Design and Evolution of
Data Platforms

Matei Zaharia
CS 320 &) Stanford

Outline

History of information systems
Challenges in using data
Example solutions

New trends & Databricks case study

Outline

History of information systems
Challenges in using data
Example solutions

New trends & Databricks case study

Pre-Computer tra

Farly Business Computers

First used for operational
applications (automate a
business process)

= Bank’s account system

= Airline reservations

* [nventory

Each app manages own data
(“master file”)

QQLQQQQAQ

1960 master files, reports

Q Q Q Q Q Q e complexity of—
1965 * maintenance
Q Q Q Q Q Q * development
Q Q Q Q e synchronization of data
Q Q e hardware

lots of master files !!!

DASD database— “a single source of
1979 data for all pr ing”
DBMS processing

online, high-performance
transaction processing

ORACLE'
1980 \|\/ PCs, 4GL technology
N SQL!

tx processing MIS/DSS

1975

These databases are great for
operational applications, but how
to use them for analytics?

1985

extract program

The Problem

Many systems with data
about the same entities

Differing definitions of
fields, identifiers, etc

Different points in time

Wrong / low quality data

Wall
multiple Street
levels of Journal

extraction

_ A ik,
e old accts @_ % é ﬁ i\\@
\B_

‘& ""@ multiple

levels of
extraction

é Dept. B
no common source \ _15%

of data to begin with » Wednesday p.m.

* large accts

Business
Week * loss of identity

* no coordination with other
people entering external data

Challenges in Using Data

These challenges are not unique to operational business apps,
but occur in any modern data application / product

Core problem: when the amount of data is more than humans
can review, it’s hard to tell whether it’s correct!

(Things get even harder with statistics and Al)

Solution: disciplines of data architecture & data engineering

Examples

Amazon works with 3 package delivery companies, and Fedex is
giving a 10% discount for a year; should it use that?

= Easy business decision

Amazon changes its rec. algorithm to prefer geographically nearby
sellers for each item, and profits decrease

= |[sthe problem incorrect data about seller locations?

= How are we defining geographically near: is it in miles, ship time, etc?

= Did something else cause profits to fall?

= Have sellers or buyers adapted to the change in policy?

Common Challenges in Using Data

Errors at source

Errors loading some of the data, or moving between systems
Inconsistent definition / schema in different locations
Inconsistent downstream calculation

Wrong calculation, metric, etc

OW can we address these
challenges?

PRIMITIVE DATA/OPERATIONAL DATA

* application oriented

e detailed

* accurate, as of the moment of access

* serves the clerical community

* can be updated

* run repetitively

* requirements for processing understood
a priori

e compatible with the SDLC

* performance sensitive

* accessed a unit at a time

e transaction driven

» control of update a major concern in
terms of ownership

* high availability

* managed in its entirety

* nonredundancy

e static structure; variable contents

* small amount of data used in a process

* supports day-to-day operations

* high probability of access

|[dea 1: Data Architectures for Analytics
(Data Warehouses, etc)

DERIVED DATA/DSS DATA

e subject oriented

e summarized, otherwise refined

* represents values over time, snapshots

* serves the managerial community

* is not updated

e run heuristically

* requirements for processing not
understood a priori

e completely different life cycle

* performance relaxed

* accessed a set at a time

e analysis driven

* control of update no issue

* relaxed availability

* managed by subsets

 redundancy is a fact of life

* flexible structure

e large amount of data used in a process
* supports managerial needs

* low, modest probability of access

operational

 detailed

* day to day

e current valued

* high probability
of access

* application
oriented

|[dea 1: Data Architectures for Analytics

levels of the architecture

——0—C

atomic/data
warehouse

* most granular

* time variant

* integrated

* subject oriented
* some summary

departmental individual
* parochial * temporary
* some derived,; * ad hoc
some primitive * heuristic
* typical depts * non-
* acctg repetitive
* marketing * PC, work-
* engineering station
* actuarial based

manufacturing

/[dea 1: Data Architectures for Analytics

-

operational atomic/data dept/data mart individual
warehouse customers by month
J Jones J Jones Jan - 4101 customers
123 Main 1986-1987 Feb - 4209 since 1982
Street 456 High St Mar - 4175 with acct
Credit - AA Credit - B Apr - 4215 balances

What is J Jones
credit rating right
now?

J Jones
1987-1989
456 High St
Credit - A

J Jones
1989-pres
123 Main St
Credit - AA

What has been the Are we attracting

credit history of J
Jones?

more or fewer
customers over
time?

> 5,000 and
with credit
ratings of B
or higher

temporary!

What trends are
there for the
customers we are
analyzing?

|[dea 1: Data Architectures for Analytics

operational

life policy

J Jones
female
July 20, 1945

auto policy

atomic/data
warehouse

customer

J Jones
two tickets last year
one bad accident

homeowner policy

J Jones
123 Main Street
married

J Jones

female

July 20, 1945-dob

two tickets last year
one bad accident

123 Main Street
married

two children

high blood pressure

health policy

J Jones
two children
high blood pressure

|[dea 1: Data Architectures for Analytics

Many implementations today:
= Data warehouse systems (Teradata, Amazon Redshift, BigQuery, ...)
= Data lakes for raw storage (Amazon S3, Apache Hadoop, ...)
= Integrated products for specific use cases (Salesforce, SAP, ...)

amazon 4
eSS E w ’ fitableau
salesforce HIE R B

amazon Google AAAAAA MIC
e @00 spark’ A rostretes
1- /“ﬁ Adobe {;@ Informatica
® # A\ ;,F“‘ An I. tl o
ORACLE CrEEbEp NETSUITE Y/ Anelyties “stalend

Data warehouses Data lakes Integrated apps Other analytics apps

/[dea 2: Data Engineering

Apply software engineering principles to data pipelines & outputs
= Testing (at development time)
= Monitoring (at runtime)
= Type checking (schemas, key constraints, etc)
= Separate dev, staging and production environments
= Upgrades with support for rollback, data versioning
= Data pipelines as code

/[dea 2: Data Engineering

Historical: database admins and analysts working with structured
datainin SQL

Today: expanded to more data types and more code, in
programming languages such as Python & Java plus SQL

» The term “data engineer” is fairly new

Example Data Engineering Tools/Ideas

great_expectations

Introduction
Getting started
Glossary of Expectations

Tutorials

Docs » Welcome to Great Expectations!

Welcome to Great
Expectations!

Great Expectations is a leading
tool for profiling, validating, and

batch.expect_column_values_to_be_unique('NPI')

{'success': True,

DATA VALIDATION FOR MACHINE LEARNING

Eric Breck ' Neoklis Polyzotis' Sudip Roy' Steven Euijong Whang> Martin Zinkevich '

ABSTRACT
Machine learning is a powerful tool for gleaning k ledge from massive of data. While a great deal
of machine learning research has focused on improving the accuracy and efficiency of training and inference
algorithms, there is less attention in the equally important problem of monitoring the quality of data fed to machine
learning. The importance of this problem is hard to dispute: errors in the input data can nullify any benefits
on speed and accuracy for training and inference. This argument points to a data-centric approach to machine
learning that treats training and serving data as an important production asset, on par with the algorithm and

‘result': {'element_count': 18877,
‘missing_count': 0,
‘missing_percent': 0.0,
‘unexpected_count': 0,
‘unexpected_percent': 0.0,
'unexpected_percent_nonmissing': 0.0,
‘partial_unexpected_list': []}}

Other expectations can be created by examining the data in the batch. For example, suppose
a pipeline against improper values in the “Provider Other Organization Name Type Code” colu

don't know exactly what the “improper” values are, you can explore the data by trying some v.

data in the batch meets your expectation:

batch.expect_column_values_to_be_in_set(“Provider Other Organization Name Type Code",
o, 1, 2, 3))

{'success': False,

‘result’': {'element_count': 18877,
‘missing_count': 17819,

‘missing percent': 94.39529586269005,

Great Expectations

AF TensorFlow

Guide
COMPONENTS

ExampleGen
StatisticsGen
SchemaGen
ExampleValidator
Transform
Trainer

Evaluator
ModelValidator
Pusher

Advanced: Custom Components
ORCHESTRATORS

Apache Airflow
Apache Beam

Kubeflow Pipelines

Install

Learn v

More v Q_ Search

10 (5): tfdv.visualize statistics(train stats)

Feature order ~ [Reverseorder Feature searc

Festues: G) @ tost10) (9 stino)

Numeric Features (15)

ot missing mean sddev zecs min
tare

10000 % n: 21 o [
rip_start_hour

10000 o 1363 661 4l o

ropot_census_tract
M8 2a2e 1708 Bk o 1708

trip_start imestamp
10000 o 1418 292M R E™Y

0

Language ~ GitHub

T

The previous example assumes that the data is stored in a TFRecord file. TFDV also
supports CSV input format, with extensibility for other common formats. You can find the
available data decoders here. In addition, TFDV provides the

tfdv.generate_statistics_from_dataframe utility function for users with in-memory
data represented as a pandas DataFrame.

TFX Data Validation

Signin

https://great-expectations.readthedocs.io/
https://mlsys.org/Conferences/2019/doc/2019/167.pdf

Outline

History of information systems
Challenges in using data
Example solutions

New trends & Databricks case study

What's Changing in Data & ML?

Originated in web companies but
Rise of unstructured and “big” data now used well beyond them

= Unstructured data means not tables: for example, images, video, audio,
text documents, etc = often the largest data by volume

= New source of “big” tabular data: machine-generated data (e.g. timeseries)

New way to deliver computing technology: public cloud

Rent computer hardware and software as a

. . service (SaaS), pay by usage (e.g. by hour)
Advances in data science & ML

Often enabled by data

Databricks

Founded 2013 by Berkeley researchers that created Apache Spark
(open source big data computing engine)

Business model: cloud service over AWS, Azure, etc
» Run & manage computing workloads for customers

>5000 customers, ~2000 employees
= 10+ million VMs processing exabytes of data per day

< databricks

Usage Growth: VMs/day

e R TR

2018 2019 2020 2021

Example Use Cases

REGENERON Correlate 500,000 patient records with DNA to design therapies
@ Shell Optimize inventory management using simulations and ML

F|nra\"‘§:}’ Identify securities fraud via machine learning on 30 PB of data

Databricks Product: “Lakehouse” Platform

Data scientists\b
A >

Data engineers

{i—j}+ab|eou/
v Qlik@
|

Business users

Databricks Services

Customer’s Cloud Account

Data science
workspace

g@ﬂ__, SQL analytics

Compute Clusters

Scheduled jobs

ML platform || Data catalog

Security policies

5SS

|1
==E8E

Data Lake Storage
Googl
* g;nalon Clooudosgtoerage IA AZU re

STORAGE

s

\.

Builtaround _,..... @ QR
open source: Spr"’(\Z A mlflow T O

DELTA LAKE

Takeaways from Databricks

1. Simplify building production data apps
2. Rise of cloud computing

3. Interesting use cases and challenges

Takeaways from Databricks

1. Simplify building production data apps
2. Rise of cloud computing

3. Interesting use cases and challenges

Simplity Building Production Data Apps

Most data apps have yet to be written, especially for new data
sources (e.g. big data) or new techniques (e.g. ML)

Most of the effort in these apps goes to reliably combining and
preparing the relevant data (in a way that keeps running later!)

I‘nfoworld SOFTWARE DEVELOPMENT ~ CLOUD COMPUTING ~ MACHINELEARNING ANALYTICS ~ EVENTS RESOURCE LIBRARY

Cleaning Big Data: Most Time-
Consuming, Least Enjoyable Data
Science Task, Survey Says

_ 7 The 80/20 data science dilemma
@ St z::s o Most data scientists spend only 20 percent of their time on actual data analysis

and 80 percent of their time finding, cleaning, and reorganizing huge amounts
of data, which is an inefficient data strategy

(© This article is more than 2 years old. 0 O @ O @

TTTTTTTTT

Y)
J S52 _—‘
data scientists found that they spend most of their time massaging rather - - t

Simplity Building Production Data Apps

Most data apps have yet to be written, especially for new data
sources (e.g. big data) or new techniques (e.g. ML)

Most of the effort in these apps goes to reliably combining and
preparing the relevant data (in a way that keeps running later!)

- Figure out ways to let more people build reliable apps

Example: Data Science Report

Alex the data scientist wants to publish a sales forecast each day based
on machine-generated & customer data

Before Databricks: Alex needs to work with a data engineer and DB
admin to create data loading jobs in Java and SQL, then get them to
deploy and run these jobs

After Databricks: Alex can use Spark API to access both unstructured &
structured data in a Python notebook, schedule the notebook as a job,
and run it on her own cloud VMs

Big difference in productivity even at eng-heavy companies

Example: Business Intelligence

Before Databricks: Business analysts need to wait for data to be
loaded into a data warehouse to do analytics in Tableau (and even then,
only a subset of data is in there)

After Databricks: Business analysts can connect Tableau to the entire
data lake and query all data in the organization as soon as it arrives

Focus on maximizing access, reliability & timeliness of data

Production Gap in Machine Learning

ML Research & Courses ML Products

Goal: designing a good model Goal: reliably solving a business problem
Data is provided and ready to use Data is often the biggest challenge

(e.g. benchmark dataset) (for models, try many standard ones)

No need to deploy, monitor, retrain or Must continuously deploy + monitor +
implement governance retrain, and have governance

Tools for model design & evaluation Need new tools to enable this process!

(e.g. TensorFlow, SciKit) (ML platforms such as MLflow)

Takeaways from Databricks

1. Simplify building production data apps
2. Rise of cloud computing

3. Interesting use cases and challenges

Vendor

Customers

Traditional Software Cloud Software

% Dev Team % Dev + Ops Team

l 6-12 months l 1-2 weeks
B Release

AN N

~ ~ r N N
(¥ YA Users 888 Users &288 Users o288 Users
&8 Ops L &8 Ops S Ops) Ops

\ J U Y,

- N N e N N
888 Users -'--'--'- Users &888 Users &888 Users
&& Ops /88 Ops S Ops S Ops

\ AN k) Y,

Why Use Cloud Sottware?

Management built-in: much more value than the software
bits alone (security, availability, etc)

@ Elasticity: pay-as-you-go, scale on demand

@ Better features released faster

Differences in Building Cloud Software

+ Rapid feedback: release updates any time, monitor usage live

+ Only need to maintain 2 software versions (current & next),
in fewer configurations than you’d have on-premise

Updating without regressions: very hard, but critical in cloud
(includes API, semantics, and performance regressions)

Operating a multitenant service: scaling, security, user isolation

Example Uses of Telemetry at Databricks

DAC, WAC, and MAC Actuals and 6 Mo. Prediction

“Data McNuggets”:

automated report for
20+ product features L
Adoption Predictions for é A0

Warm Pools 2
% 200
) 60(0)
*g 200

rc\)day Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
2020

Example Uses of Telemetry at Databricks

Number_of Pools (in 10s)

customer cse

42
41
37
35
27
26
26
25
24
22

Top 10 Customers

This section covers the top 10 customers that are using this
product.

customer

end_date

2019-11-25

Customers who stopped using Warm Pools. 2019-11-25
2019-11-25

2019-11-24
2019-11-22
2019-11-22
2019-11-22
2019-11-22
2019-11-22
2019-11-22

This section covers the list of 10 recent customers who have
stopped using this product for 7 days and their last date using this
product.

Takeaways from Databricks

1. Simplify building production data apps
2. Rise of cloud computing

3. Interesting use cases and challenges

Interesting Databricks Use Cases

Selling data products to other companies

= Traditional approach: charge for monthly access to new data
= Little room for price discrimination: everyone gets full datasets

= New approach: give users a hosted computing platform and charge by
query, by seats, or by other metrics (OEM Databricks!)

o . Marketplace
il Velcome to Analytics Workbench by zz==——

wered by« databricks

g -

Example: S&P Marketplace
Workbench

Interesting Databricks Use Cases

Surprising sources of big data

= Network security: log every network operation to catch intruders,
malicious insiders, exfiltration, etc - petabytes of data per day

= Public datasets: many biotech and financial companies use these
» Industrial 1oT: every factory device, airplane engine, etc is instrumented

New Trends and Challenges

Privacy regulations, such as GDPR and CCPA, have required
companies to significantly rethink data systems (for the better?)
= Only collect & use data for specific purposes (how to track this?)
= Any user can ask to delete their data (can’t store it immutably as before!)
= B2B contracts also increasingly have complex rules

New Trends and Challenges

Production machine learning: ML apps have similar problems to
data applications (too much data for human review), but worse:
» Opaque and misaligned metrics
= Qverfitting
= Bias

Conclusion

Using data in products and business decisions is hard: need to
define, collect, and monitor the data reliably and analyze in depth

Various technologies and principles for this have emerged over
time (data engineering, data warehouse architecture, etc)

Lots of room to make this simpler

