9 Cockroach Labs

CockroachDB: The Resilient
Geo-Distributed SQL Database

Stanford University CS 245, March 3, 2022
Presented by Rebecca Taft

Story of a Modern Company

Core markets in Europe and Australia, growing market in US
« Strategic migration to cloud DBMS

Data locality for GDPR and end-user latency
« Users expect “always on”

« Consistent SQL required

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

Architecture of CockroachDB

@

Monolithic Key Space

DOGS
carl . . .

p— Monolithic logical key space

figment e Keys and values are strings

jack . .

Loy e Ordered lexicographically by key

lula e Multi-version concurrency control (MVCC)
muddy

peetey

pinetop
sooshi
stella

zee

Ranges

DOGS

carl
dagne
figment
jack
lady
lula
muddy
peetey
pinetop
sooshi
stella

zee

Key space divided into contiguous ~512MB ranges

carl
dagne
figment

Jjack

lady
lula
muddy
peetey

pinetop
sooshi
stella

zee

Ranges are small enough to
be moved/split quickly

Ranges are large enough to
amortize indexing overhead

Range Indexing

DOGS

carl
dagne
figment
jack
lady
lula
muddy
peetey
pinetop
sooshi
stella

zee

1 carl - jack

2 lady - peetey

3 pinetop - zee

carl
dagne
figment

Jjack

lady
lula
muddy
peetey

Index structure used to

locate ranges
(very much like a B-tree)

pinetop
sooshi
stella

zee

Ordered Range Scans

DOGS

carl
dagne
figment
jack
lady
lula

muddy

peetey

pinetop

sooshi

stella

zee

1 carl - jack

2 lady - peetey

3 pinetop - zee

carl
dagne
figment

Jjack

lady pinetop
lula sooshi

muddy stella

peetey zee

Ordered keys enable
efficient range scans

dogs >= “muddy” AND <= “stella”

Transactional Updates

DOGS

o I carl - jack Transactions used to insert
dagne 2 lady - peetey records into ranges
e 3 pinetop - zee

jack

lady |

lula

muddy i

peetey carl lady pinetop

pinetop dagne lula sooshi

sooshi figment muddy stella

stella jack peetey zee e INSERT [sunny]

zee

Space available in range? - YES

Transactional Updates

DOGS

o 1 carl - jack Transactions used to insert
dagne 2 lady - peetey records into ranges
£ GEIE 3 pinetop - zee

jack

lady |

lula

muddy i

peetey carl lady pinetop

pinetop dagne lula sooshi

sooshi figment muddy stella

stella jack peetey sunny 0 INSERT [sunny]

z
ce zee

Range Splits

DOGS

. 1 carl - jack BUT... what happens when
dagne 2 lady - peetey a range is full?
figment 3 pinetop - zee

jack

lady

lula

muddy i

peetey carl lady pinetop

pinetop dagne lula sooshi Q INSERT [rudy]

sooshi figment muddy stella Space available in range? - NO
stella jack peetey sunny

z
ce zee

Range Splits

DOGS

o 1 carl - jack Ranges are automatically
dagne 2 lady - peetey split, a new range index is
o i oinetop - sooshi created & order maintained
el 4 stella - zee

l
lula
muddy +
peetey carl lady pinetop stella
pinetop dagne lula rudy 0 sunny INSERT [rudy]
sooshi figment muddy sooshi zee split range and insert

stella jack peetey

zee

Ranges are the unit of replication

Each Range is a Raft (consensus) group
Default to 3 replicas, but configurable

Raft provides “atomic replication” of writes
« Proposed by the leaseholder (Raft leader)
« Accepted when a quorum of replicas ack

B

LEASEHOLDER

14

Range Leases

READ [carl]

carl
dagne
figment

jack

lady
lula
muddy
peetey

Reads with consensus
Reads must talk to a quorum of replicas

Range Leases

READ [carl] carl
dagne

figment —

jack

lady
lula

easeholder

muddy

peetey

Reads without consensus
One replica is chosen as the leaseholder

Range Leases

READ [carl] carl
dagne

figment —

jack

lady
lula

leaseholder

muddy

peetey

Reads without consensus

One replica is chosen as the leaseholder
e Coordinates writes
e Performs reads

Replica Placement

User-defined
constraints
Latency
Diversity
Load

Space

carl
dagne
figment

jack

lady
lula
muddy
peetey

pinetop
sooshi
stella

#Z2@

Each Range is a Raft state machine
A Range has 1 or more Replicas

Replica Placement: User-defined constraints &

Latency

carl
dagne
figment
Jack

lady
lula
muddy
peetey

pinetop
sooshi
stella

zee

EU/carl
EU/lula
EU/sooshi
EU/zee

USE/dagne
USE/figment
USE/muddy
USE/stella

USW/jack
USW/lady
USW/peetey
USW/pinetop

| .

We apply a constraint that indicates regional
placement so we can ensure low latency
access or jurisdictional control of data

| .

[)

Replica Placement: Diversity

carl

Diversity o
optimizes placement of figment
replicas across “failure Jack
domains”
e Disk lady
e Single machine lula
e Rack nuddy
e Datacenter peetey
e Region

pinetop

sooshi
stella

#Z2@

Replica Placement: Load & Space

Load

Balances placement using
heuristics that considers
real-time usage metrics of
the data itself

This range is high load as it is
accessed more than others

carl
dagne
figment

jack

lady
lula

muddy
peetey

pinetop

sooshi While we show this for ranges within a

stella single table, this is also applicable across

zee all ranges across ALL tables, which is the
more typical situation

Rebalancing Replicas

Scale: Add a node

If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides

glEEg

Rebalancing Replicas

Scale: Add a node

If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides

Movement is decomposed into
adding a replica followed by
removing a replica

Rebalancing Replicas

Scale: Add a node

If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides

ghEEE

Movement is decomposed into
adding a replica followed by
removing a replica

Rebalancing Replicas

Loss of a node

Temporary Failure

If a node goes down for a moment,
the leaseholder can “catch up” any
replica that is behind

The leaseholder can send commands to be replayed

OR it can send a snapshot of the current Range data.

We apply heuristics to decide which is most efficient
for a given failure.

Rebalancing Replicas

Loss of a node

Permanent Failure

If a node goes down, the Raft
group realizes a replica is missing
and replaces it with a new replica
on an active node

Uses the replica placement
heuristics from previous slides

=
HH‘
=

Rebalancing Replicas

Loss of a node

Permanent Failure

If a node goes down, the Raft
group realizes a replica is missing
and replaces it with a new replica
on an active node

Uses the replica placement
heuristics from previous slides

The failed replica is removed from the Raft group
and a new replica created. The leaseholder sends a
snapshot of the Range’s state to bring the new
replica up to date.

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

Transactions in CockroachDB are serializable, @’
always

+ Transactions can span arbitrary Ranges

« Conversational
* Full set of operations not required up front

Transaction atomicity supported with Raft atomic writes
Transaction record atomically flipped from PENDING to COMMIT

29

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

carl
dagne
figment

Jack

lady
lula
muddy
peetey

lady
lula
muddy
peetey

carl
dagne
figment

jack

lady
lula
muddy
peetey

carl
dagne
figment

Jjack

30

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1

transactions
TxN1: PENDING

GATEWAY

31

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING .
transactions

TXN1: PENDING

BEGIN TXN1

transactions

GATEWAY TXN1: PENDING

32

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING .
transactions

TXN1: PENDING

BEGIN TXN1

transactions

GATEWAY TXN1: PENDING

33

Distributed Transactions ?6

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING .
transactions

TXN1: PENDING

BEGIN TXN1
WRITE [sunny]

transactions
TxN1: PENDING

GATEWAY

34

Distributed Transactions ?6

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING .
transactions

TXN1: PENDING

BEGIN TXN1
WRITE [sunny]

transactions
TxN1: PENDING

GATEWAY

35

Distributed Transactions ?6

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING .
transactions

TXN1: PENDING

BEGIN TXN1
WRITE [sunny]

transactions
TxN1: PENDING

GATEWAY

36

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

GATEWAY

lady
lula
muddy
ozzie

peetey

lady
lula
muddy
peetey

transactions
TxN1: PENDING

transactions
TXN1: PENDING

lady o
;ufg

muddy

peetey

transactions
TXN1: PENDING

37

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

GATEWAY

lady
lula
muddy
ozzie

peetey
transactions

TXN1: PENDING .
transactions

\ TxN1: PENDING
lady
lula

lady
lula

muddy

ozzie
muddy

peetey
ozzie

peetey

transactions
TxN1: PENDING

38

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

GATEWAY

lady
lula
muddy
ozzie

peetey
transactions

TXN1: PENDING .
transactions

\ TxN1: PENDING
lady
lula

lady
lula

muddy

ozzie
muddy

peetey
ozzie

peetey

transactions
TxN1: PENDING

39

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

lady
lula
muddy
ozzie

peetey

BEGIN TXN1
WRITE [sunny]
WRITE [ozzie]

transactions

GATEWAY TXN1: PENDING

lady
lula
muddy
ozzie

peetey

transactions
TXN1: PENDING

lady
lula
muddy
ozzie

peetey

transactions
TXN1: PENDING

40

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1

WRITE [sunny]
WRITE [ozzie]

COMMIT
GATEWAY

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMIT

lady
lula
muddy
ozzie

peetey
transactions
TXN1: COMMIT

lady
lula
muddy
ozzie

peetey

transactions
TXN1: COMMIT

41

Distributed Transactions

INSERT INTO dogs
VALUES (sunny, ozzie)

BEGIN TXN1

WRITE [sunny]
A WRITE [ozzie]
COMMIT

GATEWAY

lady
lula

muddy

ozzie

peetey

lady
lula
muddy
ozzie

peetey

lady
lula
muddy
ozzie

peetey

42

Transactions: Pipelining

Serial

Pipelined

43

Transactions: Pipelining %)

Serial Pipelined

£Xn: sunny (pending) “

———
-
N
—
-

—————— sunny
BEGIN

WRITE[sunny] | bl

44

Transactions: Pipelining

BEGIN
WRITE[sunny]

WRITE[ozzie]

Serial

EXN:sunny (pending)

=
— — -
—— -
—
-

- —
- -
— = = T
=
= =
= =

—
-
-
—————
—
-
——

[)

Pipelined

“
“’

45

Transactions: Pipelining

BEGIN
WRITE[sunny]

WRITE[ozzie]
COMMIT

£XN:sunny (pending)

Serial

=
— — -
— =
—
-

=
-
— —
== ==
-
-
-—

—
— — -
— =
== =
-

Pipelined

“
“
txn:sunn
Y (sta

[)

46

Transactions: Pipelining

BEGIN
WRITE[sunny]

WRITE[ozzie]
COMMIT

Serial

txn:sunny (pending)

sunny
0zzie
t .
[?n.§unny (commit
€Ys: sunny, Ozzie] ==

Pipelined

sunny
0zzie

txn:sunn
[keys:=sun

y (staged)

ny, 0zzie]

Committed once all
operations complete

We replaced the

centralized commit marker
with a distributed one

47

Parallel Commits v. Two-Phase Commit
(Pipelined v. Serial)

—s=— Parallel Commits =4~ Two—Phase Commit

-
21500 =
=N ~
%DVJIOOO \‘\ B —— —iff —=
2 £ 500 R F = e e ——
£ 0
55/-\ 150 Y il el A = — = = = A = = = = A = —— - —
i e i
g 50

0

Number of Secondary Indexes

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

SQL: Tabular Data in a KV World ?6

How do we store typed and columnar data in a distributed, replicated, transactional
key-value store?

« The SQL data model needs to be mapped to KV data

* Reminder: keys and values are lexicographically sorted

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,
price FLOAT

)
ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33

Key

/1

/2

/3

Value
“Bat”,1.11
“Ball”,2.22

“Glove”,3.33

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,
price FLOAT

)
ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33

Key
/<Table>/<Index>/1
/<Table>/<Index>/2

/<Table>/<Index>/3

Value
“Bat”,1.11
“Ball”,2.22

“Glove”,3.33

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,
price FLOAT

)
ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33

Key
/inventory/primary/1
/inventory/primary/2

/inventory/primary/3

Value
“Bat”,1.11
“Ball”,2.22

“Glove”,3.33

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,
price FLOAT,

INDEX name_idx (name)

)
ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33

Key
/inventory/name_idx/*”Ball”/2
/inventory/name_idx/”Bat”/1

/inventory/name_idx/”’Glove”/3

Value

(%]

(%]

(%]

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (
id INT PRIMARY KEY,
name STRING,
price FLOAT,

INDEX name_idx (name)

)
ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33

4 Bat 4.44

Key
/inventory/name_idx/*”Ball”/2
/inventory/name_idx/”Bat”/1

/inventory/name_idx/”Glove”/3

Value

(%]

(%]

(%]

SQL Data Mapping: Inventory Table

CREATE TABLE inventory (

ID

id INT PRIMARY KEY,
name STRING,

price FLOAT,

INDEX name_idx (name)

Name Price
Bat 1.11
Ball 2.22
Glove 3.33
Bat 4.44

Key
/inventory/name_idx/*”Ball”/2
/inventory/name_idx/”Bat”/1
/inventory/name_idx/”Bat”/4

/inventory/name_idx/”Glove”/3

Value

Q

Q

Q

Q

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

SQL Execution

Relational operators
» Projection (SELECT <columns>)
« Selection (WHERE <filter>)
« Aggregation (GROUP BY <columns>)
* Join (JOIN), union (UNION), intersect (INTERSECT)
« Scan (FROM <table>)

Sort (ORDER BY)
« Technically, not a relational operator

SQL Execution

« Relational expressions have 0-2 input expressions
« Query plan is a tree of relational expressions
« SQL execution takes a query plan and runs the operations to completion

SQL Execution: Example

SELECT name
FROM inventory
WHERE name >= “b” AND name < ‘“c”

SQL Execution: Scan

SELECT name
FROM inventory
WHERE name >= “b” AND name < ‘“c”

Scan

inventory

SQL Execution: Filter

SELECT name
FROM inventory
WHERE name >= “b” AND name < “c”

Scan ‘ Filter

inventory name >= “b” AND name < “c”

SQL Execution: Project

SELECT name
FROM inventory
WHERE name >= “b” AND name < ‘“c”

Scan ‘ Filter - Project
name >= “b” AND name < “c” name

SQL Execution: Project

SELECT name
FROM inventory
WHERE name >= “b” AND name < ‘“c”

Scan ‘ Filter - Project ‘ Results
name >= “b” AND name < “c” name

SQL Execution: Index Scans

SELECT name
FROM inventory
WHERE name >= “b” AND name < “c”

Scan

inventory@name [“b” - “C”)

The filter gets pushed into the scan

SQL Execution: Index Scans

SELECT name
FROM inventory
WHERE name >= “b” AND name < ‘“c”

Scan ‘ Project

inventory@name [‘b” - “C”) name

-

Distributed SQL Execution

Network latencies and throughput
are important considerations in
geo-distributed setups

Push fragments of computation as
close to the data as possible

Distributed SQL Execution

SELECT COUNT(*), country
FROM customers
GROUP BY country

Scan Scan Scan
customers customers customers

: Streaming Group By

y f
E P

3

T
Scan o0

S

scan

[)

Distributed SQL Execution: Streaming Group By ©

SELECT COUNT(*), country
FROM customers
GROUP BY country

Scan Scan Scan
customers customers customers
Group-By Group-By Group-By
“country” “country” “country”

group-by

Distributed SQL Execution: Streaming Group By

SELECT COUNT(*), country
FROM customers
GROUP BY country

Scan Scan Scan
customers customers customers
Group-By Group-By Group-By
“country” “country” “country”
Group-By
“country”

grou p-by‘/

-

7

/
E

¥

[)

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

SQL Optimization: Cost-based Index Selection ©

The index to use for a query is affected by multiple factors
Filters and join conditions
* Required ordering (ORDER BY)
« Implicit ordering (GROUP BY)
« Covering vs non-covering (i.e. is an index-join required)
« Locality

SQL Optimization: Cost-based Index Selection ©

SELECT * Required orderings affect index selection
FROM a Sorting is expensive if there are a lot of rows
WHERE X > 10 Sorting can be the better option if there are few rows

ORDER BY vy

SQL Optimization: Cost-based Index Selection [

SELECT * Required orderings affect index selection

FROM a Sorting is expensive if there are a lot of rows

WHERE X > 10 Sorting can be the better option if there are few rows
ORDER BY y

Scan Filter Sort
- -

SQL Optimization: Cost-based Index Selection

SELECT * Required orderings affect index selection

FROM a Sorting is expensive if there are a lot of rows

WHERE X > 10 Sorting can be the better option if there are few rows
ORDER BY y

Scan — Filter - Sort
Scan Sort
‘

[)

SQL Optimization: Cost-based Index Selection

SELECT * Required orderings affect index selection

FROM a Sorting is expensive if there are a lot of rows

WHERE X > 10 Sorting can be the better option if there are few rows
ORDER BY y

Scan — Filter — Sort
Scan Sort
-
Scan Filter

[)

SQL Optimization: Cost-based Index Selection

SELECT * Required orderings affect index selection

FROM a Sorting is expensive if there are a lot of rows

WHERE X > 10 Sorting can be the better option if there are few rows
ORDER BY y

Scan — Filter — Sort
Scan Sort Lowest
o e

Scan ‘ Filter ‘
100,000 x>10 10

[)

SQL Optimization: Cost-based Index Selection ©

SELECT * Required orderings affect index selection
FROM a Sorting is expensive if there are a lot of rows
WHERE X > 10 Sorting can be the better option if there are few rows
ORDER BY vy
Scan E— Filter E— Sort

Scan Sort

a@x[10-) y

50,000 50,000

Scan E— Filter) Lowest
100,000 x>10 50,000 Cost

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

Locality-Aware SQL Optimization and Execution ©

Network latencies and throughput
are important considerations in
geo-distributed setups

Historically required expert users to
shard and place data in specific
regions. -,

Locality-Aware SQL Optimization and Execution ©

Database should be aware of
regions, so users don't need to be.

New concept: Table Locality
REGIONAL Of GLOBAL

Tables accessed from a single region or
amenable to partitioning use locality

REGIONAL

Read-mostly tables not amenable to
partitioning use locality GLOBAL

Queries leverage data closest to them

Regional tables

REGIONAL BY TABLEV REGIONAL CREATE TABLE users (

BY ROW id UUID PRIMARY KEY DEFAULT gen_random uuid()
email STRING UNIQUE,
name STRING

. LOCALITY REGIONAL BY ROW
In REGIONAL BY ROW, data is)

partitioned by a hidden
crdb regioncolumn, which is set
to the local region on insert.

Post-query uniqueness checks F
ensure that email remains unique.

Inserting into a Regional by Row table

> EXPLAIN (OPT) INSERT INTO users (email, name)
VALUES ('becca@cockroachlabs.com', 'Rebecca Taft');

info
insert users
F—— values
| L ("becca@cockroachlabs.com ', 'Rebecca Taft',

| gen random uuid(), 'us-westl')
L — unique-check: users (email)
L — semi-join (lookup users@users email key)
F—— with-scan &1
L filters
L— (id != users.id) OR

(crdb region != users.crdb region)

mailto:becca@cockroachlabs.com

Reading from a Regional by Row table

Automatically checks the local CREATE TABLE users (
. f. b 'f f . id UUID PRIMARY KEY DEFAULT
remote regions. name STRING

) LOCALITY REGIONAL BY ROW

SELECT * FROM users
WHERE email = becca@cockroachlabs.com

gen_random_uuid()

5

Reading from a Regional by Row table

> EXPLAIN (OPT) SELECT * FROM users
WHERE email = 'becca@cockroachlabs.com';
info

index-join users
L— locality-optimized-search
F—— scan users@users email key
| L— [/'us-westl'/'beccalcockroachlabs.com']
L— scan users@users email key
— [/'europe-westl'/'becca@cockroachlabs.com']
L— [/'us-eastl'/'beccalcockroachlabs.com']

Global tables

Non-voting replicas which don't CREATE TABLE postal codes (
. . id INT PRIMARY KEY,
impact write latency code STRING

) LOCALITY GLOBAL

System automatically places a
non-voting replica in regions without
a voting replica

“Non-blocking” transactions cause
writes to commit at a future F
timestamp and avoid blocking reads -

Local reads from Global tables

Automatically reads from replica
(voting or non-voting) in the read'’s
region

CREATE TABLE postal_codes (
id INT PRIMARY KEY,
code STRING

) LOCALITY GLOBAL

SELECT * FROM postal_codes E
\ o
o

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Locality Awareness
Evaluation

Comparison with Spanner on YCSB
CRDB 4 vCPUs i CRDB 16 vCPUs

" CRDB 8 vCPUs ll Spanner

200,000
100,000

Throughput (txns/s)

60,000
40,000
20,000

O_

Add. .

SIOAIDS €

0_11‘1_

SIOAIOS G

A B C D E F
YCSB Workload

ek

O B O 00 O

Latency (ms)

[)

Average
" 95th Percentile
¥ 99th Percentile

Reads

Updates

TPC-C With Varying Cross-Node Coordination [%)

—— 1 O%
L Percentage of Remote
+ — -
Replication Factor e g New Order Transactions ___ %8(0)/3%

© 100,000

<
Ll
o
S
S

25,000

Maximum tpm
)]
=
o
S
S

Agenda

Introduction

Ranges and Replicas
Transactions

SQL Data in a KV World
SQL Execution

SQL Optimization
Evaluation

Thank You

We are hiring! www.cockroachlabs.com/careers
github.com/cockroachdb/cockroach
becca@cockroachlabs.com

Comparison with Amazon Aurora on TPC-C

Warehouses

1,000 10,000 100,000
CockroachDB
Max tpmC 12,474 124,036 1,245,462
Efficiency 97.0% 96.5% 98.8%
NewOrder p90 latency | 39.8 ms 436.2 ms 486.5 ms
Machine type (AWS) c5d.4xlarge | c5d.4xlarge | c5d.9xlarge
Node count 3 15 81
Amazon Aurora [55]
Max tpmC 12,582 9,406 =
Efficiency 97.8% 7.3% -
Latency, machine type, and node count not reported

Multi-Region TPC-C Performance with AZ and Region@
Failure

Geo—Part. Leaseholders — Geo—Part. Replicas w/ Dup. Index

— Geo—Part. Replicas Unpartitioned

= AZ Regi /

8“ PR Failurel I Fjﬁijorz | |

__ 6000 | | I
> L
= S 8000 : | : :
=
= WWJ %4' WI MT&MCZK
=
X 2 500 |
~8 0 20 40 60

Elapsed time (minutes)

Scalability on sysbench ©

E —eo— QOLTP Inserts =4~ OLTP Point Selects
@ N
g E 2888 Vertical Scaling : Horizontal Scaling
A
=% 3000 et S S S S SRR
2. 2000 .
ED é 1000 o&——*—=* —— ﬂl = ® s
- 0
g 6 12 24 48 108 216 432 864 1728
[~

vCPUs (log scale)

Overheads of CRDB Layers ©

M Storage M Replication [Distribution = Transactional KV SQL

Write
Single Key| .

Read

0.5 1.0 1.5
Elapsed Time (ms)

