
Streaming Systems

Instructor: Matei Zaharia



Outline

Motivation

Streaming query semantics

Query planning & execution

Fault tolerance

Parallel processing

CS 245 2



Outline

Motivation

Streaming query semantics

Query planning & execution

Fault tolerance

Parallel processing

CS 245 3



Motivation

Many datasets arrive in real time, and we 
want to compute queries on them 
continuously (efficiently update result)

CS 245 4



Example Query 1

Users visit pages and we want to compute # 
of visits to each page by hour

SELECT page,
FORMAT(time, “YYYYMMDD-HH”) AS hour,
COUNT(*) AS cnt

FROM visits
GROUP BY page, hour

CS 245 5



Example Query 2

Users visit pages and we want to compute # 
of visits by hour and user’s service plan

SELECT users.plan,
FORMAT(visits.time, “YYYYMMDD-HH”) AS hour,
COUNT(*) AS cnt

FROM visits JOIN users
GROUP BY users.plan, hour

CS 245 6



Challenges
1. What do these queries even mean?

» E.g. in Q2, what if a user’s plan attribute 
changes over time?

» Even in Q1, what is “time” – the time of 
the visit or the time we got the event?

2. What does consistency mean here?
» Can’t say “serializability” since these are 

infinitely long queries

3. How to implement this in real systems?
» Query planning, execution, fault tolerance

CS 245 7



Timeline of Streaming Systems

Early 2000s: lots of research on streaming 
database (SQL) systems
» Stanford’s STREAM, Berkeley’s TelegraphCQ, 

MIT’s Aurora & Borealis
» Let to several startups, e.g. Truviso, StreamBase

2004-2011: open source systems including 
ActiveMQ, Kafka, Storm, Flink, Spark

2017-2020: many of the open source
systems add streaming SQL support
CS 245 8



Outline

Motivation

Streaming query semantics

Query planning & execution

Fault tolerance

Parallel processing

CS 245 9



Streaming Query Semantics

Kind of hard to define!

Many variants out there, but we’ll cover one 
reasonable set of approaches
» Based on Stanford CQL, Google Dataflow 

and Spark Structured Streaming
» Combine streams & relations

CS 245 10



Streams

A stream is a sequence of tuples, each of 
which has a special processing_time attribute 
that indicates when it arrives at the system

New tuples in a stream have non-decreasing
processing times

CS 245 11

(user1, index.html, 2020-01-01 01:00)
(user1, checkout.html, 2020-01-01 01:20)
(user2, index.html, 2020-01-01 01:20)
(user2, search.html, 2020-01-01 01:25)
(user2, checkout.html, 2020-01-01 01:30)



Relations

We’ll also consider relations in our system, 
which may change over time

Assume we have serializable transactions, 
and tuples change when a txn commits

CS 245 12



Dealing with Time: Event Time

One subtle issue is that the time when an 
event occurred in the world may be different 
than the processing_time when we got it
» E.g. clicks on mobile app with slow upload, 

inventory in a warehouse, etc

Solution: make the real-world time, 
event_time, be an attribute in each record

⇒ Tuples may be out-of-order in event time!

CS 245 13



Event Time Example
user page event_time processing_time
user1 index.html 01:00 01:00
user1 checkout.html 01:19 01:20
user2 index.html 01:21 01:20
user2 search.html 01:22 01:25
user2 checkout.html 01:23 01:30
user1 search.html 01:15 01:35

CS 245 14

Always non-decreasing,
set via DB system clock

Could be out-of-order,
maybe even for 1 user;

Could be incorrect clock



Queries on Event Time

Event time is just another attribute, so you 
can use group by, etc:

SELECT page,
FORMAT(event_time, “YYYYMMDD-HH”) AS hour,
COUNT(*) AS cnt

FROM visits
GROUP BY page, hour

CS 245 15

What if records keep arriving really late?



Bounding Event Time Skew

Some systems allow setting a max delay on 
late records to avoid unbounded state

Usually combined with watermarks: track 
event times currently being processed and 
set the threshold based on that
» Helps handle case of processing system being slow!
» E.g. min event_time allowed = (min seen in past 5 

minutes) – 30 minutes

CS 245 16



Back to Streams & Relations

What does it mean to do a query on a 
stream?

SELECT * FROM visits WHERE page=“checkout.html”

→ Easy, the output is a stream…

SELECT page, COUNT(*) FROM visits GROUP BY page

→ What is the output? A relation?
CS 245 17



Stanford CQL Semantics

CQL = Continuous Query Language; 
research project by dean Jennifer Widom!

“SQL on streams” semantics based on SQL 
over relations + stream ⟷ relation operators

CS 245 18



CQL Stream-to-Relation Ops
Windowing: select a contiguous range of a 
stream in processing time

Time-based window: S [RANGE T]
» E.g. visits [range 1 hour]

Tuple-based window: S [ROWS N]
» E.g. visits [rows 10]

Partitioned: S [PARTITION BY attrs ROWS N]
» E.g. visits [partition by page rows 1]

CS 245 19

All visits with processing time
in the past hour

Last 10 visits received at system

Last visit received for each page



CQL Stream-to-Relation Ops

Many downstream operations can only be 
done on bounded windows!

CQL also allows S [RANGE UNBOUNDED] but not 
all operations are allowed after that
» Only those that can be done with a finite 

amount of state; we’ll see more on this later

CS 245 20



CQL Relation-to-Relation Ops

All of SQL! Join, select, aggregate, etc

CS 245 21



CQL Relation-to-Stream Ops

Capture changes in a relation based on its 
contents at each processing time t:

» ISTREAM(R) contains a tuple (s, t) when tuple 
s was inserted in R at processing time t

» DSTREAM(R) contains (s, t) whenever tuple s 
was deleted from R at processing time t

» RSTREAM(R) contains (s, t) for every tuple s in 
R at processing time t

CS 245 22



Example Query 1
SELECT ISTREAM(*)
FROM visits [RANGE UNBOUNDED]
WHERE page=“checkout.html”

Returns a stream of all visits to checkout
» Step 1: convert visits stream to a relation via 

“[RANGE UNBOUNDED]” window
» Step 2: selection on this relation (σpage=checkout)
» Step 3: convert the resulting relation to an 
ISTREAM (just output new items)

CS 245 23



Example Query 2
SELECT *
FROM visits [RANGE UNBOUNDED]
WHERE page=“checkout.html”

Maintains a table of all visits to checkout
» Step 1: convert visits stream to a relation via 

“[RANGE UNBOUNDED]” window
» Step 2: selection on this relation (σpage=checkout)

CS 245 24

Note: table may grow indefinitely over time



Example Query 3
SELECT page, COUNT(*)
FROM visits [RANGE 1 HOUR]
GROUP BY page

Maintains a table of visit counts by page for 
the past 1 hour (in processing time)
» Step 1: convert visits stream to a relation via 

“[RANGE 1 HOUR]” window
» Step 2: aggregation on this relation

CS 245 25



Example Query 4
SELECT page,

FORMAT(event_time, …) AS hour,
COUNT(*)

FROM visits [RANGE UNBOUNDED]
GROUP BY page, hour

Maintains a table of visit counts by page and 
by hour of event time

CS 245 26

This table will grow indefinitely unless we 
bound event times we accept



Syntactic Sugar in CQL
SELECT ISTREAM(*)
FROM visits [RANGE UNBOUNDED]
WHERE page=“checkout.html”

SELECT * FROM visits WHERE page=“checkout.html”

Automatically infer “range unbounded” and “istream” 
for queries on streams

CS 245 27



When Do Stream⟷Relation
Interactions Happen?
In CQL, every relation has a new version at 
each processing time

Example: joins are against the version at 
each proc. time, unless you use RSTREAM on 
the table to access an older version

Can also use RSTREAM for self-joins of a 
stream (e.g. what was the user doing 1h ago)

CS 245 28



When Does the System 
Actually Write Output?
In CQL, the system updates all tables or 
output streams at each processing time 
(whenever an event or query arrives)

In practice, may want triggers for when to 
output, especially if writing to another system
» E.g. update visits report only every minute
» E.g. update visits by event-time only after the 

watermark for that event-time passes

CS 245 29



Google Dataflow Model

More recent API, used at Google and open 
sourced (API only) as Apache Beam

Somewhat simpler approach: streams only, 
but can still output either streams or relations

Many operators and features specifically for 
event time & windowing

CS 245 30



Google Dataflow Model

Each operator has several properties:
» Windowing: how to group input tuples

(can be by processing time or event time)
» Trigger: when the operator should output 

data downstream
» Incremental processing mode: how to 

pass changing results downstream (e.g.
retract an old result due to late data)

CS 245 31



Example

CS 245 32



Example

CS 245 33



Example

CS 245 34



Example

CS 245 35



Example

CS 245 36



Spark Structured Streaming

Even simpler model: specify an end-to-end 
SQL query, triggers, and output mode
» Spark will automatically incrementalize query

CS 245 37



Spark Structured Streaming

Even simpler model: specify an end-to-end 
SQL query, triggers, and output mode
» Spark will automatically incrementalize query

CS 245 38

Example Spark SQL batch query:



Spark Structured Streaming

Even simpler model: specify an end-to-end 
SQL query, triggers, and output mode
» Spark will automatically incrementalize query

CS 245 39

Spark SQL streaming query:



Query Semantics

CS 245 40



Other Streaming API Features

Session windows: each window is a user 
session (e.g. 2 events count as part of the 
same session if they are <30 mins apart)

Custom stateful operators: let users write 
custom functions that maintain a “state” 
object for each key

CS 245 41



Outputs to Other Systems

CQL had a “closed world” model where all 
relations are in the DB, but this is unrealistic

In general, if you output data to another 
system, you either need transactions on that 
system or “at least once” outputs

CS 245 42

Streaming 
App

E.g. compute
visits by hour

Table read
by users



Outputs to Other Systems

CQL had a “closed world” model where all 
relations are in the DB, but this is unrealistic

In general, if you output data to another 
system, you either need transactions on that 
system or “at least once” outputs

CS 245 43

Streaming 
App

E.g. compute
visits by hour

Table read
by users



Outputs to Other Systems

CQL had a “closed world” model where all 
relations are in the DB, but this is unrealistic

In general, if you output data to another 
system, you either need transactions on that 
system or “at least once” outputs

CS 245 44

Streaming 
App

E.g. compute
visits by hour

Table read
by users

🤔
What version did I last

write to MySQL?



Outputs to Other Systems

Transaction approach: streaming system 
maintains some “last update time” field in the 
output transactionally with its writes

At-least-once approach: for queries that 
only insert data (maybe by key), just run again 
from last proc. time known to have succeeded
CS 245 45

Streaming 
App

E.g. compute
visits by hour

Table read
by users

Last update proc. time



Outline

Motivation

Streaming query semantics

Query planning & execution

Fault tolerance

Parallel processing

CS 245 46



How to Run Streaming Queries?

1) Query planning: convert the streaming 
query to a set of physical operators
» Usually done via rules

2) Execute physical operators
» Many of these are “stateful”: must 

remember data (e.g. counts) across tuples

3) Maintain some state reliably for recovery
» Can use a write-ahead log

CS 245 47



Streaming Operators

Similar to the physical ops in a batch engine, 
but some extra ones with (more) state

Examples:

CS 245 48

σReadStream
(e.g. from message

bus or TCP port)

P Aggregate
(maybe with

bounded event
time range)

⨝
(with bounded

event time range)

WriteStream
(using transactions
or at-least-once)



Query Planning

We don’t have time to cover this in detail, but 
there are good algorithms to 
“incrementalize” a SQL query

E.g. convert CQL query to windows, ISTREAM, 
DSTREAM, and relational ops on bounded-size 
intermediate tables 

CS 245 49



Fault Tolerance

Need to maintain:
» What data we outputted in external systems 

(usually, up to which processing time)
» What data we read from each source at each 

proc. time (can also ask sources to replay)
» State for operators, e.g. partial count & sum

What order should we log these items in?

CS 245 50



Fault Tolerance

Need to maintain:
» What data we outputted in external systems 

(usually, up to which processing time)
» What data we read from each source at each 

proc. time (can also ask sources to replay)
» State for operators, e.g. partial count & sum

What order should we log these items in?
» Typically must log what we read at each proc. 

time before we output for that proc. time 
» Can log operator state asynchronously if we can 

replay our input streams
CS 245 51



Example: Structured Streaming

CS 245 52



Outline

Motivation

Streaming query semantics

Query planning & execution

Fault tolerance

Parallel processing

CS 245 53



Parallel Stream Processing

Required for very large streams, e.g. app 
logs or sensor data

Additional complexity from a few factors:
» How to recover quickly from faults & stragglers?
» How to log in parallel?
» How to write parallel output atomically?

(An issue for parallel jobs in general; see Delta)

CS 245 54



Parallel Stream Processing

Typical implementation:

How to recover quickly from faults & stragglers?
» Split up the recovery work (like MapReduce)

How to log in parallel?
» Head node can log input offsets for all readers 

on each “epoch”; state logged asynchronously

How to write parallel output atomically?
» Use transactions or only offer “at-least-once”

CS 245 55



Summary

Streaming apps require a different semantics

They can be implemented using many of the 
techniques we saw before
» Rule-based planner to transform SQL ASTs 

into incremental query plans
» Standard relational optimizations & operators
» Write-ahead logging & transactions

CS 245 56


