Security and Data
Privacy

Instructor: Mateil Zaharia

Outline

Security requirements
Key concepts and tools
Differential privacy

Other security tools

Outline

Security requirements
Key concepts and tools
Differential privacy

Other security tools

Why Security & Privacy?

Data is valuable & can cause harm if released

» Example: medical records, purchase history,
internal company documents, etc

Data releases can’t usually be “undone”

Security policies can be complex
» Each user can only see data from their friends

» Analyst can only query aggregate data
» Users can ask to delete their derived data

Why Security & Privacy?

It’s the law! new regulations about user data:

US HIPAA: Health Insurance Portability &
Accountability Act (1996)

» Mandatory encryption, access control, training

EU GDPR: General Data Protection
Regulation (2018)

» Users can ask to see & delete their data

PCI: Payment Card Industry standard (2004)
» Required in contracts with MasterCard, etc

Consequence

Security and privacy must be baked into the
design of data-intensive systems

» Often a key differentiator for products!

The Good News

Declarative interface to many data-intensive
systems can enable powerful security features
» One of the “big ideas” in our class!

Example: System R’s access control on views

. read
. arbitrary
SQLquery g W”te

Tables View Users

CS 245

Outline

Security requirements
Key concepts and tools
Differential privacy

Other security tools

Some Security Goals

Access Control: only the “right” users can

perform various operations; typically relies on:

» Authentication: a way to verify user identity
(e.g. password)

» Authorization: a way to specify what users
may take what actions (e.g. file permissions)

Auditing: system records an incorruptible
audit trail of who did each action

Some Security Goals

Confidentiality: data is inaccessible to
external parties (often via cryptography)

Integrity: data can’t be modified by external
parties

Privacy: only a limited amount of information
about “individual” users can be learned

Clarifying These Goals

Say our goal was access control: only Matei can
set CS 245 student grades on Axess

What scenarios should Axess protect against?

1.

2.

2

Bobby T. (an evil student) logging into Axess as
himself and being able to change grades

Bobby sending hand-crafted network packets to
Axess to change his grades

Bobby getting a job as a DB admin at Axess
Bobby guessing Matei’s password

Bobby blackmailing Matei to change his grade
Bobby discovering a flaw in AES to do #2

Threat Models

To meaningfully reason about security, need a
threat model: what adversaries may do

» Same idea as failure models!

For example, In our AXess scenario, assume:

» Adversaries only interact with Axess through
its public API

» No crypto algorithm or software bugs
» NO password theft

Implementing complex security policies can be

hard even with these assumptions!

Threat Models

No useful threat model can cover everything

» (Goal: cover the most feasible scenarios for
adversaries to increase the cost of attacks

Threat models also let us divide security
tasks across different components

» E.g. auth system handles passwords, 2FA

Threat Models

CS 245

I MAGINATION &

A CRYPTO NERD'S

WHAT WOULD

HIS LAPTOP'S ENCRYPTED.

) |

ACTVALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR DRUG HIM AND HIT HIM WITH

CLUSTER To CRACK \T-

THIS $5 WRENCH UNTIL

VIL PLRN
1S FOILED! ™

“R

Source: XKCD.com

14

Useful Building Blocks

Encryption: encode data so that only parties
with a key can efficiently decrypt

Cryptographic hash functions: hard to find
items with a given hash (or collisions)

Secure channels (e.g. TLS): confidential,
authenticated communication for 2 parties

Security in a Typical DBMS

First-class concept of users + access control
» Views as in System R, tables, etc

Secure channels for network communication
Audit logs for analysis

Encrypt data on-disk (perhaps at OS level)

Emerging Ideas for Security

Privacy metrics and enforcement thereof
(e.g. differential privacy)

Computing on encrypted data (e.g. CryptDB)
Hardware-assisted security (e.g. enclaves)

Multi-party computation (e.g. secret sharing)

Outline

Security requirements
Key concepts and tools
Differential privacy

Other security tools

Motivation

Many applications can be built on user data,
but how to make sure that analysts with
access to data don’t see personal secrets?

Example: what word is most likely to be
typed after “Want to grab” in a text message?

» Need peoples’ texts but they’re very sensitive!

Example: what’s the most common diagnosis
for hospital patients aged <40 in Palo Alto?

Threat Model

Table with Database
private data server Analysts

» Database software is working correctly
» Adversaries only access it through public API
» Adversaries have limited # of user accounts

CS 245 20

How to Define Privacy?

This is conceptually very tricky! How to
distinguish between

SELECT TOP(disease) FROM patients WHERE
state=“California”

and

SELECT TOP(disease) FROM patients WHERE
name=“Matei Zaharia”

How to Define Privacy?

Also want to defend against adversaries who
have some side-information; for instance:

SELECT TOP(disease) FROM patients WHERE
birth_year=“19XX” AND gender=“M” AND
born_in=“Romania™ AND ...

™ Side information about Matei

Also consider adversaries who do multiple
queries (e.g. subtract 2 results)

CS

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

Abstract

We present a new class of statistical de-
anonymization attacks against high-dimensional
micro-data, such as individual preferences, recommen-
dations, transaction records and so on. Our techniques
are robust to perturbation in the data and tolerate some
mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix Prize dataset, which contains anonymous movie
ratings of 500,000 subscribers of Netflix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset. Using the Internet
Movie Database as the source of background knowl-
edge, we successfully identified the Netflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datasets containing micro-data, that is, information
about specific individuals, are increasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data are well-
ktnown Fven if identifiere <nch ac name< and Social

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal
model for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
the amount of information recovered about the target.
Unlike previous work [25], we do not assume a pri-
ori that the adversary’s knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of background knowledge about an individual
can use it to identify, with high probability, this individ-
ual’s record in the anonymized dataset and to learn all
anonymously released information about him or her, in-
cluding sensitive attributes. For sparse datasets, such as
most real-world datasets of individual transactions, pref-
erences, and recommendations, very little background
knowledge is needed (as few as 5-10 attributes in our
case study). Our de-anonymization algorithm is robust

Differential Privacy

Privacy definition that tackles these concerns
and others by looking at possible databases

» ldea: results that an adversary saw should be
“nearly as likely” for a database without Matei

Definition: a randomized algorithm M is
e-differentially private if for all S € Range(M),

PrM(A)ES] < Pr[M(B)ES] ee-lA@E\%I

Number of records that
differ in sets A and B

Equivalent Definition

A randomized algorithm M is e-differentially
private if for all SSRange(M) and all sets A, B

that differ in 1 element,

PrIM(A)ES] < PrM(B)€S] et

What Does It Mean?

Say an adversary runs some query and
observes a result X

Adversary had some set of results, S, that
lets them infer something about Matei if XeS

Then:
Pr[XeS | MateieDB] < e® Pr[XeS | Matei¢DB]
Pr[X¢S | MateieDB] < e® Pr[X&S | Matei¢DB]

and

Similar outcomes whether or not Matei in DB

What Does It Mean?

Example (assume €=0.1):

SELECT TOP(diagnosis) FROM patients WHERE age=XX
AND city=“Palo Alto” — flu

SELECT TOP(diagnosis) FROM patients WHERE age=XX
AND city=“Palo Alto” AND born=“Romania® > drug overdose

Does this mean Matei specifically took drugs?

» Result would have been nearly as likely (within 10%)
even if Matei were not in the database

» Could be we just got a low-probability result
» Could be most Romanians do drugs (no info on Matei)

Some Nice Properties of
Differential Privacy

Composition: can reason about the privacy
effect of multiple (even dependent) queries

Let queries M, each provide g-differential
privacy; then the sequence of queries {M}
provides (2, €)-differential privacy

Proof:
Pr[Vi M(A)=r] < glel+...+en)A®B| Pr[yj M.(B)=r}]

Adversary’s ability to distinguish DBs A & B

grows in a bounded way with each query

Some Nice Properties of
Differential Privacy

Parallel composition: even better bounds if
queries are on disjoint subsets

Let M, each provide e-differential privacy and
read disjoint subsets of the data; then the set
of queries {M} provides e-differential privacy

Example: query both average patient age in CA
and average patient age in NY

Some Nice Properties of
Differential Privacy

Easy to compute: can use known results for
various operators, then compose for a query

» Enables systems to automatically compute
privacy bounds given declarative queries!

Disadvantages of Differential
Privacy

Disadvantages of Differential
Privacy

Each user can only make a limited number of
queries (more precisely, limited total €)

» Their € grows with each query and can’t shrink

» Some methods bound total € but limit query types

How to set € in practice?

» Hard to tell what various values mean, though
there is a nice Bayesian interpretation

» Apple set =6 and researchers said it’s too high

Can’t query using arbitrary code (must know g)

Computing Differential
Privacy Bounds

Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns
|A| + Laplace(1/¢) is e-differentially private

05 \ I \

Laplace(b) distribution:
p(x) = 1/(2b) e-Xl/b

:O’
04 [~ :0!

T T T
1l

I 1}
?’U’C’ﬁ_

=2
=4

=

0.2 -

Mean: O
Variance: 2b?

01

04/1

-:10 8 6 4 -2 0 2 4 6 8 10

~—

Computing Differential
Privacy Bounds

Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns
|A| + Laplace(1/¢) is e-differentially private

Result of M(A) Result of M(B)
A for Count(A):1 07 for COUﬂt(B):1 08
>
PV
o
09_ - \Qk
-— ——
102 103 104 105 106 107 108 109 110 111 112 113

Value returned by M

CS 245 34

Computing Differential
Privacy Bounds

What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A

Computing Differential
Privacy Bounds

What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A

How much can one element of A affect result?

» In general case, unboundedly! No privacy
« SELECT AVG(wealth) WHERE city="Omaha, NB”

» If X € [0,m] for all X in A, then by at most m
* Adding Laplace(m/g) noise is e-differentially private

Paper bounds AVG, SUM for values x € [-1,1]

Computing Differential
Privacy Bounds

General notion to capture the impact of one
element: sensitivity

Sensitivity of a function f: U—R on sets is

Af = maXa ey differ in 1 element f(A) — f(B)]

Sensitivity Examples

Sensitivity
f(A) = |A] 1
f(A) = sum(A), x€[0,m] YXEA m
f(A) = avg(A), X€[0,m] YXEA m
f(A) = |{x€A | x is male}| 1
f(A) = |AB unbounded
f(A) = |AB|, each key has K

< k matches

Multi-dimensional Sensitivity

Can also define sensitivity for functions that
return multiple numerical results:

Sensitivity of a function f: U—-Rd on sets is

Af = maXxa gey difer in 1 element |IF(A) — f(B)|;

Example: f fits a linear model to the data...

Computing Differential
Privacy Bounds

Another concept, used to reason about set
transformations in PINQ: stability

A function T on sets is c-stable if for any two
input sets A and B,

Number of records

|T(A) D T(B)l <C |A D Bl +« that differ in Aand B

PINQ’s approach: let user do any # of set ops;

compute their stability; then let them do one
aggregate op and compute its sensitivity

Stability Examples

Stability
T(A) = Opredicate(A) (“Where”) 1
T(A) = Mgypors(A) (“Select”) 1
TAA,B)=AUB 1
T(A) = GroupBYy(A, expr) 2
(retruns 1 record/group)
T(A) = AB limited to at most 1

1 match per key

Partition Operator

Partition(dataset, key_list) returns a set of
|IQueryables: one for each key in your list

» User give the desired keys in advance (e.g.
“CA” or “NY”); can’t use to discover keys

» Lets PINQ use parallel composition rule
since the sets returned are all disjoint

Stability = 1

Analyzing Queries in PINQ

User calls multiple set transformation ops
and finally one aggregation/result op

» Transformations are lazy; can’t see result

PINQ computes stability of set ops and
multiplies by sensitivity of each aggregate to
get total sensitivity

User provides an € to aggregate; PINQ adds
noise proportional to sensitivity/e

Putting It All Together

Example 5 Measuring query frequencies in PINQ.

// prepare data with privacy budget
var agent = new PINQAgentBudget (1.0);
var data = new PINQueryable<string>(rawdata, agent);

// break out fields, filter by query, group by IP

var users = data.Select(line => line.Split(’,’))
.Where(fields => fields[20] == args[0])
.GroupBy (fields => fields[0]);

// output the count to the screen, or anywhere else
Console.WriteLine(args[0] + ": " + users.NoisyCount(0.1));

cricket: 127123.313

CS 245

44

Putting It All Together

@ C\Users\mcsherry. NORTHAMERICA\Documents\Visual Studio Codename Orcas\Projects\TechFest Console - Windows Internet Expl... [E=REEn =)

() * [@ cUsers\mesherry. NORTHAMERICA\Documents\Visual Studio Codename Or ~ [43 | x | virtual earth sal P~

Example 7 Transforming IP addresses to coordinates. P S YT —— T — T —————
- :

// ... within the per-query loop, from before ... 19)

IC] Nortir America

// use the searches for query, group by IP address °
var users = parts[query].GroupBy(fields => fields[0]); /ﬁ@

1] u]
// extract IP address from each group, and match . '
var coords = users.Join(iplatlon, 7 i e e
=> % = X
group group.Key, o i m "
entry => entry[0], e v Nl
(glist,elist) => elist.First()); - N ‘)
Pacific v A Atlantic
South America
Ocean Ocean

Indian Ocean

Microsoft* 3000 miles
Virtual Earth™
3 D Lt st DAATALATTES
W Computer | Protected Mode: Off #®100% ~

CS 245 45

Uses of Differential Privacy

Statistics collection about iOS features

“Randomized response”: clients add noise to
data they send instead of relying on provider

quenes
!‘u

Research systems that use DP to measure
security (e.g. Vuvuzela messaging)

CS 245 46

‘:*’5.; 0\38
Q Kalice * 0

Outline

Security requirements
Key concepts and tools
Differential privacy

Other security tools

Computing on Encrypted Data

Threat model: adversary has access to the
database server we run on (e.g. in cloud)

Idea: some encryption schemes allow
computing on data without decrypting it:

f...(ENC(X)) = Enc(f(X))

encl

Usually very expensive, but can be done
efficiently for some functions f!

Example Systems

CryptDB, Mylar (MIT research projects)
Encrypted BigQuery (CryptDB on BigQuery)

Leverage properties of SQL to come up with
efficient encryption schemes & query plans

Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

‘ Encrypt “state” column

SELECT * FROM table WHERE state=“XAYDS9”

Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

‘ Encrypt “state” column

SELECT * FROM table WHERE state=“XAYDS9”

Potential challenges with this scheme:
» Adversary can see relative frequency of keys

» Adversary sees which keys are accessed on
each query (e.g. Matei logs in — CA key read)

Other Encryption Schemes

Additive homomorphic encryption:

Enc(A + B) = Enc(A) ® Enc(B)
Fully homomorphic encryption:

ENC(f(A)) = fono(ENC(A) (10: or more overnona
Order-preserving encryption:

if A < B then Enc(A) < Enc(B)

Hardware Enclaves

Threat model: adversary has access to the
database server we run on (e.g. in cloud) but
can’t tamper with hardware

Idea: CPU provides an “enclave” that can
provably run some code isolated from the OS

» Enclaves returns a certificate signed by CPU
maker that it ran code C on argument A

Hardware Enclaves in Practice

Already present in all Intel CPUs (Intel SGX),
and many Apple custom chips (T2, etc)

Initial applications were digital rights mgmt.,
secure boot, secure login

» Protect even against a compromised OS

Some research systems explore using these
for data analytics: Opaque, ObliDB, others

Databases + Enclaves

1. Store data encrypted with an encryption
scheme that leaks nothing (randomized)

2. With each query, user includes a public key
K4 t0 encrypt the result with

3. Database runs a function f in the enclave
that does query and encrypts result with k,

4. User can verify f ran, DB can’t see result!

Performance is fast too (normal CPU speed)!

Are Enclaves Enough to Secure
Against Non-HW Adversaries?

Are Enclaves Enough to Secure
Against Non-HW Adversaries?

No! adversary can still get info by observing
access patterns to RAM or timing

» Similar to some attacks on encrypted DBs

Oblivious algorithms can help prevent this
but add more computational cost

» Oblivious = same access pattern regardless
of underlying data, query result, etc

Multi-Party Computation (MPC)

Threat model: participants p4, ..., p, want to
compute some joint function f of their data
but don’t trust each other

» E.g. patient stats across 2 hospitals

Idea: protocols that compute f without
revealing anything else to participants

» Like with encryption, general computations
are possible but expensive

Example: Secret Sharing

Users wants to store a secret value x among
n servers, but doesn’t fully trust them

» E.g. the servers are public clouds... what if
one gets hacked?

Idea: split x into “shares” x; so that all shares
are needed to recover X

Additive secret sharing: x = integer mod P,
X; are random integers so 2x, = X

Secret Sharing Example

Xy =3 X, =8 X, =4
(mod 10) (mod 10) (mod 10)

ab &) Gb -

@ 3+8+4=5(mod 10)

User
X =95 (mod 10)

Note: performance is quite fast (just additions)

Function Secret Sharing

Recent result that allows sharing some
functions too (keeping queries private)

Splinter (optional paper): Servers

uses FSS to run private @b @l @h

SQL q uerles On pu bl |C Splinter Splinter Splinter
Server Server Server
Library Library Library

A

data like Google Maps

Spllnter Client

Parametrized query:

SELECT TOP 10 restaurant
WHERE city = ? AND cuisine = ?
ORDER BY ratin

private parameters

Lineage Tracking and
Retraction

Goal: keep track of which data records were
derived from an individual input record

» Facilitate removing a user’s data in GDPR,
veritying compliance, etc

Some real systems provide this already at
low granularity, but could be baked into DB

Summary

Security and data privacy are essential
concerns for data-intensive systems

Threat models are a systematic way to
measure security and reason about designs

Many nice theoretical tools exist to reason
about security needs of relational & math ops

» Build on declarative and relational APIs!

