formats do you think is better for realistic scenarios?
Provide 2 reasons for your answer.

Problem 3: Relational Algebra (11 points)

a) (2 points) Write a SQL query that represents the following relational algebra expression:

artistGSUM(length)(σyear=’2022’ ∧ genre= ’pop’(Playlist))

For parts b), c) and d), consider the following two tables and the relational algebra expression:

Πage(σinspection = ’passes’ ∧ rating >= 4.0 ∧ gender = ‘female’ (Restaurants ⨝ Owners))

Restaurants
rid oid inspection rating

1 888 passes 4.8

2 210 fails 3.0

…

Owners
oid name gender age

1 melody female 35

2 andrew male 32

…

b) (2 points) Explain what the expression finds in one sentence (using words).

c) (5 points) Which of the following are valid rewrites of the expression? (Check all that apply.)

Πage(σinspection = ’passes’ ∧ rating >= 4 (Restaurants) ⨝ σgender = ‘female’ (Owners))

Πage(σgender = ‘female’(σinspection = ’passes’ ∧ rating >= 4 (Owners ⨝ Restaurants)))

σgender = ‘female’(Πage(σinspection = ’passes’ ∧ rating >= 4 (Owners ⨝ Restaurants)))

Πage(σinspection = ’passes’ ∧ rating >= 4(σgender = ‘female’ (Restaurants ⨝ Owners)))

Πage(σgender = ‘female’ (Owners ⨝ σinspection = ’passes’∧ rating >= 4(Restaurants)))

d) (2 points) Write an equivalent relational algebra expression without using a join operator.
(Hint: use Cartesian product. Feel free to write Greek symbols in words if typing your answer.)

Problem 4: In-Memory Storage (8 points)
In Assignment 1, we saw two storage formats for in-memory data: row stores and column stores.
Consider a table stored in RAM with the following specifications:

● The table has R rows and C columns, holding fields that are each 8 bytes. The table is
laid out contiguously (for example, all rows are next to each other in a row store).

● Every read brings 64 bytes of data into the cache. The cost of fetching a cache line is 1,
whereas the cost of reading a line that’s already in cache is 0.

● The cache fits 16 cache lines in total, and its eviction policy is Least Recently Used.
● R, C >> 16 and R and C are divisible by 8.

Any query will be implemented as follows, for both the storage formats:
for(int i=0; i<numRows; i++) {

for(int j=0; j<numCols; j++) {

long element = getTableField(i, j);

// Code to check for conditions and update output.

}

}

a) (2 points) Consider the query SELECT * FROM TABLE. Compute the cost of executing the
query on both row and column stores in terms of R and C.

Row store cost: __________

Column store cost: __________

b) (3 points) Consider the query SELECT col0, col1, …., colX-1 FROM TABLE. For what values
of X is the column store more performant than the row store? (Briefly explain your answer).

c) (3 points) Consider the query SELECT * FROM TABLE WHERE col0 = 100. Suppose that X
out of the R rows have col0 = 100 and col0 is unsorted. What is the cost of this query in both the
row store and the column store in terms of R, C and X? (Briefly explain your answer).

Row store cost: __________

Column store cost: __________

Problem 5: Query Optimization (16 points)
An online shopping company has a database with three tables about shopping activity:

● User, with fields userId (primary key), email, country
● Product, with fields prodId (primary key), name, price
● Order, with fields orderId (primary key), userId, prodId, discount

Managers often runs queries of the following form to see how each product is doing:

SELECT SUM(price * discount) FROM Order, User, Product

WHERE Order.userId = User.userId

AND Order.prodId = Product.prodId

AND Product.name = <n>

AND User.country = <c>

Here, <n> and <c> are parameters that vary from query to query. In this question, we’ll look at
how a database can optimize these queries.

a) (1 point) The first step of query optimization would be rule-based optimizations such as
selection and projection pushdowns. Which fields should be projected out of the User table in
this query as the first operator on that table?

b) (3 points) Note that the query has two joins (Order ⨝ User and Order ⨝ Product) and they can
be done in any order. One way to decide the order is using statistics on the number of values in
each table. Suppose that there are U users, P products, O orders, and C countries in the data in
total. Also suppose that each product has a unique name, and that each user and product appears
in at least one order. Fill in the following expressions for the number of tuples and distinct values
in each relation, using the T/V notation in class, in terms of U, P, O and C:

T(User): _______ T(Order): _______ T(Product): ________

V(User, userId): _______ V(Order, userId): _______ V(Product, prodId): ________

V(User, country): _______ V(Order, prodId): _______ V(Product, name): ________

c) (6 points) Now, assume that users are distributed uniformly across countries, and that orders
are distributed uniformly across users and products (and there is no correlation between the user
and product for a given order). Also assume preservation of value sets. Write estimates for the
following statistics for various intermediate tables we could build during this query:

T(σcountry=c(User)): _______
V(σcountry=c(User, userId)): _______

T(σname=n(Product)): _______
V(σname=n(Product, prodId)): _______

T(σcountry=c(User) ⨝ Order): _______
V(σcountry=c(User) ⨝ Order, prodId): _______

T(σname=n(Product) ⨝ Order): _______
V(σname=n(Product) ⨝ Order, userId): _______

T(σcountry=c(User) ⨝ Order ⨝ σname=n(Product)): _______

d) (4 points) Suppose that we perform the joins using hash joins, and therefore model the cost of
joining two tables as the sum of their sizes (i.e. T(table1) + T(table2)). Ignore the costs of the
selections and projections in the query plan, because we’ll always do them. What will be the cost
of the joins for each of the following two plans?

i. (σcountry=c(User) ⨝ Order) ⨝ σname=n(Product):

ii. σcountry=c(User) ⨝ (Order ⨝ σname=n(Product)):

Write a simple expression in terms of U, P, O, and/or C that says when plan i above will be
cheaper than plan ii:

Plan i is cheaper when: _______________________

e) (2 points) The analysis above assumes that orders are placed uniformly across users, products,
and countries, but real data is often skewed. Intuitively, using the same cost model for hash joins
as above, which of the query plans do you think will be better in each of the following cases?
Feel free to briefly explain your answer.

Popular country: if the majority of users (>90%) are in the country we query (<c>), which plan
do you expect to be cheaper?

Plan i Plan ii

Popular product: if the majority of orders are for the product we query (<n>), which is cheaper?

Plan i Plan ii

