
Data Systems for the Cloud

Instructor: Matei Zaharia



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object stores

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 2



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object stores

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 3



What is Cloud Computing?

Computing as a service, managed by an 
external party
» Software as a Service (SaaS): application 

hosted by a provider, e.g. Salesforce, Gmail
» Platform as a Service (PaaS): APIs to 

program against, e.g. DB or web hosting
» Infrastructure as a Service (IaaS): raw 

computing resources, e.g. VMs on AWS

CS 245 4

Large shift in industry over past 10-20 years!



History of Cloud Computing

Old idea, but became successful in the 2000s

CS 245 5

1960 1970 1980 1990 2000 2010 2020

“Utility 
computing” first 

used, talking 
about shared 
mainframes

Sun Cloud,
HP Utility Datacenter, 
Loudcloud, VMware

Virtual private 
web servers

Amazon S3, 
EC2 (2006)

Google BigQuery (2011), 
AWS Redshift (2012)

AWS Aurora, 
Lambda (2014)

Salesforce (1999)



6

Traditional Software Cloud Software

Ve
nd

or
C

us
to

m
er

s

Dev Team

Release

6-12 months

Users
Ops

Users
Ops

Users
Ops

Users
Ops

Dev + Ops Team

1-2 weeks

Users
Ops

Users
Ops

Users
Ops

Users
Ops

6-12 months

Development Process



Why Might Customers Use 
Cloud Services?

Management built-in: more value than the 
software bits alone (security, availability, etc)

Elasticity: pay-as-you-go, scale on demand

Better features released faster



Differences in Building Cloud 
Software

+ Release cycle: send releases to users faster, 
get feedback faster

+ Only need to maintain 2 software versions 
(current & next), fewer configs than on-premise

– Building a multitenant service: difficult scaling, 
security and performance isolation work

– Updating without regressions: critical for users 
to trust service, as updates are forced



How Do These Factors Affect 
Data Systems?
Data systems already had to support many 
users robustly, but new challenges arise:
» Much larger scale: millions of users, VMs, …
» Multitenancy: users don’t trust each other, so 

need strong security, perf isolation, etc
» Elasticity: scale up and down
» Updatability: avoid regressions & downtime

CS 245 9



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object stores

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 10



S3, Dynamo & Object Stores

Goal: I just want to store some bytes reliably 
and cheaply for a long time period

Interface: key-value stores
» Objects have a key (e.g. bucket/imgs/1.jpg) 

and value (arbitrary bytes)
» Values can be up to a few TB in size
» Can only do operations on 1 key atomically

Consistency: eventual consistency

CS 245 11
Store trillions of objects and exabytes of data



Example: S3 API

PUT(key, value): write object with a key
» Atomic update: replaces the whole object

GET(key, [range]): return object with a key
» Can also read a byte range in the object

LIST([startKey]): list keys in a bucket in 
lexicographic order, starting at a given key
» Limit of 1000 returned keys per call

CS 245 12



S3 Consistency Model (Original)

Eventual consistency: different readers may 
see different versions of the same object

Read-your-own-writes for new PUT: if you 
GET a new object that you PUT, you see it
» Unless you had previously called GET while 

it was missing, in which case you might not!

CS 245 13



Why These Choices?

The primary goal is scale: keep the interface 
very simple to support trillions of objects
» No cross-object operations except LIST!

Mostly target immutable or rarely changing 
data, so consistency is not as important

Can try to build stronger consistency on top

CS 245 14

In December 2020, S3 upgraded to
read-after-write consistency for all ops

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/


Implementing Object Stores

CS 245 15



Goals

CS 245 16



Goals

CS 245 17



Goals

CS 245 18

Obviously different for S3!



Dynamo Implementation

Commodity nodes with local 
storage on disks

Nodes form a “ring” to split up 
the key space among them
» Actually, each node covers 

many ranges (over-partitioning)

Use quorums and gossip to 
manage updates to each key

CS 245 19



Reads and Writes to Dynamo

Quorums with configurable # of writers
and readers required for success
» E.g. 3 nodes, write to 2, read from 2
» E.g. 3 nodes, write to 2, read from 1

(weaker consistency!)

Nodes gossip & merge updates
in an application-specific way

CS 245

Client 1: Write

Client 2: Read



Usage of Object Stores

Very widely used (probably the largest storage 
systems in the world)

But the semantics can be complex
» E.g. many users try to mount these as file systems 

but they’re not the same

CS 245 21



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object storage

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 22



Amazon Aurora

Goal: I want a transactional DBMS managed 
by the cloud vendor

Interface: same as MySQL/Postgres
» ODBC, JDBC, etc

Consistency: strong consistency (similar to
traditional DBMSes)

CS 245 23

Some of the largest & most profitable 
cloud services



Initial Attempt at DBMS on AWS

Just run an existing DBMS (e.g. MySQL) on 
cloud VMs, and use replicated disk storage

CS 245 24

Same thing users would do on-premise

MySQL MySQL

Primary Backup

Replicated disk
(e.g. EBS)

Apply log to recreate 
same pages

pages

log

pages



Problems with This Model

Elasticity: doesn’t leverage the elastic 
nature of the cloud, or give users elasticity

Efficiency: mirroring and disk-level 
replication is expensive at global scale

CS 245 25



Inefficiency of Mirrored DBMS

CS 245 26

Write amplification: 
each write at app level 
results in many writes 
to physical storage

For Aurora, Amazon 
wanted “4 out of 6” 
quorums (3 zones and
2 nodes in each zone)



Aurora’s Design

Implement replication at a higher level: only 
replicate the redo log (not disk blocks)

Enable elastic frontend and backend by 
decoupling API & storage servers
» Lower cost & higher performance per tenant

CS 245 27



Aurora’s Design

CS 245 28

Redo log



Design Details
Logging uses async quorum: wait until 4 of 6 
nodes reply (faster than waiting for all 6)

Each storage node takes
the log and rebuilds the
DB pages locally

Care taken to handle
incomplete logs due
to async quorums

CS 245 29



Performance

CS 245 30



Other Features from this Design

Rapidly add or remove read replicas

Efficient DB recovery, cloning and rollback 
(use a prefix of the log and older pages)

Serverless Aurora (only pay when actively 
running queries)

CS 245 31



CS 245 32



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object stores

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 33



Google BigQuery

Goal: I want a cheap & fast analytical DBMS 
managed by the cloud vendor

Interface: SQL, JDBC, ODBC, etc

Consistency: depends on storage chosen 
(object stores or richer table storage)

CS 245 34



Traditional Data Warehouses

Provision a fixed set of nodes that have both 
storage and computing
» Big servers with lots of disks, etc
» Makes sense when buying servers on-premise

Problem: no elasticity!

Interestingly, this was the model chosen by 
AWS Redshift initially (using ParAccel)

CS 245 35



BigQuery and Other Elastic 
Analytics Systems
Separate compute and storage
» One set of nodes (or the cloud object store) 

stores data, usually over 1000s of nodes
» Separate set of nodes handle queries (again, 

possibly scaling out to 1000s)

Users pay separately for storage & queries

Get performance of 1000s of servers to run a 
query, but only pay for a few seconds of use

CS 245 36



Results

These elastic services generally provide better 
performance and cost for ad-hoc small queries 
than launching a cluster

For big organizations or long queries, paying per 
query can be challenging, so these services let 
you bound total # of nodes

CS 245 37



Outline

What is the cloud and what’s different with it?

S3 & Dynamo: object stores

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

CS 245 39



Delta Lake Motivation

Object stores are the largest & lowest-cost 
storage systems, but their semantics make it 
hard to manage mutable datasets

Goal: analytical table storage over object 
stores, built as a client library (no other services)

Interface: relational tables with SQL queries

Consistency: serializable ACID transactions

CS 245 40Open source at https://delta.io

https://delta.io/


Setup

CS 245 41

Job 1

Job 2

Client library



Naïve Way to Use Object 
Stores for Tables
“Just a bunch of objects”: a table is a set of 
files (maybe partitioned on some fields)

mytable/date=2020-01-01/p1.parquet
/p2.parquet

/date=2020-01-02/p1.parquet
/p2.parquet
/p3.parquet

/date=2020-01-03/p1.parquet
...

CS 245 42

Columnar files of records
with date=2020-01-01

Columnar files of records
with date=2020-01-02

…



Problems with “Just Objects”

No multi-object transactions
» Hard to insert multiple objects at once

(what if your load job crashes partway through?)
» Hard to update multiple objects at once

(e.g. delete a user or fix their records)
» Hard to change data layout & partitioning

Poor performance
» LIST is expensive (only 1000 results/request!)
» Can’t do streaming inserts (too many small files)
» Expensive to load metadata (e.g. column stats)

CS 245 43



Example Problems

CS 245 44



Example Problems

CS 245 45



Delta Lake’s Approach

Can we implement a transaction log on top 
of the object store to retain its scale & 
reliability but provide stronger semantics?

CS 245 46



Inspiration: Bolt-On Consistency

CS 245 47



Delta Lake Implementation

Table = directory of data objects, with a set 
of log objects stored in _delta_log subdir
» Log specifies which data objects are part of 

the table at a given version

One log object for each write transaction, in 
order: 000001.json, 000002.json, etc

Periodic checkpoints of the log in Parquet 
format contain object list + column statistics

CS 245 48



Delta Table Example

CS 245 49

mytable/date=2020-01-01/1b8a32d2ad.parquet
/a2dc5244f7.parquet
/f52312dfae.parquet
/ba68f6bd4f.parquet

/_delta_log/00001.json
/00002.json
/00003.json
/00003.parquet
/00004.json
/00005.json
/_last_checkpoint

Data objects
(partitioned

by date field)

Log records
and checkpoints

Contains {version: “00003”}
Coalesces log
records 1–3Transaction’s operations, e.g.,

add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4f1e.parquet



Log Record Types

Add data object + its column statistics

Remove data object

Change metadata, e.g. table schema or 
Delta Lake format version

A few others for streaming writes (allows 
treating a table like a message bus)

CS 245 50



Writing to Delta Lake

1) Add new objects in the data directories; 
readers will ignore them because the log 
has no add entries for them

2) Try to add a new log record with the next 
valid log record number (e.g. 00006.json)
» Various ways to make this atomic per cloud

3) Optional: write a new Parquet checkpoint

CS 245 51

What if one of these steps fails?



What Kind of Concurrency 
Approach is This?

Optimistic! Even simpler than validation

Also MVCC: keep old data versions around

Why is this okay for Delta Lake’s workloads?

CS 245 52



Reading from Delta Lake

1) Read the _last_checkpoint object to find a 
checkpoint number

2) Read that Parquet file, and use LIST to find 
any newer .json log records after it

3) Determine which objects are “add”ed but not 
“remove”d from those logs and read those
» Use column min/max stats to prune data

CS 245 53

What if one step sees old versions of that data?



Isolation Levels

Transactions with writes are serializable: one 
serial order, given by log record numbers

Read transactions can get either snapshot 
isolation (read older version) or serializability 
(by adding a dummy write)

CS 245 54

Takeaway: by using atomic operations on just 
one object at a time (last log record key), we 

got ACID transactions for a whole table!



Impact on Performance

Reading the list of object 
names from a Parquet file 
much faster than making 
many LIST operations

Reading column stats from 
this file is also faster than 
range GETs on each object

CS 245 55

0.1

1

10

100

1000

10000

100000

1000 10K 100K 1M

Ti
m

e 
(s

ec
on

ds
, l

og
 s

ca
le

)

Number of Partitions

Apache Spark on Delta (no cache)
Apache Spark on Delta (cache)
Apache Spark on Parquet
Apache Hive on Parquet
Presto on Parquet



Other Features from this Design

Caching data & log objects on workers is safe 
because they are immutable

Time travel: can query or restore an old version 
of the table while those objects are retained

Background optimization: compact small writes 
or change data ordering (e.g. Z-order) without 
affecting concurrent readers

Audit logging: who wrote to the table?

CS 245 56



Applications & Impact

Delta Lake now manages exabytes of data 
(>60% of Databricks’ workload in 3 years)!

Reduced support escalations relating to 
cloud storage from ~50% to nearly none

Largest single tables hold exabytes of data 
across billions of data objects

CS 245 57





Other “Bolt-On” Systems

Apache Hudi (at Uber) and Iceberg (at Netflix) 
also offer table storage on S3

Google BigTable was built over GFS

Filesystems that use S3 as a block store
(e.g. early Hadoop s3:/, Goofys, MooseFS)

CS 245 60



Conclusion

Cloud computing requires changes in data 
management systems
» Elasticity with separate compute & storage
» Very large scale
» Multitenancy: security, performance isolation
» Updating without regressions

Can design and analyze these systems using 
the ideas we saw!

CS 245 61


