
1

Design and Evolution of 
Data Platforms

Matei Zaharia
CS 320



2

Outline
History of information systems

Challenges in using data

Example solutions

New trends & Databricks case study



3

Outline
History of information systems

Challenges in using data

Example solutions

New trends & Databricks case study



4

Pre-Computer Era



5

Early Business Computers

First used for operational
applications (automate a 
business process)
§ Bank’s account system
§ Airline reservations
§ Inventory

Each app manages own data 
(“master file”)



6



7

SQL!



8

These databases are great for 
operational applications, but how 

to use them for analytics?



9



10

The Problem
Many systems with data 
about the same entities

Differing definitions of 
fields, identifiers, etc

Different points in time

Wrong / low quality data



12

Challenges in Using Data

These challenges are not unique to operational business apps, 
but occur in any modern data application / product

Core problem: when the amount of data is more than humans 
can review, it’s hard to tell whether it’s correct!

(Things get even harder with statistics and AI)

Solution: disciplines of data architecture & data engineering



13

Examples
Amazon works with 3 package delivery companies, and Fedex is 
giving a 10% discount for a year; should it use that?
§ Easy business decision 

Amazon changes its rec. algorithm to prefer geographically nearby 
sellers for each item, and profits decrease
§ Is the problem incorrect data about seller locations?
§ How are we defining geographically near: is it in miles, ship time, etc?
§ Did something else cause profits to fall?
§ Have sellers or buyers adapted to the change in policy?



14

Common Challenges in Using Data

Errors at source

Errors loading some of the data, or moving between systems

Inconsistent definition / schema in different locations

Inconsistent downstream calculation

Wrong calculation, metric, etc

Security, governance, performance, cost



15

How can we address these 
challenges?



16

Idea 1: Data Architectures for Analytics 
(Data Warehouses, etc)



17

Idea 1: Data Architectures for Analytics



18

Idea 1: Data Architectures for Analytics



19

Idea 1: Data Architectures for Analytics



20

Idea 1: Data Architectures for Analytics

Many implementations today:
§ Data warehouse systems (Teradata, Amazon Redshift, BigQuery, …)
§ Data lakes for raw storage (Amazon S3, Apache Hadoop, …)
§ Integrated products for specific use cases (Salesforce, SAP, …)

Data warehouses Data lakes Integrated apps Other analytics apps



21

Idea 2: Data Engineering

Apply software engineering principles to data pipelines & outputs
§ Testing (at development time)
§ Monitoring (at runtime)
§ Type checking (schemas, key constraints, etc)
§ Separate dev, staging and production environments
§ Upgrades with support for rollback, data versioning
§ Data pipelines as code



22

Idea 2: Data Engineering

Historical: database admins and analysts working with structured 
data in in SQL

Today: expanded to more data types and more code, in 
programming languages such as Python & Java plus SQL
§ The term “data engineer” is fairly new



23

Example Data Engineering Tools/Ideas

Great Expectations TFX Data Validation

https://great-expectations.readthedocs.io/
https://mlsys.org/Conferences/2019/doc/2019/167.pdf


24

Outline
History of information systems

Challenges in using data

Example solutions

New trends & Databricks case study



25

What’s Changing in Data & ML?

Rise of unstructured and “big” data
§ Unstructured data means not tables: for example, images, video, audio, 

text documents, etc à often the largest data by volume
§ New source of “big” tabular data: machine-generated data (e.g. timeseries)

New way to deliver computing technology: public cloud

Advances in data science & ML

Originated in web companies but 
now used well beyond them

Rent computer hardware and software as a 
service (SaaS), pay by usage (e.g. by hour)

Often enabled by data



26

Databricks

Founded 2013 by Berkeley researchers that created Apache Spark 
(open source big data computing engine)

Business model: cloud service over AWS, Azure, etc
§ Run & manage computing workloads for customers

>5000 customers, ~2000 employees
§ 10+ million VMs processing exabytes of data per day



27

Usage Growth: VMs/day



29

Example Use Cases

Correlate 500,000 patient records with DNA to design therapies

Optimize inventory management using simulations and ML

Identify securities fraud via machine learning on 30 PB of data



30

Security policies

Databricks Product: “Lakehouse” Platform

Built around
open source:

Data science 
workspace

SQL analytics

Scheduled jobs

Data scientists

Data engineers

Business users

Data Lake Storage

Compute Clusters

ML platform Data catalog

Customer’s Cloud AccountDatabricks Services



31

Takeaways from Databricks

1. Simplify building production data apps

2. Rise of cloud computing

3. Interesting use cases and challenges



32

Takeaways from Databricks

1. Simplify building production data apps

2. Rise of cloud computing

3. Interesting use cases and challenges



33

Simplify Building Production Data Apps

Most data apps have yet to be written, especially for new data 
sources (e.g. big data) or new techniques (e.g. ML)

Most of the effort in these apps goes to reliably combining and 
preparing the relevant data (in a way that keeps running later!)



34

Simplify Building Production Data Apps

Most data apps have yet to be written, especially for new data 
sources (e.g. big data) or new techniques (e.g. ML)

Most of the effort in these apps goes to reliably combining and 
preparing the relevant data (in a way that keeps running later!)

à Figure out ways to let more people build reliable apps



35

Example: Data Science Report
Alex the data scientist wants to publish a sales forecast each day based 
on machine-generated & customer data

Before Databricks: Alex needs to work with a data engineer and DB 
admin to create data loading jobs in Java and SQL, then get them to 
deploy and run these jobs

After Databricks: Alex can use Spark API to access both unstructured & 
structured data in a Python notebook, schedule the notebook as a job, 
and run it on her own cloud VMs

Big difference in productivity even at eng-heavy companies



36

Example: Business Intelligence
Before Databricks: Business analysts need to wait for data to be 
loaded into a data warehouse to do analytics in Tableau (and even then, 
only a subset of data is in there)

After Databricks: Business analysts can connect Tableau to the entire 
data lake and query all data in the organization as soon as it arrives

Focus on maximizing access, reliability & timeliness of data



38

ML Research & Courses ML Products
Goal: reliably solving a business problem

Data is often the biggest challenge
(for models, try many standard ones)

Must continuously deploy + monitor + 
retrain, and have governance

Need new tools to enable this process!
(ML platforms such as MLflow)

Goal: designing a good model

Data is provided and ready to use
(e.g. benchmark dataset)

No need to deploy, monitor, retrain or 
implement governance

Tools for model design & evaluation 
(e.g. TensorFlow, SciKit)

Production Gap in Machine Learning



39

Takeaways from Databricks

1. Simplify building production data apps

2. Rise of cloud computing

3. Interesting use cases and challenges



40

Traditional Software Cloud Software
Ve

nd
or

Cu
st

om
er

s

Dev Team

Release

6-12 months

Users
Ops

Users
Ops

Users
Ops

Users
Ops

Dev + Ops Team

1-2 weeks

Users
Ops

Users
Ops

Users
Ops

Users
Ops

6-12 months



41

Why Use Cloud Software?

Management built-in: much more value than the software 
bits alone (security, availability, etc)

1

2

3

Elasticity: pay-as-you-go, scale on demand

Better features released faster



42

Differences in Building Cloud Software
+ Rapid feedback: release updates any time, monitor usage live

+ Only need to maintain 2 software versions (current & next),
in fewer configurations than you’d have on-premise

- Updating without regressions: very hard, but critical in cloud 
(includes API, semantics, and performance regressions)

- Operating a multitenant service: scaling, security, user isolation



43

Example Uses of Telemetry at Databricks
“Data McNuggets”: 
automated report for 
20+ product features



45

Example Uses of Telemetry at Databricks



46

Takeaways from Databricks

1. Simplify building production data apps

2. Rise of cloud computing

3. Interesting use cases and challenges



47

Interesting Databricks Use Cases
Selling data products to other companies
§ Traditional approach: charge for monthly access to new data

§ Little room for price discrimination: everyone gets full datasets
§ New approach: give users a hosted computing platform and charge by 

query, by seats, or by other metrics (OEM Databricks!)

Example: S&P Marketplace
Workbench



48

Interesting Databricks Use Cases

Surprising sources of big data
§ Network security: log every network operation to catch intruders, 

malicious insiders, exfiltration, etc à petabytes of data per day
§ Public datasets: many biotech and financial companies use these
§ Industrial IoT: every factory device, airplane engine, etc is instrumented



49

New Trends and Challenges

Privacy regulations, such as GDPR and CCPA, have required 
companies to significantly rethink data systems (for the better?)
§ Only collect & use data for specific purposes (how to track this?)
§ Any user can ask to delete their data (can’t store it immutably as before!)
§ B2B contracts also increasingly have complex rules



50

New Trends and Challenges

Production machine learning: ML apps have similar problems to 
data applications (too much data for human review), but worse:
§ Opaque and misaligned metrics
§ Overfitting
§ Bias



51

Conclusion

Using data in products and business decisions is hard: need to 
define, collect, and monitor the data reliably and analyze in depth

Various technologies and principles for this have emerged over 
time (data engineering, data warehouse architecture, etc)

Lots of room to make this simpler


