
CS 245 Final Exam
Winter 2022 Solutions

● Please read all instructions carefully. In case of any ambiguity, write any assumptions you
made in your answer. We can’t answer questions from students live during the exam, but
tell us about anything you found unclear later (in a private Ed post).

● There are six problems for a total of 85 points. You have 3 hours to take and upload the
exam to Gradescope (please give yourself ~5 minutes to upload within the 3 hours). If
you have issues uploading the test on Gradescope, please upload it on this Google Form,
but please beware that we may penalize late submissions.

● Unless you are taking the exam in person, you need to upload your solutions as a PDF
that exactly matches the page numbering of this document (the same questions are on
the same pages). You can do this by printing and scanning the exam, by annotating the
answers on the PDF for the exam, or by downloading the exam here as a Word document
or as a copy on Google Docs, filling it in and saving that as a PDF (make sure that each
question stays on the right page though). Ensure that the file you upload to Gradescope
is sharp, legible, and aligned.

● The test is open-book, but you are not allowed to communicate with other people to do it.
This includes asking public questions on Ed. You may also use the Internet during the
test, but keep in mind that many online resources might use terms differently from our
course, and that directly copying an online resource is considered plagiarism and is not
allowed. We don’t think you will need resources other than the course materials.

● Solutions will be graded on correctness and clarity. For the long-answer problems, please
show intermediate work. Each problem has a relatively simple to explain solution, and
we may deduct points for overly complex answers. Partial solutions will get partial credit.

NAME: __

SUID: ___

In accordance with both the letter and spirit of the Stanford Honor Code, I have neither given nor
received assistance on this test. A typed signature is fine. If uploading answers as a separate
document, please include your Name, SUID, and Signature clearly on your submission.

SIGNATURE: ___

https://docs.google.com/forms/d/e/1FAIpQLScy9jd_-g4LhmYSCkc5PPBpJfsLwYgFrqJipWYBcsCrSSexZA/viewform?usp=sf_link
https://docs.google.com/document/d/1bhUhAaR6B_oJHYLWFNd2r_gD37q5FGP2MFMUvnFksRc/edit?usp=sharing

Problem 1: Short Answers (19 points)
a) (2 points) Which of the following are true? (Circle or highlight all correct answers.)

(a) Columns tend to compress better than rows due to lower information entropy.
(b) It is typically faster to modify a record in a column store than a row store.
(c) Data warehouse workloads tend to involve large scans of fewer columns, making column

stores more suitable than row stores for data warehouses.
(d) Performance can increase if queries are executed directly on compressed data.

b) (2 points) Suppose that we have a table called Painting with attributes artist, year, and style.
Which of the following are valid rewrites of the query Πartist(σstyle = ‘impressionism’ (Painting))? (Circle
or highlight all correct answers.)

(a) Πartist (σstyle = ‘impressionism’(Πartist (Painting)))
(b) Πartist (σstyle = ‘impressionism’(Πstyle (Painting)))
(c) σstyle = ‘impressionism’(Πartist (Painting))
(d) Πartist (σstyle = ‘impressionism’(Πartist, style (Painting)))

c) (2 points) Consider an extendible hash table that uses the first i bits of b bits output by a hash
function to map it to a bucket. Suppose that each bucket can hold at most 2 keys and that the
table starts empty. We then insert keys with the following hashes, in the following order:

01100, 10010, 00110, 11111, 01010, 01110

After the insertions, the global depth is __3__, and the local depth of the bucket containing
00110 is __2__.

d) (2 points) Undo-redo logging often leads to better performance than either undo logging or
redo logging alone. What is the primary reason for this? (Circle or highlight one answer.)

(a) Undo-redo logging requires less disk space for the log.
(b) Undo-redo logging requires fewer disk I/Os than either of the other schemes before a

transaction can commit.
(c) Undo-redo logging gives the database more flexibility to decide when to write in-memory

pages to disk.
(d) Undo-redo logging requires fewer CPU cycles during logging.

e) (2 points) Consider the following undo-redo log with checkpointing that crashes at line 8.

Which changes will be un-done (list the line number(s))? __5__
Which changes will be re-done (list the line number(s))? __4__

0 <START, txn1>

1 <WRITE, txn1, x, 5, 6>

2 <START, txn2>

3 <START CHECKPOINT>

4 <WRITE, txn1, z, 7, 4>

5 <WRITE, txn2, y, 9, 10>

6 <END CHECKPOINT>

7 <COMMIT, txn1>

8 CRASH

f) (3 points) The following transaction schedules use the notation in class (for example, w1(A)
means that transaction 1 writes object A). For each schedule, specify whether it is recoverable
and whether it avoids conflicting rollback (ACR):

Schedule Recoverable? ACR?

w1(A) r2(A) c1 w2(A) c2 r3(A) a3 ✓

w1(A) w2(A) c2 a1 r3(A) c3 ✓ ✓

w1(A) r2(A) c2 c1 r3(A) c3

g) (2 points) Suppose we have a Dynamo cluster with three nodes (A, B, C), using ⅔ quorums.
Consider a key x, which originally has the value 7 on all nodes. A client makes a put to change
the value to 8. Assume the put operation is successful. For another client later performing reads
to x, which of the following results are possible (A: 8 means the client asked node A to read the
value and received 8 back)? (Circle or highlight all correct answers.)

(a) A: 8, B: 7, C: 7
(b) A: 8, B: 8, C: 8
(c) A: 8, B: 7, C: 8
(d) A: 7, B: 8, B: 8

We also accepted just b and c given the typo in (d) which should say A: 7 B: 8 C: 8.

h) (2 points) CockroachDB used range partitioning instead of hash partitioning for its key-value
storage layer. What is one advantage of this choice? (Circle or highlight one answer.)

(a) Range partitioning reduces the amount of work required to figure out which nodes a
given key is on.

(b) Range partitioning reduces the amount of storage required for metadata about a table.
(c) Range partitioning reduces the cost of queries that involve lexicographically nearby keys.
(d) Range partitioning can support stronger transaction isolation levels.

i) (2 points) Suppose that we are implementing a differentially private query system that stores a
dataset about patients’ in a hospital, and we know that each patient’s age is between 0 and m.
What is the sensitivity of each of the following queries we might run on the dataset (according to
the definition of sensitivity in class)?

Query Sensitivity

SELECT COUNT(*) FROM Patient 1

SELECT COUNT(*) FROM Patient WHERE disease != “flu” 1

SELECT MAX(age) FROM Patient m

SELECT MIN(age) FROM Patient WHERE disease = “flu” m

Problem 2: Optimistic Concurrency (12 points)
a) (6 points) Consider two separate transaction schedules with numbered operation sequences in
the tables below. R(X) means read X and W(X) means write X. The database uses validation
(optimistic concurrency) for concurrency control. Note: Ignore the “Finish” events in the table
for transactions that you don’t think will validate.

Circle or highlight the answer of the following questions. For transactions that abort, fill in the
operation number they abort on.

Operation 1 2 3 4 5 6 7 8

T1 R(C) W(D) Validate Finish

T2 W(C) R(D) Validate Finish

T1 will A) Succeed B) Abort (Operation __6__)

T2 will A) Succeed B) Abort (Operation _____)

Operation 1 2 3 4 5 6 7 8

T3 R(A) W(B) Validate Finish

T4 W(B) R(A) Validate Finish

T3 will A) Succeed B) Abort (Operation _____)

T4 will A) Succeed B) Abort (Operation _____)

b) (3 points) Which of the following sequences of operations can be achieved by validation?
(Circle or highlight all correct answers.)

(a) W1(A), W1(B), W3(A), W2(A)
(b) W1(A), R2(A), W1(C)
(c) W1(A), W2(B), W1(C)

c) (1 points) If a sequence of operations can be achieved by validation, then it must also be
achievable with 2-phase locking. (Circle or highlight true or false)

A) True B) False

d) (2 points) Fill in the blank with two situations where concurrency control with 2-phase
locking is likely to perform better than validation.

Situation 1: _____________________________________

Situation 2: _____________________________________

Conflicts are frequent; system resources are lacking; have loose latency constraints

Problem 3: Locking (14 points)
a) (8 points) Consider the schedule of operations below on a relation r that contains multiple
tuples (t1 and t2) and fields in each tuple (f1, f2, f3). We run three different transactions, which
each submit various instructions over time, represented as “Ix”. These transactions will also
acquire hierarchical locks using the scheme in class (S, X, IS, IX, SIX), using strict 2PL, before
running their instructions. Can you find the order in which the instructions in these transactions
will be executed? Note that the execution of this schedule may not match the submission order
exactly due to waiting for locks. Assume that a transaction commits right after its last operation.

Timestamp 0 1 2 3 4 5 6 7 8

T1 I0: R(f1) I4: W(f2) I7: W(f3) I8: R(r)

T2 I1: R(t1) I2: R(t2) I6: W(f3)

T3 I3: W(f2) I5: W(t1)

Fill out the order the instructions will run during execution and list out all the locks each
instruction newly acquires using hierarchical locking for the transaction. No need to list the locks
the transaction already has. If there are multiple valid orders, fill any of the valid orders.
Timestamp 0 is given to you. (You do not need to fill in all the blanks for Lock(s) rows)

Timestamp 0 1 2 3 4 5 6 7 8

Instruction I0 I1 I2 I6 I4 I7 I8 I3 I5

IS(r) IS(r) S(t2) IX(r) IX(r) X(f3) SIX(r) IX(r) X(t1)

Lock(s) IS(t1) S(t1) SIX(t2) IX(t2) IX(t2)

S(f1) X(f3) X(f2) X(f2)

b) (4 points) Fill out an order of instructions that will result in a deadlock during execution. You
do not need to fill in all the blanks, just until the deadlock occurs. Explain why the deadlock
occurs, and one way to resolve the deadlock after it occurs.

Timestamp 0 1 2 3 4 5 6 7 8

Instruction I0 I1 I2 I6 I3

The deadlock occurs because T3 holds the X lock on f2 but is waiting on the X lock on t1,
whereas T1 holds the IX lock on t1 but is waiting on the X lock on f2. Since we are following a
strict 2PL schedule, neither transaction will release its lock until after acquiring all the necessary
locks. Thus, the deadlock occurs.

One way to resolve the deadlock after it occurs is to abort and restart one transaction.

c) (2 points) You have a table called inventory containing all your inventory items and their
individual item price, and you decide to increase the price(s) of the cheapest item(s) by 1 dollar.
To perform such a transaction, which hierarchical lock should this transaction place on
inventory and why? Assume there is no previous lock on the table.

This transaction should place the SIX lock on inventory. We have S because we need to read
all of the item prices to determine which is the minimum during execution. We have IX because
we intend to increment the lowest price(s) by 1. (We will use X to lock the lowest prices)

Note that IX does not work because you do not want other transactions to have the same IX lock
on inventory and modify prices before you complete your modification. And X is not the
best solution because you are preventing other transactions from reading/modifying other parts
of inventory.

Problem 4: Logging and Recovery (16 Points)
You will be filling in code for an atomic and durable transaction manager class, similar to
assignment 3, but based on undo-logging (assignment 3 used redo logging). The transaction
manager has the variables: LogManager lm, StorageManager sm, HashMap<long, byte[]> map,
and HashMap<long, List<long> activeTransactions. They have the APIs below (note that the
StorageManager’s put API is synchronous, unlike the assignment; there’s no queuing):

LogManager:
● appendLogRecord(Record)
● Record readLogRecord(int offset, int size)

StorageManager:
● persistKeyValueToDisk(long key, byte[] value) // returns after write succeeds

● HashMap<long, byte[]> readPersistedMap()
● byte[] readValue(long key)

In memory map (used to service reads):
● map.put(long key, byte[] value)
● byte[] map.get(long key)

Record has the following constructor (key and value are ignored unless it is a WRITE record)
● Record(int type, txID, long key, byte[] value)

● Available types: WRITE, COMMIT, ABORT, START

Assume that start(), shown below as an example, and abort() are already implemented; abort
adds an abort record to the log and removes the txID from active transactions. Assume in any
transaction, a key is written to at most once.

public void start(long txID) {
lm.appendLogRecord(new Record(START, txID));
if activeTransactions.containsKey(txID):

activeTransactions.put(txID, new ArrayList<>());
}

a) (4 points) Use the member variables and function APIs above to fill in the blanks:

public void write(long txID, long key, byte[] value){

lm.appendLogRecord(new Record(WRITE, txID, key, map.get(key) OR

sm.readValue(key)));

sm.persistKeyValueToDisk(key, value);

activeTransactions.get(txID).add(key);

}

b) (4 points) Use the member variables, function APIs and parameters to fill in the blanks:

public void commit(long txID) {
for (long key: activeTransactions.get(txID)) {

map.set(key, sm.readValue(key)));

}

lm.appendLogRecord(new Record(COMMIT, txID));

activeTransactions.remove(txID);
}

Note: given this code would mess up atomicity in the case of transactions that call writes and
commit concurrently, we gave everyone points for this question.

c) (8 points) For blanks that contain [true | false], choose between true or false. For empty
blanks, write in the correct code.

public void initAndRecover(StorageManager sm, logManager lm) {
this.sm = sm; this.lm = lm; this.map = sm.readPersistedMap();
ArrayList<Record> records = loadRecords(lm);
HashSet<long> committedIDs = scanCommittedIDs(records);
HashSet<long> abortedIDs = scanAbortedIDs(records);

for (Record record: Collections.reverse(records)) {
if record.ty == WRITE and !committedIDs.containsKey(record.txID) {

this.map.set(key,record.value));

this.sm.persistKeyValueToDisk(key, record.value);

}
}
for (Record record: records) {
if (committedIDs.containsKey(record.txID) == [true | false]) {

if (abortedIDs.containsKey(record.txID) == [true | false]) {

lm.appendLogRecord(new Record(ABORT, txID));

}
}

}
}

Problem 5: Distributed Transactions (12 Points)
a) (4 points) Which of the following statements are true about the 2PC protocol discussed in
class? (Circle or highlight all correct answers.)

(a) 2PC guarantees atomic commits.
(b) 2PC adheres to CAP theorem because it can run into conditions where a node has frozen

new transactions and is waiting on a COMMIT message from the coordinator.
(c) In case that a single participant and the coordinator crash, the remaining nodes who had

sent a PREPARED to the coordinator can conduct a majority vote to elect a coordinator
who tells them to commit / abort the transaction.

(d) 2PC requires nodes to remember some of their past actions in durable storage.

Next, let’s think carefully about each step of the 2PC protocol:
● Step 1: Coordinator asks participants to PREPARE.
● Step 2: Participants respond that they are either PREPARED or NOT PREPARED.
● Step 3: Coordinator asks participants to COMMIT/ABORT based on the votes it got.

b) (2 points) Suppose each participant responds to the coordinator by first sending its reply and
then logging whether it prepared to durable storage. State why this can be problematic.

Should log first and then send the message. This will ensure that even if the participant crashes
and comes back up, it can assume that it was supposed to be prepared and not change its mind
about its own state in case it sent out any messages to the coordinator already.

(c) (2 points) State a problem which can arise if the coordinator always waits until all
participants have responded with a PREPARED/NOT PREPARED.

The participants will not be able to perform any other transactions since they are PREPARED but
some other node could have crashed, causing the coordinator to wait indefinitely until all
participants respond.

(d) (2 points) Let’s say the coordinator asked all nodes to COMMIT. However at the time, one
participant node was down and could not receive the COMMIT message. Upon coming back up
it sees that since it was PREPARED before crashing, it commits anyway. In this particular case,
this didn’t cause an issue. However, explain when and why this approach can be problematic.

In case the coordinator had aborted the transaction instead, this would have violated the
atomicity of the transaction.

e) (2 points) There is a famous distributed systems problem called the Generals’ Paradox, where
two Generals (G1, G2) are out on a campaign. It is night time, and in the morning, they need to
march together on an objective that they want to capture. Either General might choose not to
march upon assessing the conditions of their camp and battalion strength. If they march together,
they are assured of success, but if any General marches alone, they will be defeated.

To decide what to do, the Generals can choose to send multiple messengers over the night to
coordinate whether they are planning to march in the morning, but there is no guarantee that the
messengers will make it to the other General.

For example, the exchange might look like this:

G1 —------ I am not planning to march tomorrow (lost) —---> G2
G1 <—----- I am planning to march tomorrow (received) —---- G2
G1 <—----- I did not receive your message yet (lost) —----- G2

After this exchange, G2 does not know whether G1 plans to march in the morning, but it is also
hard for G2 to decide not to march, because G1 might’ve received their message and plan to go.

One can observe that this Generals’ Paradox problem is very similar to the atomic commitment
problem handled by 2PC. However, the Generals’ Paradox is known to have no solution, as it
can run into failure scenarios as described above.

Describe in a few sentences what makes this problem different from 2PC.

2PC is allowed to take arbitrarily long, unlike this problem, where the Generals need to
coordinate within a certain window of time. 2PC also differs in that it centralizes the decision to
commit in a single place, i.e., the commit coordinator. 2PC needs nodes to coordinate to come to
a decision eventually and not at the same time.

Problem 6: Streaming (12 points)
Dapple is an up-and-coming music app that wants to use a streaming SQL database, based on
Stanford CQL, to analyze how its users listen to music. The database stores two tables:

● User, with fields userId and plan (“free” or “premium”).
● Play, a table that records when users play songs, with fields userId, song, and eventTime.

Users can sign up for the service, delete their account, or switch between free and premium plans
on Dapple’s website, which results in transactions that change the User table. They can also play
songs on their phone, which uploads a record in the Play table. These play events may take a
while to reach the database if the phone is offline (Dapple lets users play songs offline).

Using the CQL syntax in our slides (ISTREAM, DSTREAM, RSTREAM, etc), write how
Dapple should express the following stream queries. Each query should return a relation, not a
stream. We’ve written the first one for you as an example.

Note: The ISTREAM, DSTREAM and RSTREAM operators extend the records in each table with
a new field, t, to represent processing times. Assume this field is just called “t” in SQL.

a) (0 points) Count the number of users who signed up in the past hour.

SELECT COUNT(*) FROM ISTREAM(User) [RANGE 1 HOUR]

b) (2 points) Count the number of users who deleted their account in the past hour.

SELECT COUNT(*) FROM DSTREAM(SELECT userId FROM User) [RANGE 1 HOUR]

Note: This was trickier than expected because we had a mistake in our example above; we also
gave full points for FROM DSTREAM(User) here, but it’s incorrect because it would show users
who changed plans during the past hour. Our part a) example should have used
ISTREAM(SELECT userId FROM User) like this answer.

c) (2 points) Count the number of play events that were received at least 1 hour after they
happened on the user’s phone (assuming their eventTime and the database’s clock are accurate).

SELECT COUNT(*) FROM ISTREAM(Play) [RANGE UNBOUNDED]
WHERE (t - eventTime) >= 1 HOUR

Note: It’s OK to omit [RANGE UNBOUNDED] as that is the default in CQL.

d) (2 points) Count the total number of plays of the song “Baby Shark” in 2022.

SELECT COUNT(*) FROM Play
WHERE song = “Baby Shark” AND YEAR(eventTime) = 2022

Note: could also use ISTREAM(Play).

e) (3 points) Count the users who listened to “Baby Shark” at a time when they were on the
“premium” pricing plan.

SELECT COUNT(DISTINCT userId)
FROM Play AS p

JOIN RSTREAM(User) [RANGE UNBOUNDED] AS u
ON p.userId = u.userId AND p.eventTime = u.t

WHERE song = “Baby Shark” AND u.plan = “premium”

f) (3 points) Return the IDs of all the users who upgraded to the premium plan sometime after
the first time they listened to “Baby Shark”.

SELECT DISTINCT userId
FROM Play AS p

JOIN ISTREAM(User) [RANGE UNBOUNDED] AS u
ON p.userId = u.userId

WHERE u.plan = “premium” AND u.t > p.eventTime

