Data Systems for the Cloud

Instructor: Mateil Zaharia

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object stores
Aurora: transactional DBMS
BigQuery: analytical DBMS

Delta Lake: ACID over object stores

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object stores
Aurora: transactional DBMS
BigQuery: analytical DBMS

Delta Lake: ACID over object stores

What is Cloud Computing?

Computing as a service, managed by an
external party

» Software as a Service (SaaS): application
hosted by a provider, e.g. Salesforce, Gmail

» Platform as a Service (Paa$S): APIs to
program against, e.g. DB or web hosting

» Infrastructure as a Service (laaS): raw
computing resources, e.g. VMs on AWS

Large shift in industry over past 10-20 years!

CS 245 4

History of Cloud Computing

Old idea, but became successful in the 2000s

1960 1970 1980 1990 2000 2010 2020
I \ I I I / I T N \ I >
“Utility Virtual private Amazon S3, AWS Aurora,
computing” first web servers EC2 (2006) Lambda (2014)
used, talking
about shared Sun Cloud, Google BigQuery (2011),
mainframes HP Utility Datacenter, AWS Redshift (2012)

Loudcloud, VMware

Salesforce (1999)

CS 245 5

Development Process

Vendor

Customers

Traditional Software Cloud Software
% Dev Team m Dev + Ops Team
l 6-12 months l 1-2 weeks
@ Release ...
/ V 12 months / \

- ~

.‘..‘..‘. Users .‘..‘. Users .‘.-‘n‘.. Users .‘.-‘n‘.. Users

B ops .-..-. Ops & Ops & Ops

g J g

- N ~ s N ~

-‘n‘. Users @-‘n‘n‘. Users 8888 Users o888 Users

L &8 Ops &8 Ops S Ops S Ops

g J g J N\ J g J

Why Might Customers Use
Cloud Services?

Management built-in: more value than the
software bits alone (security, availability, etc)

Elasticity: pay-as-you-go, scale on demand

Better features released faster

Differences in Building Cloud
Software

+ Release cycle: send releases to users faster,
get feedback faster

+ Only need to maintain 2 software versions
(current & next), fewer configs than on-premise

— Building a multitenant service: difficult scaling,
security and performance isolation work

— Updating without regressions: critical for users
to trust service, as updates are forced

How Do These Factors Affect
Data Systems?

Data systems already had to support many
users robustly, but new challenges arise:
» Much larger scale: millions of users, VMs, ...

» Multitenancy: users don’t trust each other, so
need strong security, perf isolation, etc

» Elasticity: scale up and down
» Updatability: avoid regressions & downtime

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object stores
Aurora: transactional DBMS
BigQuery: analytical DBMS

Delta Lake: ACID over object stores

S3, Dynamo & Object Stores

Goal: | just want to store some bytes reliably
and cheaply for a long time period

Interface: key-value stores

» Objects have a key (e.g. bucket/imgs/1.jpg)
and value (arbitrary bytes)

» Values can be up to a few TB in size
» Can only do operations on 1 key atomically

Consistency: eventual consistency

Store trillions of objects and exabytes of data

Example: S3 API

PUT(key, value): write object with a key
» Atomic update: replaces the whole object

GET(key, [range]): return object with a key
» Can also read a byte range in the object

LIST([startKey]): list keys in a bucket in
lexicographic order, starting at a given key
» Limit of 1000 returned keys per call

S3 Consistency Model (Original)

Eventual consistency: different readers may
see different versions of the same object

Read-your-own-writes for new PUT: if you
GET a new object that you PUT, you see it

» Unless you had previously called GET while
It was missing, in which case you might not!

Why These Choices?

The primary goal is scale: keep the interface
very simple to support trillions of objects

» NO cross-object operations except LIST!

Mostly target immutable or rarely changing
data, so consistency is not as important

Can try to build stronger consistency on top

In December 2020, S3 upgraded to
read-after-write consistency for all ops

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/

Implementing Object Stores

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management: D.4.5

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a nuimber of <torace technolooies of which the Amazon Simnle

Goals

Query Model: simple read and write operations to a data item that
is uniquely identified by a key. State i1s stored as binary objects
(1.e., blobs) identified by unique keys. No operations span
multiple data items and there 1s no need for relational schema.
This requirement 1s based on the observation that a significant
portion of Amazon’s services can work with this simple query
model and do not need any relational schema.

CS 245

16

Goals

Efficiency: The system needs to function on a commodity
hardware infrastructure. In Amazon’s platform, services have
stringent latency requirements which are in general measured at
the 99.9"™ percentile of the distribution. Given that state access
plays a crucial role in service operation the storage system must
be capable of meeting such stringent SLAs (see Section 2.2
below). Services must be able to configure Dynamo such that they
consistently achieve their latency and throughput requirements.
The tradeoffs are in performance, cost efficiency, availability, and
durability guarantees.

CS 245 17

Goals

Other Assumptions: Dynamo 1s used only by Amazon’s internal
services. Its operation environment 1s assumed to be non-hostile
and there are no security related requirements such as
authentication and authorization. Moreover, since each service
uses 1its distinct instance of Dynamo, its initial design targets a
scale of up to hundreds of storage hosts.

Obviously different for S3!

CS 245 18

Dynamo Implementation

Commodity nodes with local

storage on disks B ®/ KerE

(6. 3 : //@ % NodesB,C
Nodes form a “ring” to split up | b
the key space among them ® (O mito

» Actually, each node covers @ ©)
many ranges (over-partitioning)

Use quorums and gossip to
manage updates to each key

Reads and Writes to Dynamo

Quorums with configurable # of writers ciient 1: write

and readers required for success
» E.g. 3 nodes, write to 2, read from 2
» E.g. 3 nodes, write to 2, read from 1 Client 2- Read
(weaker consistency!)

write
handled by Sx

D1 ([Sx,1])

Nodes gossip & merge updates || nandieay sx
In an application-specific way 02 (52
D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz,1])

reconciled
adwh‘nby

D5 ([Sx,3],[Sy,1][Sz,1])

Usage of Object Stores

Very widely used (probably the largest storage
systems in the world)

But the semantics can be complex

» E.g. many users try to mount these as file systems
but they’re not the same

java.io.FileNotFor aws s3 LISTING is slow

Asked 1 year, 10 months ago Act Asked 1 year, 10 months ago Active 1 year, 10 months ago Viewed 1k times

IS I|St|ng Am az | am trying to execute the following command using AWS CLI on an S3 bucket:
O CO”S'Stency OI 0 aws s3 1s s3://bucket name/folder_name —-summarize —-human-readable —-recursive
Asked 3 years, 7 months agc | am trying to get the size of the folder, but given there are multiple levels and a huge number of files,
it running for hours.
(| know how consit Is there an efficient way to quickly get the size at folder level on Amazon S3?

listing operation? ._ ..

~ g

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object storage

Aurora: transactional DBMS

BigQuery: analytical DBMS

Delta Lake: ACID over object stores

Amazon Aurora

Goal: | want a transactional DBMS managed
by the cloud vendor

Interface: same as MySQL/Postgres
» ODBC, JDBC, etc

Consistency: strong consistency (similar to
traditional DBMSes)

Some of the largest & most profitable
cloud services

Initial Attempt at DBMS on AWS

Just run an existing DBMS (e.g. MySQL) on
cloud VMs, and use replicated disk storage

Primary Apply log to recreate
same pages

pages

Replicated disk
(e.g. EBS)

Same thing users would do on-premise

CS 245 24

Problems with This Model

Elasticity: doesn’t leverage the elastic
nature of the cloud, or give users elasticity

Efficiency: mirroring and disk-level
replication is expensive at global scale

Inefficiency of Mirrored DBMS

Primary

o[l

Amazon Elastic
Block Store (EBS)

o|

! EBS mimor

Amazon S3
TYPE OF WRITE

Instance : — :

Replica
Instance

rrrrrrrrrr

LOG BINLOG

DATA

- DOUBLE-WRITE ey FRM FILES

Figure 2: Network 10 in mirrored MySQL

Write amplification:
each write at app level
results in many writes
to physical storage

For Aurora, Amazon
wanted “4 out of 6”
quorums (3 zones and
2 nodes in each zone)

26

Aurora’s Design

Implement replication at a higher level: only
replicate the redo log (not disk blocks)

Enable elastic frontend and backend by
decoupling API & storage servers

» Lower cost & higher performance per tenant

Aurora’s Design

[[
AZ 1 [AZ 2 I AZ 3
.................. | i sreadll ST e
| . |
Primary | ssdesp:[Replica |:=mkep:| Replica
Instance | | ‘| Instance |: : Instance
I I
.................. : | e mm——
ASYNC | i
4/6 QUORUM
Redo log : :
[I
--------------------------- I--u--------------c-----------ln------cc-----------------
o m B om : T | T |
........................... Jisia i s i & siatetiigiass & ¥ 4 iiinsiate s § & dnoieiuie 6 § ESATE e aie S W € iR b &
i ‘ DISTRIBUTED |
| y WRITES |
I I
I |
I |
I I
I I
' Amazon S3 '
Figure 3: Network IO in Amazon Aurora
CSL..

28

Design Details

Logging uses async quorum: wait until 4 of 6
nodes reply (faster than waiting for all 6)

f INCOMING QUEUE

Each storage node takes . Somacniene

the log and rebuilds the [e |
DB pages locally — 9 QU e B

kL
Care taken to handle o
incomplete logs due = 8 mwe |
to async quorums l o |

Figure 4: 10 Traffic in Aurora Storage Nodes

CS 245 29

Performance

SysBench Write Only
BMySQL 5.6 MySQL 5.7 [E Amazon Aurora

140000
120000
k=
o 100000
]
)
v 80000
S —
a
wn 60000
]
=
ég 40000
20000 [}
7 2
, Sl D%D alll =Aal
R3.large R3.xlarge R3.2xlarge R3.4xlarge
Instance Type
CS 245

700000

600000

500000

400000

300000

Reads per second

200000

100000

SysBench Read Only
B MySQLS5.6 MySQL 5.7 [Amazon Aurora

%
= = D%H B8

R3.large R3.xlarge R3.2xlarge R3.4xlarge

Instance Type

DO

30

Other Features from this Design

Rapidly add or remove read replicas

Efficient DB recovery, cloning and rollback
(use a prefix of the log and older pages)

Serverless Aurora (only pay when actively
running queries)

Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, Xiaofeng Bao

Amazon Web Services

ABSTRACT

Amazon Aurora is a relational database service for OLTP
workloads offered as part of Amazon Web Services (AWS). In
this paper, we describe the architecture of Aurora and the design
considerations leading to that architecture. We believe the central
constraint in high throughput data processing has moved from
compute and storage to the network. Aurora brings a novel
architecture to the relational database to address this constraint,
most notably by pushing redo processing to a multi-tenant scale-
out storage service, purpose-built for Aurora. We describe how
doing so not only reduces network traffic, but also allows for fast
crash recovery, failovers to replicas without loss of data, and
fault-tolerant, self-healing storage. We then describe how Aurora
achieves consensus on durable state across numerous storage
nodes using an efficient asynchronous scheme, avoiding
expensive and chatty recovery protocols. Finally, having operated
Aurora as a production service for over 18 months, we share
lessons we have learned from our customers on what modem
cloud applications expect from their database tier.

Keywords
Databases; Distributed Systems; Log Processing; Quorum
Models; Replication; Recovery; Performance; OLTP

1. INTRODUCTION

IT workloads are increasingly moving to public cloud providers.
Significant reasons for this industry-wide transition include the

The I/O bottleneck faced by traditional database systems changes
in this environment. Since I/Os can be spread across many nodes
and many disks in a multi-tenant fleet, the individual disks and
nodes are no longer hot. Instead, the bottleneck moves to the
network between the database tier requesting I/Os and the storage
tier that performs these I/Os. Beyond the basic bottlenecks of
packets per second (PPS) and bandwidth, there is amplification of
traffic since a performant database will issue writes out to the
storage fleet in parallel. The performance of the outlier storage
node, disk or network path can dominate response time.

Although most operations in a database can overlap with each
other, there are several situations that require synchronous
operations. These result in stalls and context switches. One such
situation is a disk read due to a miss in the database buffer cache.
A reading thread cannot continue until its read completes. A cache
miss may also incur the extra penalty of evicting and flushing a
dirty cache page to accommodate the new page. Background
processing such as checkpointing and dirty page writing can
reduce the occurrence of this penalty, but can also cause stalls,
context switches and resource contention.

Transaction commits are another source of interference; a stall in
committing one transaction can inhibit others from progressing.
Handling commits with multi-phase synchronization protocols
such as 2-phase commit (2PC) [3][4][5] is challenging in a cloud-
scale distributed system. These protocols are intolerant of failure
and high-scale distributed systems have a continual “background

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object stores
Aurora: transactional DBMS
BigQuery: analytical DBMS

Delta Lake: ACID over object stores

Google BigQuery

Goal: | want a cheap & fast analytical DBMS
managed by the cloud vendor

Interface: SQL, JDBC, ODBC, etc

Consistency: depends on storage chosen
(object stores or richer table storage)

Traditional Data Warehouses

Provision a fixed set of nhodes that have both
storage and computing

» Big servers with lots of disks, etc
» Makes sense when buying servers on-premise

Problem: no elasticity!

Interestingly, this was the model chosen by
AWS Redshift initially (using ParAccel)

BigQuery and Other Elastic
Analytics Systems

Separate compute and storage

» One set of nodes (or the cloud object store)
stores data, usually over 1000s of nodes

» Separate set of nodes handle queries (again,
possibly scaling out to 1000s)
Users pay separately for storage & queries

Get performance of 1000s of servers to run a
query, but only pay for a few seconds of use

Results

These elastic services generally provide better
performance and cost for ad-hoc small queries
than launching a cluster

For big organizations or long queries, paying per
query can be challenging, so these services let
you bound total # of nodes

The following table shows the cost of your monthly slot commitment.

BigQuery offers a choice of two pricing mu

US (multi-region) ~

e On-demand pricing is flexible and ef

¢ Flat-rate pricing offers predictable @ Monthly cost Number of slots

-

$10,000 500
CS 245

Outline

What is the cloud and what’s different with it?
S3 & Dynamo: object stores
Aurora: transactional DBMS
BigQuery: analytical DBMS

Delta Lake: ACID over object stores

Delta Lake Motivation A

DELTA LAKE

Object stores are the largest & lowest-cost
storage systems, but their semantics make it
hard to manage mutable datasets

Goal: analytical table storage over object
stores, built as a client library (no other services)

Interface: relational tables with SQL queries

Consistency: serializable ACID transactions

Open source at https://delta.io

https://delta.io/

CS 245

SEGKE Job -

AAAAAA J\Zl

Spark” Job 2

presto "

- amazon
REDSHIFT

-~ Client library

\

Amazon S3

41

Naive Way to Use Object
Stores for Tables

“Just a bunch of objects”: a table is a set of
files (maybe partitioned on some fields)

mytable/date=2020-01-01/p1l.
/p2.

/date=2020-01-02/pl.

/p2.

/p3.

/date=2020-01-03/pl.

parquet)| Columnar files of records
pa rquet with date=2020-01-01

parquet}

Columnar files of records

parquet with date=2020-01-02

parquet
parquet

Problems with “Just Objects”

No multi-object transactions

» Hard to insert multiple objects at once
(what if your load job crashes partway through?)

» Hard to update multiple objects at once
(e.g. delete a user or fix their records)

» Hard to change data layout & partitioning

Poor performance
» LIST is expensive (only 1000 results/request!)
» Gan’t do streaming inserts (too many small files)
» Expensive to load metadata (e.g. column stats)

Example Problems

Keep getting FileNotFound for tempView

D<)

8. CRITICAL production problem: inconsistent job e...

8. Appending new data to a partitioned table

8. Different field types cause conflicting schemas w...

Example Problems

8. Extremely slow dataframe loading

8. Commands Blocked on Metadata Operations

8. Concatenate small files

8§« how to control number of parquet files within par...

Delta Lake’s Approach

Can we implement a transaction log on top
of the object store to retain its scale &
reliability but provide stronger semantics?

Inspiration: Bolt-On Consistency

Bolt-on Causal Consistency

Peter Bailis, Ali Ghodsi"*, Joseph M. Hellerstein, lon Stoica’
fuc Berkeley iKTH/RoyaI Institute of Technology

Shallow men believe in luck. . . Strong men believe in cause and
effect.—Ralph Waldo Emerson

ABSTRACT

We consider the problem of separating consistency-related safety
properties from availability and durability in distributed data stores
via the application of a “bolt-on” shim layer that upgrades the safety
of an underlying general-purpose data store. This shim provides the
same consistency guarantees atop a wide range of widely deployed
but often inflexible stores. As causal consistency is one of the
strongest consistency models that remain available during system
partitions, we develop a shim layer that upgrades eventually consis-
tent stores to provide convergent causal consistency. Accordingly,
we leverage widely deployed eventually consistent infrastructure as
a common substrate for providing causal guarantees. We describe
algorithms and shim implementations that are suitable for a large
class of application-level causality relationships and evaluate our
techniques using an existing, production-ready data store and with
real-world explicit causality relationships.

Client: Front-end requests, Application logic

Bolt-on Shim Layer: Safety

| Eventually Consistent Data Store: |
| Replication, Durability, Availability, Convergence I

Figure 1: Separation of concerns in the bolt-on architecture. In
this work, a narrow shim layer upgrades an underlying eventually
consistent data store to provide causal consistency.

will eventually happen (replicas agree) [5]. It does not provide
safety guarantees: it is impossible for a system to violate even-
tual consistency at any discrete moment because the system may
converge in the future [7]. By itself, eventual consistency is a weak
consistency model. If users want stronger guarantees, stores may
provide stronger models that, in addition to convergence, provide
safety. However, exact guarantees differ across stores and some-
times between releases of the same stores.

In this paper we adopt a general approach that separates archi-
tectural concerns of liveness, replication, and durability from the

R e enaa My e e S e Rl S o o e s TR B e S e e

Delta Lake Implementation

Table = directory of data objects, with a set
of log objects stored in _delta_log subdir

» Log specifies which data objects are part of
the table at a given version

One log object for each write transaction, in
order: 000001.json, 000002.json, etc

Periodic checkpoints of the log in Parquet
format contain object list + column statistics

Delta Table Example

mytable/date=2020-01-01/1b8a32d2ad. parquet
/a2dc5244f7.parquet
/f52312dfae.parquet
/ba68febd4f.parquet
/ _delta log/00001. json
/00002. json
/00003. json
/00003 .parquet
/00004 . json
/00005 . json
/ _last checkpoint

Contains {version: “00003”} 4/

\

Data objects
(partitioned
by date field)

Log records

(and checkpoints

\

Coalesces log

Transaction’s operations, e.g.,
add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4fle.parquet

CS 245

records 1-3

49

Log Record Types

Add data object + its column statistics

Remove data object

Change metadata, e.g. table schema or
Delta Lake format version

A few others for streaming writes (allows
treating a table like a message bus)

Writing to Delta Lake

1) Add new objects in the data directories;
readers will ignore them because the log
has no add entries for them

2) Try to add a new log record with the next
valid log record number (e.g. 90006 . json)

» Various ways to make this atomic per cloud

3) Optional: write a new Parquet checkpoint

What if one of these steps fails?

51

What Kind of Concurrency
Approach is This?

Optimistic! Even simpler than validation
Also MVCC: keep old data versions around

Why is this okay for Delta Lake’s workloads?

Reading from Delta Lake

1) Read the 1last_checkpoint object to find a
checkpoint number

2) Read that Parquet file, and use LIST to find
any newer .json log records after it

3) Determine which objects are “add”ed but not
“remove”d from those logs and read those

» Use column min/max stats to prune data

What if one step sees old versions of that data?

Isolation Levels

Transactions with writes are serializable: one
serial order, given by log record numbers

Read transactions can get either snapshot
isolation (read older version) or serializability
(by adding a dummy write)

Takeaway: by using atomic operations on just

one object at a time (last log record key), we
got ACID transactions for a whole table!

CS 245

54

Impact on Performance

100000
10000
1000
100
10

Time (seconds, log scale)

o
—_—

1000 10K 100K
Number of Part|t|ons

m Apache Spark on Delta (no cache)

Apache Spark on Delta (cache)
Apache Spark on Parquet
Apache Hive on Parquet
Presto on Parquet

Reading the list of object

names from a Parquet file
much faster than making

many LIST operations

Reading column stats from
this file is also faster than
range GETs on each object

Other Features from this Design

Caching data & log objects on workers is safe
because they are immutable

Time travel: can query or restore an old version
of the table while those objects are retained

Background optimization: compact small writes
or change data ordering (e.g. Z-order) without
affecting concurrent readers

Audit logging: who wrote to the table?

Applications & Impact

Delta Lake now manages exabytes of data
(>60% of Databricks’ workload in 3 years)!

Reduced support escalations relating to
cloud storage from ~50% to nearly none

Largest single tables hold exabytes of data
across billions of data objects

Delta Lake: High-Performance ACID Table Storage over
Cloud Object Stores

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,

Joseph Torres, Herman van Hovell, Adrian lonescu, Alicja tuszczak, Michat Switakowski,
Michat Szafranski, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz', Ali Ghodsi?,
Sameer Paranjpye, Pieter Senster, Reynold Xin, Matei Zaharia’

Databricks, 'CWI, *UC Berkeley, “Stanford University

delta-paper-authors@databricks.com

ABSTRACT

Cloud object stores such as Amazon S3 are some of the largest
and most cost-effective storage systems on the planet, making them
an attractive target to store large data warehouses and data lakes.
Unfortunately, their implementation as key-value stores makes it dif-
ficult to achieve ACID transactions and high performance: metadata
operations such as listing objects are expensive, and consistency
guarantees are limited. In this paper, we present Delta Lake, an open
source ACID table storage layer over cloud object stores initially
developed at Databricks. Delta Lake uses a transaction log that is
compacted into Apache Parquet format to provide ACID properties,
time travel, and significantly faster metadata operations for large
tabular datasets (e.g., the ability to quickly search billions of table
partitions for those relevant to a query). It also leverages this de-
sign to provide high-level features such as automatic data layout
optimization, upserts, caching, and audit logs. Delta Lake tables
can be accessed from Apache Spark, Hive, Presto, Redshift and
other systems. Delta Lake is deployed at thousands of Databricks
customers that process exabytes of data per day, with the largest
instances managing exabyte-scale datasets and billions of objects.

The major open source “big data” systems, including Apache Spark,
Hive and Presto [45, 52, 42], support reading and writing to cloud
object stores using file formats such as Apache Parquet and ORC [13;
12]. Commercial services including AWS Athena, Google BigQuery
and Redshift Spectrum [1, 29| 39] can also query directly against
these systems and these open file formats.

Unfortunately, although many systems support reading and writ-
ing to cloud object stores, achieving performant and mutable table
storage over these systems is challenging, making it difficult to im-
plement data warehousing capabilities over them. Unlike distributed
filesystems such as HDFS [5], or custom storage engines in a DBMS,
most cloud object stores are merely key-value stores, with no cross-
key consistency guarantees. Their performance characteristics also
differ greatly from distributed filesystems and require special care.

The most common way to store relational datasets in cloud object
stores is using columnar file formats such as Parquet and ORC,
where each table is stored as a set of objects (Parquet or ORC
“files”), possibly clustered into “partitions” by some fields (e.g., a
separate set of objects for each date) [45]. This approach can offer
acceptable performance for scan workloads as long as the object

Blas sea wndevatalyy Tanwas IXmmratran 16 sesatas lhath Aamasates aca anal

Other “Bolt-On” Systems

Apache Hudi (at Uber) and Iceberg (at Netflix)
also offer table storage on S3

Google BigTable was built over GFS

Filesystems that use S3 as a block store
(e.g. early Hadoop s3:/, Goofys, MooseFS)

Conclusion

Cloud computing requires changes in data
management systems

» Elasticity with separate compute & storage

» Very large scale

» Multitenancy: security, performance isolation
» Updating without regressions

Can design and analyze these systems using
the ideas we saw!

