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Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years.
Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine
learning techniques, hundreds of studies have been carried out for accurate classification of patients with hetero-
geneousmental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500
studies have been published during the past quarter century on single subject prediction focused on a multiple
brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a
focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism
spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those
studies such as sample size, type and number of extracted features and reported accuracy are summarized and
discussed. To our knowledge, this is by far themost comprehensive review of neuroimaging-based single subject
prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a
machine learningpoint of view. Commonbiases are discussed and suggestions are provided.Moreover, emerging
trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype
classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing
the great potential of neuroimaging data for single subject prediction of various disorders. However, the main
bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern
data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced
data-intensive machine learning methodologies such as deep learning have coincided with an increasing need
for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In
this report, we survey the past and offer some opinions regarding the road ahead.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Neuroimaging has opened up an exciting non-invasive window into
the human brain over the past few decades. This interdisciplinary field
has attracted scientists from areas such asmedicine, engineering, math-
ematics, physics, statistics, computer science, and psychology (Epstein
et al., 2001). Imaging modalities such as magnetic resonance imaging
(MRI) and magnetoencephalography (MEG) along with more tradi-
tional methods such as electroencephalography (EEG) have made it
possible to non-invasively study various aspects of the human brain
with unprecedented accuracy. MRI-related techniques such as struc-
tural MRI (sMRI), functional MRI (fMRI) and diffusion MRI (dMRI)
etwork, 1101 Yale Blvd., NE,
have the benefit of providing localized spatial information about the
brain structure and function aswell as detailed functional and structural
connectivity maps. These techniques have provided new insight into
the human brain and have brought hope to researchers trying to un-
ravel the secrets of one of the most complex systems in the universe,
the human brain.

Structural MRI has made it possible to visualize the brain at high
spatial resolution (one cubic millimeter or less) (Liang and Lauterbur,
2000). sMRI high resolution images of the brain are ideal for studying
various brain structures and also for detecting physical abnormali-
ties, lesions and damages. dMRI is an imaging technique for visuali-
zation of anatomical connections between different brain regions
(Le Bihan et al., 2001; Merboldt et al., 1985). Functional MRI measures
brain activity by detecting changes in the blood oxygenation (DeYoe
et al., 1994; Ogawa et al., 1990). fMRI makes it possible to study
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functional regions and networks of the brain aswell as temporal associ-
ations among them.

Unfortunately, brain disorders are major health problems in the US
and the rest of the world that not only impair the lives of millions of
people but also impose huge financial burdens on societies (DiLuca
and Olesen, 2014; Ernst and Hay, 1994; Rice, 1999). Moreover, there
are no clinical tests to identifymany brain disorders such as schizophre-
nia. One of the major hopes underlying the advanced neuroimaging
tools mentioned above is to provide new understanding of brain dis-
orders such as schizophrenia, bipolar disorder, autism spectrum dis-
order (ASD), Alzheimer's disease (AD), major depressive disorders,
attention-deficit hyperactivity disorder (ADHD) and mild cognitive
impairment (MCI). Brain disorder research aims at understanding the
impact of each disease on the brain's function and structure from the
cellular to system level, as well as the pathogenesis of these complex
disorders. As a result, thousands of studies have been published on dif-
ferent aspects of brain disorders to show aberrations of some features
(structural or functional) in a patient group usually in comparison
with a healthy cohort (Jack et al., 1997; Jafri et al., 2008; Lorenzetti
et al., 2009; McAlonan et al., 2005). While these studies are valuable
in terms of finding relevant disease biomarkers, they are not sufficient
for direct clinical diagnostic/prognostic adoption. The main reason is
that many of these findings are statistically significant at the group
level, but the individual discrimination ability of the proposed bio-
markers is not typically evaluated. Since classification provides informa-
tion for each individual subject, it is considered amuch harder task than
reporting group differences.

In recent years, there has been a growing trend in designing
neuroimaging-based prognostic/diagnostic tools. As a result, there
have been a lot of efforts using neuroimagingmethods to automatically
discriminate patients with brain disorders from healthy control or from
each other (Klöppel et al., 2012). Many of these studies have reported
promising prediction performances with the claim that complex
diseases can be diagnosed robustly, accurately and rapidly in an auto-
matic fashion. However, until now, these tools have not been integrated
into the clinical realm. We believe that the main reason for this is that
many of the studies of this nature, despite the promising results on
a specific research dataset, are not designed to generalize to other
datasets, specifically the clinical ones.

The purpose of this study was two-fold. First, we reviewed a large
number of MRI-based brain disorder diagnostic/prognostic studies in
schizophrenia, ASD, ADHD, depressive disorder, MCI and Alzheimer's
disease. These studies are compared in a number of key aspects such
as type of features, classifier and reported accuracies. Next, we formed
our opinion on the issues associated with how machine learning is
applied in neuroimaging and have suggested solutions that might ad-
dress these pitfalls. Considering the immense potential of neuroimaging
tools for clinical adoption, careful implementation and interpretation
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Fig. 1. Comparison of group difference analysis and classification in three different scenario
is performed by simple thresholding (red dotted lines). Each group/class has 100 sampl
B: Insignificant group difference (p-value = 0.865) but high classification accuracy (94.5%). C:
Significant group difference doesn't necessarily cause high classification and vice versa.
of machine learning in neuroimaging is crucial. Machine learning is a
relatively new domain for many neuroimaging researchers coming
from other fields and therefore pitfalls are unfortunately not rare. We
attempt to identify and emphasize some commonmistakes that result-
ed in these shortcomings and biases. At the end, we discuss emerging
trends in neuroimaging such as data sharing, multimodal brain imaging
and differential diagnosis.

Group difference vs. classification

As pointed out in the Introduction section,many brain disorder stud-
ies have shown abnormality in the average sense in one or more brain
features in a patient cohort in comparison with a healthy group using
statistical tests. The success of such methodology is usually measured
by the means of p-values. On the other hand, the goal of single subject
prediction is to automatically classify each subject into oneof the groups
in the study (e.g., healthy vs. patient). The success of classification stud-
ies is usually measured by accuracy.

These two problems are very different in essence as they try to ad-
dress distinct research questions. In general, showing group differences
ismuch easier compared to single subject prediction. To better illustrate
the difference between these types of analysis, we show an example in
Fig. 1. Suppose there are two groups each with 100 samples (subjects)
and we have measurements of one brain feature for each subject.
Fig. 1A shows a casewhere themean values of the two groups are differ-
ent as measured by a two-sample t-test. The difference is statistically
significant (p-value = 0.001). However, if one tries to classify subjects
based on a threshold on this brain feature (the dotted red line placed
between the mean of two groups), a weak classification rate of 60.0%
will be achieved. The reason for this is the range of values for that
specific feature is highly overlapping for the two groups. So, a highly sig-
nificant group difference does not necessarily translate into a strong
classification result. But the opposite is also true, as high classification
based on a feature doesn't necessarily mean that group-level mean dif-
ferences exist. Fig. 1B shows a case where the two-sample t-test on the
two groups is not significant (p-value = 0.86) but the classification
based on two thresholds (red dotted lines placed between each mode
of group 2 and mean of group 1) is very strong (94.5%). In this case,
the abnormality is bidirectional, which does not cause significant
mean differences but makes it possible to separate the groups with
two thresholds (dotted lines). Interestingly, bidirectional abnormalities
are observed in neuroimaging studies (Arbabshirani and Calhoun, 2011;
Calhoun et al., 2006b). Fig. 1C shows a case where strong group dif-
ferences and successful classification go hand in hand. The abnormality
is one-directional and themean difference is very significant (p-value b
2e−16). The mean of two groups is so far apart that the values of most
of the samples of the two groups do not overlap. Therefore, a strong
classification rate of 93.5% is achieved (based on one threshold).
Group 2 Group 1 Group 2

.86
94.5%

P-value < 2e-16
Classification = 93.0%

C

s using toy data. Group difference is analyzed by two-sample t-tests and classification
es. A: Significant group difference (p-value b 0.001) but poor classification (60.0%).
Significant group difference (p-value b 2e−16) and high classification accuracy (93.0%).
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Fig. 2. The literature review procedure, the inclusion criteria and the number of surveyed studies for each modality.
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The main purpose of example in Fig. 1 is to show that group level
analysis and classification are two different methods for different
problems. We will return to this example later for criticism of selecting
features based on p-value.

Survey of MRI-based single-subject prediction of brain disorders

Based on a search on PubMed from 1990 to 2015,1 more than 500
papers on MRI-based single subject prediction of brain disorders were
found. Fig. 2 summarizes the paper selection procedure for this study.
More than 200 papers were eventually selected for this survey (112
AD/MCI, 64 schizophrenia, 19 depressive disorders, 20 ASD and 22
ADHD papers).

We limited our search to journal papers in English published up to
December 2015. In a few instances, the full paper was not found and
therefore those studies were excluded from this survey. Also, in cases
of very similar papers from the same authors, only one was selected.
Key aspects of each study such as modality, machine learning method,
sample size and extracted features were investigated. A list of all abbre-
viations used in the tables and the manuscript itself is provided in
Table 1.

Mild cognitive impairment/Alzheimer's disease

MCI entails cognitive decline more than what is expected for an
individual's age and education level, but not to the extent that it
interferes notably with activities of daily life (Albert et al., 2011). Unfor-
tunately, more than 50% of the MCI patients progress to dementia
within 5 years (Gauthier et al., 2006). So, it is considered a prodromal
phase to dementia especially the AD type (Gauthier et al., 2006). The
1 Search term: (“Machine Learning”OR SVMOR “automatic Classification”OR “discrim-
inant analysis” OR “neural Network” OR “Logistic Regressions” OR “decision tree”)
AND (MRI OR “Magnetic Resonance” OR fMRI OR “functional MRI” OR “structural MRI”
OR “Diffusion MRI” OR DTI OR DSI) AND (schizophrenia OR bipolar OR Alzheimer's OR
“Mild Cognitive Impairment” OR MCI OR autism OR “autism spectrum disorder” OR ASD
OR depression OR “depressive disorder” OR ADHD OR “Attention Deficit Hyperactivity
Disorder”) concluded on 12/08/2015.
heterogeneous etiology of MCI includes degenerative diseases (AD,
fronto-temporal lobe degeneration, dementia with Lewy bodies) as
well as vascular and psychiatric disorders (Petersen and Negash,
2008). AD is the most common neurodegenerative disorder, which is
increasingly prevalent among adults aged 65 years and older. AD is
characterized by the progressive impairment of neurons and their con-
nections, which result in decline and loss of cognitive functions. In 2007,
it was estimated that more than 26 million people suffer from AD
worldwide (Brookmeyer et al., 2007). In 2001 it was predicted that AD
will triple in prevalence by 2050 (Hebert et al., 2001). The detection of
AD is based on clinical examinations and an evaluation of the patient's
perception and behavior. Considering the prevalence and severity
of MCI/AD, the largest number of neuroimaging-based, automatic
prediction/classification publications has been devoted to these condi-
tions. Also, a number of these studies, investigated the possibility of
automatic classification of stable MCI (sMCI) from progressive MCI
(pMCI) using neuroimaging data (Eskildsen et al., 2013). Table 2 sum-
marizes the 112 studies that we reviewed in this survey including 16
studies that also reported sMCI versus pMCI classification results.

Schizophrenia

Schizophrenia is among the most prevalent mental disorders and
affects about 1% of the population worldwide (Bhugra, 2005). This
devastating, chronic heterogeneous disease is usually characterized by
disintegration in perception of reality, cognitive problems, and a chronic
coursewith lasting impairment (Heinrichs and Zakzanis, 1998). Consid-
ering the absence of standard clinical test for schizophrenia, there is
a growing interest in automatic diagnosis of schizophrenia based on
neuroimaging features. We surveyed 64 papers, which are tabulated
in Table 3.

Depressive disorders

Major depressive disorder (MDD) or unipolar depression character-
ized by a pervasive lowmood, self-esteem and lack of interest in enjoy-
able activities is a common mental illness affecting adolescents. The
lifetime prevalence of MDD is approximately 15–20% (Kessler et al.,



Table 1
Glossary of the abbreviations used in the manuscript and tables.

Abbreviation Full term

AAL automated anatomical labeling
ABIDE autism brain imaging data exchange
ACC anterior cingulate cortex
AD alzheimer's disease
ADAS alzheimer's disease assessment scale
ADHD attention deficit hyperactivity disorder
ADHD-C ADHD combined
ADHD-HI hyperactive/impulsive ADHD
ADHD-IA inattentive ADHD
ADNI alzheimer's disease neuroimaging initiative
ADOS autism diagnostic observation schedule
AG angular gyrus
ALFF amplitude of low frequency fluctuations
aMCI amnestic MCI
ANN artificial neural network
ANOVA analysis of variance
AOD auditory oddball
ASD autism spectrum disease
AUC area under curve
AX-CPT AX version of continuous performance task
BOLD blood-oxygen level dependent
BP bipolar disorder
CFT complex figure test
cMCI MCI converter
CN cognitively normal
CSF cerebrospinal fluid
DA axial diffusion
DAT dementia of the Alzheimer's type
DLPFC dorsolateral prefrontal cortex
DMN default-mode network
dMRI diffusion magnetic resonance imaging
DR radial diffusion
DRS dementia rating scale
EC elderly controls
EEG electroencephalography
ELM extreme learning machines
eMCI early MCI
ERC entorhinal cortex
FA fractional anisotropy
FALLF fractional amplitude of low frequency fluctuations
FBIRN functional biomedical informatics research network
FC functional connectivity
FDG fluorodeoxyglucose
FDG-PET fluorodeoxyglucose positron emission tomography
FFT fast Fourier transform
fMRI functional magnetic resonance imaging
FNC functional network connectivity
FTD frontotemporal dementia
GLM general linear modeling
GM gray matter
GMD gray matter density
HC healthy controls
ICA independent component analyses
ITG inferior temporal gyrus
jICA joint independent component analysis
LBD Lewy body dementia
LDA linear discriminant analysis
LDDMM large deformation diffeomorphic metric mapping
LLD late-life depression
LLE locally linear embedding
LMCI late MCI
MA mean anisotropy
mCCA multi-set canonical correlation analysis
MCI mild cognitive impairment
MCIC multi-site clinical imaging consortium
MD mean diffusitivity
md-aMCI multiple domains MCI
MDD major depressive disorder
MEG magnetoencephalography
MLSP machine learning for signal processing
mMLDA modified maximum uncertainty linear discriminant analysis
MMSE mini mental state examination
MPFC medial prefrontal cortex
MRI magnetic resonance imaging
MRMR minimum redundancy maximum relevancy

Table 1 (continued)

Abbreviation Full term

MRS magnetic resonance spectroscopy
MTL medial temporal lobe
MTR magnetization transfer ratio
MVPA multi voxel pattern analysis
N/A no answer (we couldn't find it in the paper)
NC normal controls
ncMCI MCI non-converter
NDD non-refractory depressive disorder
NMF non-negative matrix factorization
OCD obsessive compulsive disorder
ODVBA optimally-discriminative voxel-based analysis
orPLS ordinary partial least square
PANSS positive and negative syndrome scale
PCA principal component analysis
PCC posterior cingulate cortex
pdf probability distribution function
PET positron emission tomography
pMCI progressive MCI
PPI psychophysiological interaction
QDA quadratic discriminant analysis
RAVENS regional analysis of brain volumes in normalized space
RBF radial basis function
RDD refractory depressive disorder
ReHo regional homogeneity
RMD remitted MDD
ROC receiver operating characteristic
ROI region of interest
rsfMRI resting-state fMRI
RSN resting-state networks
RVM relevance vector machine
RVoxM relevance voxel machine
RVR relevance vector regression
sACC subgenual anterior cingulate cortex
SBM surface based morphometry
sd-aMCI single domain amnestic MCI
sd-fMCI single domain frontal MCI
SIFT scale-invariant feature transform
sMCI stable MCI
sMRI structural magnetic resonance imaging
SN salience network
SNP single nucleotide polymorphism
SSD schizophrenia spectrum disorders
StD late-life subthreshold depression
SUVr standard uptake value ratio
SVM support vector machine
SVM-FoBa support vector machine with a forward–backward search strategy
SVM-RFE support vector machine with recursive feature elimination
SZ schizophrenia
SZA schizoaffective
TD typically developing
TDC typically developing children
uMCI unknown MCI
VaD vascular dementia
VBM voxel-based morphometry
VMHC voxel-mirrored homotopic correlations
VOI volume of interest
WFU Wake Forest University
WM white matter
WMD white matter density
WMT working memory task
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2003; Lewinsohn et al., 1986). It is estimated that by the year 2020,
depression will account for 15% of the disease burden in the world
ranking second after heart disease (Kessler et al., 1994). We reviewed
19 studies that used neuroimaging for automatic diagnose MDD.
Those studies are listed in Table 4.

Autism spectrum disorder

Autism spectrum disorder (ASD) is a serious neurodevelopmental
condition characterized by impaired social communication,
deficits in social–emotional reciprocity, deficits in nonverbal



Table 2
Summary of 112 MRI-based AD/MCI classification studies. Overall classification accuracy of stable (non-converting) MCI (sMCI or ncMCI) from progressive (converting) MCI (pMCI or
cMCI) is indicated by MCI-Conv if applicable. N/A indicates information was not available or could not be found.

Modality Disorder Features # of features Classifier Number of subjects Overall accuracy Reference

dMRI AD FA 1210 SVM HC = 25, AD = 20,
Total = 45

100% Graña et al.
(2011)

dMRI AD/BP FA maps 1500–14,000 SVM HC = 25, BP = 12,
AD = 20, Total =
57

100% Bergouignan
et al. (2011)

dMRI AD/MCI FA and MD Values 12–1080 SVM EC = 50, AD = 37,
MCI = 113, Total
= 200

68.3–84.9% Nir et al.
(2015)

dMRI MCI Clustering coefficient of WM
connectivity maps based on
fiber count, FA, MD and
principal diffusivities

3 (Most selected
ROIs)

SVM HC = 17, MCI =
10, Total = 27

88.90% Wee et al.
(2011)

dMRI MCI FA, DA, DR and MD 500 SVM EC = 40, MCI =
33, Total = 73

93.00% O'Dwyer et al.
(2012)

dMRI MCI FA and the volume of fiber
pathways from selected
region

100–4500 SVM NC = 45, MCI =
39, Total = 84

100% Lee et al.
(2013)

dMRI MCI FA maps 1000 SVM sd-aMCI = 18,
sd-fMCI = 13,
ad-aMCI = 35,
Total = 66

97% Haller et al.
(2013)

dMRI MCI FA, longitudinal, radial, and
mean diffusivity features

N/A SVM HC = 35, MCI =
67, Total = 102

91.4–97.5% Haller et al.
(2010)

fMRI
(confrontation
naming task)

AD (low and high
risk)

Fractional signal changes ROI 50 LDA + orPLS Low AD Risk HC =
11, High AD Risk
HC = 13, Total =
24

83.30% Andersen et al.
(2012)

rsfMRI AD Averaged voxel intensities of
selected resting-state
networks

4 Multivariate ROC HC = 16, AD = 15,
Total = 31

100% Wu et al.
(2013)

rsfMRI AD Graph measures based on FC
analysis among ROIs

454 SVM HC = 20, AD = 20,
Total = 40

100% Khazaee et al.
(2015)

rsfMRI AD/FTD ROI-based difference
between DMN and SN map

22 LDA HC = 12, AD = 12,
FTD = 12, Total =
36

92% Zhou et al.
(2010)

rsfMRI AD/MCI FC among selected AAL
regions

3403 Bayesian Gaussian
process logistic
regression

HC = 39, aMCI =
50, AD = 27, Total

= 116

75–90% Challis et al.
(2015)

rsfMRI MCI Local connectivity and global
topological properties

450 Multiple kernel
learning

HC = 25, MCI =
12, Total = 37

91.90% Jie et al. (2014)

rsfMRI MCI N/A 465 N/A HC = 21, MCI =
29, Total = 60

95.60% Beltrachini
et al. (2015)

sMRI AD Eigen brains of key slices 10 SVM NC = 98, AD = 28,
Total = 126

92.30% Zhang et al.
(2015)

sMRI AD ODVBA of RAVENs maps N/A SVM HC = 50, AD = 50,
Total = 100

90% Zhang and
Davatzikos
(2011)

sMRI AD Hippocampus shape
measures using LDDMM and
PCA

20 principal
components (3–4
selected by the
classifier)

Logistic regression HC = 26, DAT =
18, Total = 44

81.1–84.6% Wang et al.
(2007)

sMRI AD GM, WM, and CSF tissue
densities along with age,
gender and genotype

237–240 SVM HC = 190, AD =
190, Total = 380

85.6–89.3% Vemuri et al.
(2008)

sMRI AD Cortical thickness measures
along mesh vertices

82,000 mesh
vertices

RVoxM HC = 150, AD =
150, Total = 300

93.0% (AUC) Sabuncu and
Van Leemput
(2012)

sMRI AD Whole brain and
hippocampus VBM measures

N/A SVM EC = 31, AD = 31,
Total = 62

74–79% Polat et al.
(2012)

sMRI AD Volumetric measures 45 SVM HC = 20, AD = 14,
Total = 34

88.20% Oliveira et al.
(2010)

sMRI AD Hippocampus morphometric
measures

9 LDA HC = 57, AD = 38,
Semantic dementia
= 6, Total = 101

77% Miller et al.
(2009)

sMRI AD GM maps 10–45 SVM, ELM,
Self-adaptive
Resource Allocation
Network

HC = 30, AD = 30,
Total = 60

97.1–99.7% Mahanand et
al. (2012)

sMRI AD GM distribution of ROIs 90 SVM EC = 22, AD = 16,
Total = 38

94.50% Magnin et al.
(2009)

sMRI AD Surface-based measures of N/A SVM HC = 20, AD = 19, 84.6–94.9% Li et al. (2007)

(continued on next page)
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Table 2 (continued)

Modality Disorder Features # of features Classifier Number of subjects Overall accuracy Reference

hippocampus Total = 39
sMRI AD Cortical thickness N/A LDA, QDA and

logistic regression
HC = 17, AD = 19,
Total = 36

90–100% Lerch et al.
(2008)

sMRI AD Cortical thickness data and
hippocampus shape

N/A LDA NC = 84, AD =
33,Total = 117

87.50% Lee et al.
(2014)

sMRI AD GM probability maps Variable Linear program
boosting of
voxel-wise weak
classifiers with
spatial constraints

Total = 183 82.0% (AUC) Hinrichs et al.
(2009)

sMRI AD WM and GM voxels selected
by SVM-RFE

Variable SVM HC = 185, AD =
185, Total = 370

94.3–95.1% Hidalgo-Muñoz
et al. (2014)

sMRI AD Volumes of
hippocampus–amygdala
formation

1 Thresholding HC = 28, AD = 27,
Total = 55

89–96% (Sensitivity) Hampel et al.
(2002)

sMRI AD Linear measurements of
several structures

12 LDA HC = 31, AD = 46,
Total = 77

81–87% (Sensitivity) Frisoni et al.
(1996)

sMRI AD Texture features 260 Linear discriminant
function

HC = 40, AD = 24,
Total = 66

91% Freeborough
and Fox (1998)

sMRI AD Percentage of brain volume
changes

3 SVM NC = 30, AD = 30,
Total = 60

91.70% Farzan et al.
(2015)

sMRI AD GM, WM and CSF volumes
and size of hippocampus

5 SVM, MLP, andJ48
decision tree

NC = 48, AD = 37,
Total = 85

93.70% Farhan et al.
(2014)

sMRI AD Brain volume, temporal lobe
matter and CSF volume

4 Discriminant analysis HC = 29, DAT =
31, Total = 60

100% DeCarli et al.
(1995)

sMRI AD Several voxel-based and
cortical thickness-based
schemes

Variable Regularized SVM CN = 162, AD =
137, Total = 299

83–91% Cuingnet et al.
(2013)

sMRI AD Atrophic patterns of
hippocampus andentorhinal
cortex

N/A QDA HC = 50, AD = 50,
Total = 100

93% Coupé et al.
(2012)

sMRI AD SIFT features 133 Ensemble of SVMs HC1 = 66, AD1 =
20, HC2 = 98, AD2

= 28, Total = 212

70–87% Chen et al.
(2014)

sMRI AD Pdf of VOI based on VBM 100 SVM HC = 130, AD =
130, Total = 260

86% Beheshti and
Demirel (2015)

sMRI AD Generative-discriminative
basis vectors based on
RAVEN maps

30–50 Logistic model trees HC = 63, AD = 54,
Total = 117

87–89% Batmanghelich
et al. (2012)

sMRI AD Cortical thickness and
volumetric measures

N/A SVM HC = 25, AD = 29,
Total = 54

90.9% (AUC) Arimura et al.
(2008)

sMRI AD GM maps based on VBM 384,065 SVM HC = 137, AD =
108, MCI = 203,
Total = 448

63.7–80.3% Adaszewski
et al. (2013)

sMRI AD Gray matter probability
maps

2.00E + 06 SVM HC = 226, AD =
91, Total = 417

87% Abdulkadir
et al. (2011)

sMRI AD/FTD GM maps N/A SVM HC = 91, AD = 85,
FTD = 19, Total =
195

87–96% Klöppel et al.
(2008)

sMRI AD/FTD GM volume an thickness and
complexity estimates

N/A LDA CN = 23 AD = 24,
FTD = 19, Total =
66

81–96% Young et al.
(2009)

sMRI AD/FTD Morphometric measures of
selected ROIs

2 Discriminant analysis EC = 12, AD = 17,
FTD = 16, Total =
45

91% Kaufer et al.
(1997)

sMRI AD/MCI 3D hippocampal shape
morphology

N/A SVM HC = 88, MCI =
103, AD = 71,
Total = 262

MCI-Conv: 80% Costafreda
et al. (2011a)

sMRI AD/MCI GM, WM and CSF volumetric
measures and ventricle
shape

18 Particle swarm
optimization SVM

HC = 17, AD = 17,
MCI = 18, Total =
52

88.9–94.1% Yang et al.
(2013)

sMRI AD/MCI Coefficient of ICA on
normalized brain images

N/A SVM HC1 = 316, AD1 =
98, Total1 = 416,
HC2 = 200, AD2 =
200, MCI = 400,
Total2 = 800,

67.5–99% Yang et al.
(2011)

sMRI AD/MCI Hippocampal volume,
tensor-based morphometry,
cortical thickness and
manifold-based learning
features

112–114 LDA and SVM HC = 231, AD =
198, sMCI = 238,
pMCI = 167, Total
= 834

84.0–89.0%
MCI-Conv: 68.0%

Wolz et al.
(2011)

sMRI AD/MCI ROI-based and correlative
features based on cortical
and cerebral thickness and

N/A Multi-kernel SVM NC = 200, AD =
198, ncMCI = 111,
cMCI = 89, Total

79.2–97.4%
MCI-Conv: 75.1%

Wee et al.
(2013)
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Table 2 (continued)

Modality Disorder Features # of features Classifier Number of subjects Overall accuracy Reference

WM volumes = 598
sMRI AD/MCI Intensity patches of selected

ROIs around hippocampus
130–150 patches SVM (in multiple

instance-graph
framework)

CN = 231, AD =
198, ncMCI = 238,
cMCI = 167, Total
= 834

82.9–89%-MCI-Conv:
70%

Tong et al.
(2014)

sMRI AD/MCI Diffeomorphometry patterns
of subcortical and ventricular
structures

14 LDA HC = 210, AD =
175, cMCI = 135,
ncMCI = 87, Total
= 607

MCI-Conv: 77.0% Tang et al.
(2015)

sMRI AD/MCI Hippocampus, amygdala,
and ventricle shape
measures

N/A LDA HC = 210, AD =
175, MCI = 369,
Total = 754

86% Tang et al.
(2014)

sMRI AD/MCI Whole brain GM and WM
maps

34–127 SVM HC = 162, AD =
137, ncMCI = 134,
cMCI = 76, Total
= 509

72–76%, MCI-Conv:
66.0%

Salvatore et al.
(2015b)

sMRI AD/MCI GM maps 6000 SVM HC = 189, AD =
144, ncMCI = 166,
cMCI = 136, Total
= 635

80.0%-MCI-Conv:
70.7%

Retico et al.
(2015)

sMRI AD/MCI Hippocampal surface
deformation measures

19 LDA HC = 26, DAT =
18,
DAT-Converters =
9, Total = 53

77.0–87.0% Qiu et al.
(2008)

sMRI AD/MCI GM and WM maps Variable SVM, Bayes statistic
and voting feature
intervals

HC = 18, AD = 32,
MCI = 24, Total =
74

92%-MCI-Conv:
75.0%

Plant et al.
(2010)

sMRI AD/MCI Volumes of the hippocampus
and ERC

2–4 Discriminant
Function Analysis

HC = 59, AD = 48,
MCI = 65, Total =
172

65.9–90.7% Pennanen et al.
(2004)

sMRI AD/MCI GM Density of ROIs 37 SVM ncMCI = 38, cMCI
= 39, Total = 77

MCI-Conv: 77.7% Ota et al.
(2014)

sMRI AD/MCI Hippocampal volumetric
measures

5 LDA HC = 53, AD = 18,
MCI = 20, Total =
91

73.7–77.5% Mueller et al.
(2010)

sMRI AD/MCI GM density values and
cognitive measures

309 Low density
separation
semi-supervised
classifier

NC = 231, AD =
200, sMCI = 100,
pMCI = 164, uMCI
= 130, Total =

825

MCI-Conv:
76.6–90.0% (AUC)

Moradi et al.
(2015)

sMRI AD/MCI Data-driven ROI GM from
different templates

1500 from each
template

SVM NC = 128, AD =
97, sMCI = 117,
pMCI = 117, Total
= 459

91.6%, MCI-Conv:
72.4%

Min et al.
(2014)

sMRI AD/MCI Longitudinal volumetric MR
imaging measures

N/A QDA HC = 203 AD =
164, MCI = 317,
Total = 684

85% McEvoy et al.
(2011)

sMRI AD/MCI Volumetric and cortical
thickness measures

N/A LDA HC = 139, AD =
84, MCI = 175,
Total = 398

89–92% McEvoy et al.
(2009)

sMRI AD/MCI GM maps N/A Ensemble of SVMs NC = 229, AD =
198, MCI = 225,
Total = 652

85.3–92.0% Liu et al.
(2014b)

sMRI AD/MCI GM maps registered to
multiple templates

1500 for each
template

Ensemble of SVMs NC = 128, AD =
97, sMCI = 117,
pMCI = 117, Total
= 459

93.8% MCI-Conv:
80.9%

Liu et al.
(2015)

sMRI AD/MCI Volume and cortical
thickness values of ROIs

162 Original
features reduced
by LLE

Logistic regression,
SVM and LDA

CN = 137, sMCI =
93, cMCI = 97, AD

= 86, Total = 413

51–89% MCI-Conv:
68%

Liu et al.
(2013)

sMRI AD/MCI Surface connectivity and
center of mass markers

N/A LDA NC = 170, AD =
114, MCI = 240,
Total = 524

76.6–87.7% (AUC) Lillemark et al.
(2014)

sMRI AD/MCI Proposed local binary
pattern features

N/A SVM NC = 142, AD =
80, MCI = 141,
Total = 363

61.5–82.8% Li et al.
(2014a)

sMRI AD/MCI Cortical thickness measures,
cortex thinning dynamics
and network features based

262 SVM NC = 40, sMCI =
36, pMCI = 39, AD

81.7–96.1%
MCI-Conv: 80.3%

Li et al. (2012)

(continued on next page)
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Table 2 (continued)

Modality Disorder Features # of features Classifier Number of subjects Overall accuracy Reference

on longitudinal thickness
changes of different ROIs

= 37, Total = 152

sMRI AD/MCI Hurst's exponents at
different scales

N/A SVM HC = 11, AD = 11,
MCI = 11, Total =
33

97.1–97.5% Lahmiri et al.
(2014)

sMRI AD/MCI Volumetric measures 120 (115 brain
features)

LDA CN = 125, AD =
55, EMCI = 114,
LMCI = 91, Total
= 385

90.8–94.5% Goryawala
et al. (2015)

sMRI AD/MCI Spherical harmonics of
hippocampi

2646 SVM HC = 25, AD = 23,
aMCI = 23, Total
= 71

83–94% Gerardin et al.
(2009)

sMRI AD/MCI Three schemes: voxel-based
features, cortical thickness
features and
hippocampus-based features

Variable SVM CN = 162, AD =
137, cMCI = 76,
ncMCI = 134,
Total = 509

81–95% (for AD vs
CN)

Cuingnet et al.
(2011)

sMRI AD/MCI Volume, thickness and
surface area of selected ROIs

7 MRI, 2 CSF and 14
neuropsychological
features

SVM HC = 111, cMCI =
56, ncMCI = 111,
AD = 96, Total =
350

MCI-Conv: 67.1% Cui et al.
(2011)

sMRI AD/MCI Hippocampus and
parahippocampal gyrus GM
maps

11,031 SVM HC = 188, MCI =
260, AD = 131,
Total = 579

70–85% MCI-Conv:
65%

Chu et al.
(2012)

sMRI AD/MCI Intensity and texture of
selected VOIs in MTL

N100,000 Ensemble of SVMs HC = 189, ncMCI
= 166, cMCI =

136, AD = 144,
Total = 635

65–94% MCI-Conv:
74.0% (AUC)

Chincarini
et al. (2011)

sMRI AD/MCI GM map 50,000–750,000 SVM, regularized
logistic regression,
linear regression
classifier

HC = 205, MCI =
351, AD = 171,
Total = 727

80–90% Casanova et al.
(2012)

sMRI AD/MCI Volumetric measures of
amygdala, hippocampus, and
parahippocampal gyrus

N/A Discriminant
function analysis

NEC = 20, MCI =
21, AD = 39, Total

= 80

80.5–88.1% Bottino et al.
(2002)

sMRI AD/MCI Hippocampal volume and
CSF Aβ, t-tau and p-tau
levels, and ApoE4
stratification

N/A SVM NC = 111, AD =
95, MCI = 182,
Total = 388

64–78% Apostolova
et al. (2014)

sMRI AD/MCI Cortical thickness and
volumetric measures

57 SVM HC = 110, AD =
116 MCI = 119,
Total = 345

88.10% Aguilar et al.
(2013)

sMRI AD/MCI/dimentia GM and WM maps N/A SVM HC = 604, AD =
483, FTD = 51,
LBD = 27, ncMCI
= 290, cMCI =

128, Total = 1583

73–97% (AUC)
MCI-Conv: 73.0%
(AUC)

Klöppel et al.
(2015)

sMRI Dementia Hippocampal head and body
volumetric measures

4 LDA HC = 17,
Questionable
dementia = 12,
Mild dimentia =
10, Total = 39

76.90% Wolf et al.
(2001)

sMRI MCI Graph properties based on
inter-regional co- variation
of cortical thickness

Variable Multiple kernel
learning

NC = 42, sd-aMCI
= 38, md-aMCI =

32, Total = 112

56.0–62.0% Raamana et al.
(2014)

sMRI MCI Volume, mean T1, MTR and
T2* for selected ROIs

7 ROIs SVM HC = 77, MCI =
42, Total = 119

75% Granziera et al.
(2015)

dMRI and sMRI AD FA and GM volumes 142 SVM NC = 15, AD = 21,
Total = 36

94.30% Li et al. (2014b)

dMRI and sMRI AD/MCI Network topology,
tractography connectivity
and flow-based measures

N/A SVM NC = 50, AD = 38,
EMCI = 74, LMCI
= 38, Total = 200

59.2–78.2% Prasad et al.
(2015)

dMRI and sMRI AD FA and MD from dMRI and
GMD and WMD from sMRI

26,000 FA, 128,000
MD, 41,000 WMD
and 181,000 GMD

SVM HC = 143, AD =
137, Total = 280

63.6–91.1% Dyrba et al.
(2013)

dMRI and sMRI AD/VaD Transcallosal prefrontal FA
and Fazekas score

4 LDA HC = 22, AD = 16,
VaD = 13, Total =
51

87.50% Zarei et al.
(2009)

dMRI and sMRI AD/MCI Disease-specific spatial
filters

N/A LDA NC = 22, AD = 19,
aMCI-converter =
6, aMCI-stable =

16, Total = 63

MCI-Conv: 93.0%
(AUC)

Oishi et al.
(2011)
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Table 2 (continued)

Modality Disorder Features # of features Classifier Number of subjects Overall accuracy Reference

dMRI and sMRI AD/MCI Cortical thickness,
subcortical volume and
white matter integrity

2–5 SVM SMI = 27, AD =
27, MCI = 138
Total = 192

70.5–96.3% Jung et al.
(2015)

dMRI and sMRI MCI Subcortical volumetric
measures and FA values

68 SVM HC = 204, aMCI =
79, Total = 283

71.10% Cui et al.
(2012)

sMRI and PET AD/MCI Volume of GM from sMRI
and average intensity from
PET of selected ROIs

186 Multi-task linear
programming
discriminant

sMCI = 226, pMCI
= 167, Total =

393

MCI-Conv: 67.2% Yu et al. (2014)

sMRI and PET AD/MCI GM density relative cerebral
metabolic rate for glucose of
ROIs

168–172 SVM ncMCI = 40, cMCI
= 40, Total = 80

MCI-Conv:
74.8–75.0% (AUC)

Ota et al.
(2015)

sMRI and PET MCI ROI-based GM, WM and CSF
volumes from sMRI and
average intensity from PET

93 ROIs Multiple Kernel
Learning

ncMCI = 50, cMCI
= 38, Total = 88

MCI-Conv: 78.4% Zhang and
Shen (2012b)

sMRI and PET AD Volumes of interest 12 SVM HC1 = 28, AD1 =
28, HC2 = 13, AD2

= 21, Total = 90

86–100% Dukart et al.
(2013)

sMRI and PET AD/MCI Volumes of GM tissue of
selected ROIs

93 Domain transfer SVM NC = 52, AD = 51,
cMCI = 43, ncMCI
= 56, Total = 202

MCI-Conv: 79.4% Cheng et al.
(2015a)

sMRI and PET AD/MCI Functional and structural
connectivity measures using
sparse inverse covariance
estimation

84 SVM HC = 68, AD = 70,
MCI = 111, Total
= 249

84–92% Ortiz et al.
(2015)

sMRI and PET AD/MCI GM volume of ROIs from
sMRI and average intensity
of ROIs from PET

186 (original
number of
features)

Multi-kernel SVM NC = 52, AD = 51,
MCI = 99, Total =
202

78.8–94.8% Liu et al.
(2014a)

sMRI and rsfMRI AD GM volume from sMRI and
ALFF, ReHo and FC from
rsfMRI

Variable Maximum
uncertainty LDA and
second level

HC = 22, AD = 16,
Total = 38

89.50% Dai et al.
(2012b)

sMRI, FDG-PET AD/MCI ROI-based GM, volumes
from sMRI and average
intensity from PET

186 Multi-kernel SVM NC = 52, AD = 51,
ncMCI = 56, cMCI
= 43, Total = 202

80.3–95.9%,
MCI-Conv: 69.8%

Zu et al. (2015)

sMRI, FDG-PET AD/MCI Cortical and volumetric
measures and surface based
FDG uptakes

24 Partial least square
LDA

NC = 85, AD = 71,
MCI = 163, Total
= 319

76.5–90.1% Yun et al.
(2015)

sMRI, FDG-PET AD/MCI GM and WM maps from
sMRI and FDG-PET images

Variable Multi-kernel
learning

HC = 66, AD = 48,
MCI = 119, Total
= 233

87.60% Hinrichs et al.
(2011)

sMRI, FDG-PET
and
Florbetapir
PET

AD/MCI Mean volume of GM, SUVr
value of FDG-PET and SUVr
value of florbetapir PET for
selected ROIs

90 per modality Weighted
multi-modality
sparse
representation-based
classification

NC = 117, AD =
113, sMCI = 83,
pMCI = 27, Total
= 340

74.5–94.8%,
MCI-Conv: 77.8%

Xu et al. (2015)

sMRI, FDG-PET,
and CSF

AD/MCI ROI-based GM, WM and CSF
volumes from sMRI and
average intensity from PET

189 SVM HC = 52, AD = 51,
ncMCI = 56, cMCI
= 43, Total = 202

76.4–93.2%,
MCI-Conv: 81.2%

Zhang et al.
(2011)

sMRI, FDG-PET,
and CSF data

AD/MCI Volume of GM from sMRI
and average intensity from
PET of selected ROIs along
with CSF measures

189 Graph-guided
multi-task learning

NC = 52, AD = 50,
MCI = 97, Total =
199

80.0–92.6% Yu et al. (2015)

sMRI, FDG-PET,
CSF and
Genetics

MCI ROI-based volumetric
measures from sMRI,
voxel-wise intensity
measures from PET along
with CSF and genetic
features

N1E5 Random Forest NC = 35, AD = 37,
sMCI = 41, pMCI
= 34, Total = 147

74.6–89.0%,
MCI-Conv: 58.0%

Gray et al.
(2013)

sMRI, FDG-PET,
CSF, and APOE
genotype

AD/MCI ROI-based GMD maps, mean
activity from PET

20 ROIs Gaussian process
classifier

HC = 73, AD = 63,
ncMCI = 96, cMCI
= 47, Total = 279

MCI-Conv: 74.1% Young et al.
(2013)

sMRI, PET, CSF
and SNP

AD/MCI GM volume and average
intensity of ROIs along with
CSF and SNP features

93 (sMRI, 93 (PET),
3 (CSF) and 5677
(SNP)

SVM HC = 47, AD = 49,
MCI = 93, Total =
189

71.0–94.8% Zhang et al.
(2014)

sMRI, rsfMRI
and dMRI

AD GM volume from sMRI, fiber
tract integrity from dMRI
and graph-theoretical
measures form fMRI

N/A SVM HC = 25, AD = 28,
Total = 53

74–85% (AUC) Dyrba et al.
(2015)
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Table 3
Summary of 64 MRI-based schizophrenia classification studies. N/A indicates information was not available or could not be found.

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

dMRI Schizophrenia Discriminant PCA of FA
maps

60 Fisher's linear
discriminant

HC = 45, SZ = 45
Total = 90

80% Caprihan et al.
(2008)

dMRI Schizophrenia FA maps 13 LDA HC = 24, SZ = 34
Total = 58

75% Caan et al.
(2006)

dMRI Schizophrenia Voxels of FA and MA maps
reduced by PCA

11–13 LDA HC = 50, SZ = 50
Total = 100

96% Ardekani et al.
(2011)

fMRI (sensorimotor,
AOD, WMT tasks)

Schizophrenia Mean activation of the
largest activation cluster

1 Majority vote of 3
decision stumps

HC = 15, SZ = 13
Total = 28

96% Honorio et al.
(2012)

fMRI (AOD/Sternberg/
sensorimotor tasks)

Schizophrenia ICA spatial maps 10–14 Projection pursuit HC = 91, SZ = 57
Total = 138

80–90% Demirci et al.
(2008a)

fMRI (AX-CPT task) Schizophrenia
(first-episode)

Voxels of left DLPFC in the
contrast map

N/A LDA HC = 51, SZ = 51
Total = 102

62% Yoon et al.
(2012)

fMRI- (Monetary
Incentive Delay task)

Schizophrenia MVPA of task activation
pattern (best result for right
palladium)

N/A Searchlight SVM HC = 44, SZ = 44
Total = 88

93% Koch et al.
(2015)

fMRI (sensorimotor
task) and SNP

Schizophrenia Sparse representation based
variable selection

200 Sparse representation
based classifier

HC = 116, SZ = 92
Total = 208

77% Cao et al.
(2013)

fMRI (verbal
fluency task)

Schizophrenia/bipolar Thresholded voxels in
activation map by ANOVA
tests

N/A SVM HC = 40, SZ = 32,
BP = 40 Total = 104

92% Costafreda
et al. (2011b)

fMRI (visual task) Schizophrenia Selected active voxels from
the contrast map

346 MVPA HC = 15, SZ = 19
Total = 34

59–72% Yoon et al.
(2008)

fMRI (WMT task) Schizophrenia with
and without OCD

MVPA on GLM contrast
values

33 SVM HC=20, SZ (with OCD)=
16, SZ (without OCD) =

17, Total = 53

75–91% Bleich-Cohen
et al. (2014)

fMRI (AOD task) Schizophrenia ICA Spatial Maps of
magnitude and phase data

135–243 Multiple kernel
learning

HC = 21, SZ = 31
Total = 52

85% Castro et al.
(2014)

fMRI (AOD task) Schizophrenia ICA (temporal and DMN
network) and GLM spatial
maps parcellated into AAL
atlas

116 Recursive composite
kernels

HC = 54, SZ = 52
Total = 106

95% Castro et al.
(2011)

fMRI (AOD task) Schizophrenia/bipolar Distance to mean image for
each group build using ICA
spatial maps (DMN and
temporal lobe)

3 Minimum distance HC = 26, SZ = 21,
BP = 14 Total = 61

83–95% Calhoun et al.
(2008)

fMRI (AOD task) Schizophrenia/bipolar ICA spatial maps (DMN and
temporal lobe)

10 Bayesian generalized
softmax perceptron

HC = 25, SZ = 21,
BP = 14 Total = 60

82–90%
(AUC)

Arribas et al.
(2010)

rsfMRI Schizophrenia Functional connectivity
among 116 regions in AAL
atlas reduced by PCA

333 SVM HC= 25, SZ = 24, Sibling
HC = 22 Total = 71

62% Yu et al.
(2013b)

rsfMRI Schizophrenia/MDD FC among ROIs 6670 SVM HC = 38, SZ = 32,
MDD = 19, Total = 89

80.9% Yu et al.
(2013a)

rsfMRI Schizophrenia Functional connectivity
among 347 nodes placed as
a grid in the entire brain

3000 Fused Lasso, GraphNet HC = 74, SZ = 71
Total = 145

91% Watanabe
et al. (2014)

rsfMRI Schizophrenia FALFF values of the left ITG N/A SVM HC = 46, unaffected
sibling of SZ patients =
46, Total = 92

75% Guo et al.
(2014b)

rsfMRI Schizophrenia FC among 90 ROIs 1096 Random forest HC = 18, SZ = 18
Total = 36

75% Venkataraman
et al. (2012)

rsfMRI Schizophrenia FC among 90 regions in
WFU atlas reduced by PCA

550 SVM HC = 22, SZ = 22
Total = 44

93% Tang et al.
(2012)

rsfMRI Schizophrenia Functional connectivity
(based on extended
maximized mutual
information) among 116
AAL regions

6670 SVM HC = 32, SZ = 32
Total = 64

83% Su et al. (2013)

rsfMRI Schizophrenia Dimension-reduced FC
(local linear embedding)
among AAL ROIs

12 C-means clustering HC = 20, SZ = 32
Total = 52

86% Shen et al.
(2010)

rsfMRI Schizophrenia Functional connectivity
among 116 regions in AAL
atlas

6670 Deep neural network HC = 50, SZ = 50
Total = 100

86% Kim et al.
(2015)

rsfMRI Schizophrenia Functional connectivity
based on ICA decomposition

46 Regularized linear
discriminant classifier

HC = 196, SZ = 71
Total = 267

75–84% Kaufmann
et al. (2015)

rsfMRI Schizophrenia Graph measures of
functional connectivity

N/A SVM HC = 29, SZ = 19,
Total = 48

80.0% Cheng et al.
(2015b)

rsfMRI Schizophrenia Local and global complex
network measures

216 SVM HC = 10, SZ = 8
Total = 18

100% Fekete et al.
(2013)

rsfMRI Schizophrenia Functional connectivity
patterns

6–7
variable

Ensemble of SVM
classifiers

HC = 31, SZ = 31
Total = 62

85–87% Fan et al.
(2011)

rsfMRI Schizophrenia Pearson correlation features
derived from regional
homogeneity, ALFF, FALLF

100 Ensemble of ELMs HC = 74, SZ = 72
Total = 144

80–91% Chyzhyk et al.
(2015)
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Table 3 (continued)

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

and voxel-mirrored
homotopic connectivity

rsfMRI Schizophrenia Size of connected
components in graphs build
from correlation among
time-courses for 90 AAL
regions

N/A SVM HC = 29, SZ = 29
Total = 58

75% Bassett et al.
(2012)

rsfMRI Schizophrenia Functional network
connectivity among 9 ICA
time-courses

45 SVM (best result) HC = 28, SZ = 28
Total = 56

96% Arbabshirani
et al. (2013)

rsfMRI Schizophrenia MVPA based on whole brain
thalamic connectivity map

N/A SVM HC = 90, SZ = 90,
Total = 180

73.9% Anticevic
et al. (2014)

rsfMRI Schizophrenia Graph metrics based on FNC
computed from ICA

13 SVM HC = 74, SZ = 72
Total = 146

65% Anderson and
Cohen (2013)

sMRI Schizophrenia Voxels from five regions
based on optimally
discriminative voxel-based
morphometry

N/A SVM HC = 79, SZ = 69
Total = 148

71% Zhang and
Davatzikos
(2013)

sMRI Schizophrenia
(first episode)

Whole brain volumetric
measurements based on
RAVENS

69 SVM HC = 62, SZ = 62
Total = 124

73% Zanetti et al.
(2013)

sMRI Schizophrenia
(first-episode)

Volume and mean cortical
thickness of selected ROIs

2,5 Discriminant function
analysis

HC = 40, SZ = 52
Total = 92

80% Takayanagi
et al. (2011)

sMRI Schizophrenia and
psychosis

Cortical GMD 129 Sparse multinomial
logistic regression
classifier

HC = 36, SZ = 36
Total = 72

86% Sun et al.
(2009)

sMRI Schizophrenia/bipolar Voxel-wise GM maps N/A SVM HC1 = 66, HC2 = 43,
SZ1 = 66, SZ2 = 46,
BP1 = 66, BP2 = 47
Total1 = 198,
Total2 = 136

67–90% Schnack et al.
(2014)

sMRI Schizophrenia Texture and volumetric
measures

N/A LDA HC = 24, SZ = 27,
Total = 51

65.0–72.7% Radulescu
et al. (2014)

sMRI Schizophrenia Clinical, neuropsychological,
biochemical and volumetric
measures

1050 SVM HC = 42, SSD = 36,
Non-SSD = 45,
Total = 123

81.0–99.0% Pina-Camacho
et al. (2015)

sMRI Schizophrenia/bipolar Volume of 23 ROIs along
with 22 neuropsychological
test scores

45 LDA HC = 8, SZ = 10,
BP = 10
Total = 28

96% Pardo et al.
(2006)

sMRI Schizophrenia GM and CSF volumetric
measures of ROIs

4 LDA HC = 105, HC2 = 23,
SZ1 = 38, SZ2 = 23,
Total = 189

70–76% Ota et al.
(2012)

sMRI Schizophrenia Gray matter densities based
on voxel-based morphometry
of top 10% voxels

15,700 SVM
HC1 = 111, HC2 = 122,
SZ1 = 128, SZ2 = 155
Total1 = 239,
Total2 = 277

71% Nieuwenhuis
et al. (2012)

sMRI Schizophrenia Volume of several ROIs in
the brain

7 LDA HC = 47, SZ = 57
Total = 104

78–86% Nakamura
et al. (2004)

sMRI Schizophrenia/mood
disorder

GM maps of regional
analysis of brain volumes in
normalized space (RAVENS)

170 SVM-RFE Mood disorder = 104,
SZ = 158
Total = 262

76% Koutsouleris
et al. (2015)

sMRI Schizophrenia The mean expression of
eigen image derived from
voxel-based morphometry

1 Simple Thresholding HC = 46, SZ = 46
Total = 92

80–90% Kawasaki
et al. (2007)

sMRI Schizophrenia
(first-episode)

Whole brain voxel intensity
values

N/A
(probably
thousands)

Maximum-uncertainty
LDA

HC = 39, SZ = 39
Total = 78

72% Kasparek
et al. (2011)

sMRI Recent onset
Schizophrenia

Volumetric measurements
of 95 ROIs

5 LDA HC = 47, SZ = 28
Total = 75

72% Karageorgiou
et al. (2011)

sMRI Schizophrenia MR intensities, gray matter
densities and deformation
based morphometry

96 per
feature
category

Combination of
mMLDA, centroid
method, and the
average linkage

HC = 49, SZ = 49,
Total = 98

81.6% Janousova
et al. (2015)

sMRI Schizophrenia GM and WM maps N/A SVM HC = 20, SZ = 19,
Total = 39

66.6–77% Iwabuchi
et al. (2013)

sMRI Schizophrenia
(identifying
subtypes)

Multi-edge graphs build
from Structural connectivity
networks with 78 ROIs

N/A Spectral clustering HC = 29, SZ = 23
Total = 52

78% Ingalhalikar
et al. (2012)

sMRI Schizophrenia
(childhood onset)

Cortical thickness 74 Random Forrest HC = 99, SZ = 98
Total = 197

74% Greenstein
et al. (2012)

sMRI Schizophrenia
(cognitive deficit and
cognitive spared)

Whole brain voxel-based
morphometry

N/A SVM HC = 163, SZ = 208,
SZA = 41, Total = 412

56–72% Gould et al.
(2014)

(continued on next page)
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Table 3 (continued)

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

sMRI Schizophrenia Volumetric measurements
based on deformation-based
morphometry

39/44 SVM HC1 = 38, HC2 = 41,
SZ1 = 23, SZ2 = 46
Total1 = 61, Total2 = 87

91% Fan et al.
(2007)

sMRI Schizophrenia Volumetric measures of all
WM, GM and CSF

69 SVM-RFE HC = 38, SZ = 23
Total = 61

92% Fan et al.
(2005)

sMRI Schizophrenia Whole brain volumetric
measurements

N/A Nonlinear classifier
(not specified)

HC = 79, SZ = 69
Total = 148

81% Davatzikos
et al. (2005)

sMRI Schizophrenia Hippocampal and thalamic
shape eigenvectors

25 Discriminant function
analysis

HC = 65, SZ = 52
Total = 117

79% Csernansky
et al. (2004)

sMRI Schizophrenia Visual words extracted from
DLPFC by SIFT and clustered
by k-means

30 SVM with local kernel HC = 54, SZ = 54
Total = 108

66–75% Castellani
et al. (2012)

sMRI Schizophrenia Surface morphological
measures

N/A Semi-supervised
(hierarchical clustering)

HC = 40, SZ = 65,
Total = 105

94.0% Bansal et al.
(2012)

sMRI and dMRI Schizophrenia/MDD Volume and FA of insula,
thalamus, ACC, ventricles
and corpus callosum

31 LDA MDD = 25, SZ = 25
Total = 50

72–88% Ota et al.
(2013)

fMRI (AOD task)
and rsfMRI

Schizophrenia Kernel PCA on ICA spatial
maps

53 Fisher's linear
discriminant

HC = 28, SZ = 28
Total = 56

93–98% Du et al.
(2012)

fMRI (AOD task)
and rsfMRI

Schizophrenia FNC scores derived from
ICA-based multi-network
fusion template for
functional normalization

3 and 100 LDA and shapelet
based classifier

HC = 28, SZ = 27
Total = 55

72% Çetin et al.
(2015)

fMRI (AOD task)
and SNP

Schizophrenia Three types of features:
selected voxels in fMRI
activation map, selected
SNPs and ICA components

261 voxels
+ 150
SNPs

Majority voting
among 3 SVMs

HC = 20, SZ = 20
Total = 40

87% Yang et al.
(2010)

sMRI, rsfMRI and dMRI Schizophrenia Gray matter densities from
structural, FA from DTI and
ALFF from fMRI

1863 SVM HC = 28, SZ = 35
Total = 63

79% Sui et al.
(2013b)
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communicative behaviors used for social interaction and stereo-
typic behavior (Association et al., 2003). Although the causation
of autism is still largely unknown, it has been suggested that
genetic, developmental, and environmental factors could be in-
volved alone or in combination as possible causal or predispos-
ing effects toward developing autism (Minshew and Payton,
1988; Wing, 1997). ASD has an estimated prevalence of 1:68 in
the US (Baio, 2012). We surveyed 20 papers in automatic diag-
nosis of ASD using MRI-based features. Those studies are listed
in Table 5.

Attention deficit hyperactivity disorder

Attention deficit hyperactivity disorder (ADHD) is one of the most
commonly found functional disorders affecting children. Approximately
3–10% of school aged children are diagnosed with ADHD (Biederman,
2005; Dey et al., 2012). Currently, no biological-based measure exists
to detect ADHD and instead, behavioral symptoms are investigated to
identify it. Despite all the research efforts, the root cause of ADHD is
still unknown. In 2011, a global competition (called ADHD-200) was
held in order to use neuroimaging as well as phonotypic measures to
automatically detect ADHD (Consortium et al., 2012). Most of the stud-
ies reviewed in this survey were responses to that challenge. The main
characteristics of those studies are tabulated in Table 6.

Analysis of the survey

In Fig. 3 we illustrate a couple of key aspects of this survey. Fig. 3A
shows the number of papers published in each year for each disease
type. The number of studies has been growing significantly since
2007. There is a peak for ADHD studies in 2012–2013 mainly due to
ADHD-200 competition (Consortium et al., 2012) which attracted
many scientists. The total number of studies for each modality and
each disorder is illustrated in Fig. 3B. It is clear that structural MRI is
the most popular modality especially for MCI/AD studies thanks to
Alzheimer's disease neuroimaging initiative (ADNI) dataset. Combined
rest and task fMRI studies aremost popular for ADHD and schizophrenia
studies. Surprisingly, multimodal studies are more common compared
to either task fMRI or diffusion MRI studies. Fig. 3C shows the overall
accuracy against the total sample size used in the studies. Interestingly,
almost all studies that reported very high accuracies, had sample sizes
smaller than 100. The reported overall accuracy decreases with sample
size in most of disorders such as schizophrenia and ADHD. This pattern
raises a serious concern regarding generalizability of many of those
studies with small sample sizes. Fig. 3D shows the sample size distri-
bution. The dashed lines represent mean (red) and median (blue)
sizes, which are 186 and 88 respectively. Finally, Fig. 3E illustrate
the distribution and summary statistics of reported overall accuracy
for each disorder along with the distribution of accuracies reported
for classification of pMCI from sMCI (16 studies). On average (red
diamonds) MCI/AD studies (usually against a healthy group) report-
ed the highest accuracies and sMIC versus pMCI studies reported the
lowest accuracies.

Based on Tables 2–6, the most common extracted features in the
surveyed studies are volume and cortical thickness from structural
MRI, the activation maps and functional connectivity among ROIs or
ICA components from fMRI data and fractional anisotropy from dMRI
data. Most common feature reduction methods (not reported in the
tables) were based on PCA or univariate statistical tests.

In terms of classification methods, support vector machine (SVM)
was by far the most popular method. Different flavors of SVM such as
linear, non-linear with different kernel, SVM with recursive feature
elimination, SVMwith L1 regularization and SVMwith L1 and L2 regu-
larization (elastic net) have been used for classification of various



Table 4
Summary of 19 MRI-based depressive disorder classification studies. N/A indicates information was not available or could not be found.

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

dMRI MDD Whole-brain anatomical
connectivity patterns

50 SVM HC = 26, MDD = 22,
Total = 48

91.7% Fang et al. (2012)

fMRI (facial affect
recognition task)

MDD Brain activation maps and
ROI-averaged activation features

N/A One-class SVM HC = 19, Depressed = 19,
Total = 38

63–65.5%
(estimated)

Mourão-Miranda
et al. (2011)

fMRI (gender
discrimination and
emotional tasks)

MDD Sparse network-based features of
FC

9316 SVM HC = 19, MDD = 19,
Total = 38

78.9–85.0% Rosa et al. (2015)

fMRI (social
concept task)

MDD GM maps of PPI analysis N/A Maximum entropy
LDA

HC = 21, MDD = 25,
Total = 46

78.1% (AUC) Sato et al. (2015)

fMRI (verbal
fluency task)

MDD Voxel-wise contrast map 14,055 Regularized logistic
regression, SVM
(best performance)

HC = 31, MDD = 31,
Total = 62

90.0–95.0% Shimizu et al.
(2015)

rsfMRI MDD FC maps of sACC N/A Label generation
maximum margin
clustering

HC = 29, MDD = 24,
Total = 53

92.5% Zeng et al. (2014)

rsfMRI MDD Hurst components of resting-state
networks

12 SVM HC = 20, MDD = 20,
Total = 40

90% Wei et al. (2013)

rsfMRI MDD Network-based measures based on
FC among ROIs

2–25 SVM HC = 22, MDD = 21,
Total = 43

99% Lord et al. (2012)

rsfMRI MDD FC among AAL regions 31 SVM HC = 37, MDD = 39,
Total = 76

76.6% Cao et al. (2014)

rsfMRI First-onset
depressive
disorder

Graph-theory measures 30 ANN HC = 27, first-onset
depression = 36,
Total = 63

90.5% Guo et al. (2014a)

rsfMRI Subthreshold
depression

ReHo features of ROIs 8 ROIs Fisher stepwise
discriminant analysis

NC = 19, StD = 19.
Total = 37

91.9% Ma et al. (2013)

sMRI MDD/BP GM, WM and ventricles volumetric
maps (RAVENS)

53–99 SVM HC1 = 33, HC2 = 38,
MDD = 19, BP = 23,
Total = 113

54.6–66.1% Serpa et al.
(2014)

sMRI MDD/BP Gray matter volumes of caudate
and ventral diencephalon

4 SVM HC = 61, BP = 40,
MDD = 57, RMD = 35,
Total = 193

59.5–62.7% Sacchet et al.
(2015)

sMRI MDD/BP Volumetric measurements 5 Discriminant function
analysis

HC = 22, MDD = 32,
BP = 14, Total = 68

81.0% MacMaster et al.
(2014)

sMRI MDD/BP Cortical thickness and surface area 18 SVM HC = 29, MDD = 19,
BP = 16

74.3% Fung et al. (2015)

sMRI MDD Feature-based morphometric
measures of GM maps

N/A SVM and RVM HC = 32, MDD = 30,
Total = 62

90.3% Mwangi et al.
(2012)

sMRI MDD GM and WM densities N/A SVM HC = 42, RDD = 23,
NDD = 23, Total = 88

58.7–84.6% Gong et al.
(2011)

sMRI MDD Cortical thickness of several ROIs 68 SVM HC = 15, MDD = 18,
Total = 33

70% Foland-Ross et al.
(2015)

sMRI, rsfMRI
and dMRI

LLD Variety of features from each
modality

13
feature
sets

Alternating decision
trees

EC = 35, LLD = 33,
Total = 68

87.3% Patel et al. (2015)
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disorders. Linear discriminant analysis (under different names) and lo-
gistic regression were also popular classification methods among the
surveyed studies.

Predicting continuous measures

Most of the studies surveyed above, conducted the diagnosis of a
disorder (i.e., assigning a categorical label to each subject) using classi-
fication techniques. Pattern regression considers the problem of
estimating continuous rather than categorical variables, which can be
more challenging as compared to classification. Clinically, pattern re-
gression can be used to estimate the disease stage and progression.
Therefore, there is a growing interest in estimating continuous variables
such as cognitive scores for brain disorders using neuroimaging mea-
surements. We didn't survey those papers, but we will point out to
some of those studies in this section.

Wang et al. proposed a general methodology for estimating contin-
uous clinical variables from high-dimensional imaging data (Wang
et al., 2010). Sato et al. used interregional cortical thickness measure-
ments to estimate Autism Diagnostic Observation Schedule (ADOS)
score in ASD patients (Sato et al., 2013). Stonnington et al. used rele-
vance vector regression (RVR) to predict number of cognitive scores
such as Dementia Rating Scale (DRS) and Alzheimer's Disease
Assessment Scale (ADAS) based on structural MRI measures
(Stonnington et al., 2010). Tognin et al. used RVR to predict Positive
and Negative Syndrome Scale (PANSS) scores of subjects at high risk
of psychosis based on gray matter volume and cortical thickness mea-
surements (Tognin et al., 2013). Yue et al. showed relationship between
functional connectivity and neuropsychological assessment scores such
as Rey–Osterrieth Complex Figure Test (CFT) in amnestic MCI patients
(Yue et al., 2015). Zhang et al. used MRI, PET and CSF data to predict
Mini Mental State Examination (MMSE) and ADAS scores in MCI and
AD patients (Zhang and Shen, 2012a).

Detecting/characterizing at risk healthy subjects

The majority of studies surveyed above tried to automatically diag-
nose one or more disorders in patients. However, detecting or charac-
terizing healthy individuals who are at high risk of brain disorders
could potentially delay or prevent future symptoms. There has been a
lot of such studies using genetics information but detecting or charac-
terizing at risk subjects based on neuroimaging data is rare. Mourão-
Miranda et al. used functional MRI to detect subjects at high risk of
mood disorders (Mourão-Miranda et al., 2012). Guo et al. characterized
activity of default-mode network in unaffected siblings of schizophrenia
patients using resting-state functional data (Guo et al., 2014b). In another



Table 5
Summary of 20 MRI-based ASD classification studies. N/A indicates information was not available or could not be found.

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

dMRI ASD FA and MD of selected ROIs 18 SVM TDC= 30, ASD= 45,
Total = 75

80% Ingalhalikar et al.
(2011)

fMRI (social
interaction task)

ASD Activation of selected voxels
processed by factor analysis

4 factors Gaussian naïve Bayes HC = 17, TDC = 17,
Total = 34

97% Just et al. (2014)

fMRI (two language
tasks and a
Theory-of-Mind task)

ASD AG, MPFC and PCC based FC maps N/A Logistic regression TD = 14, ASD = 13,
Total = 27

96.0% Murdaugh et al.
(2012)

rsfMRI ASD ICA components of rsfMRI 10
components

Logistic regression TDC= 20, ASD= 20,
Total = 40

78.0% Uddin et al. (2013)

rsfMRI ASD FC among ROIs Variable Logistic regression and
SVM (best results)

TD1 = 59, TD2 = 89
ASD1 = 59, ASD2 = 89,
Total = 296

76.7% Plitt et al. (2015)

rsfMRI ASD FC among 90 ROIs 4005 Probabilistic neural
network

TDC = 328, ASD = 312,
Total = 640

90% Iidaka (2015)

rsfMRI ASD Functional connectivity among
220 ROIs

24,090 Random forest TDC = 126, ASD = 126,
Total = 252

91% Chen et al. (2015)

rsfMRI ASD FC among ROIs 26,393,745 Thresholding TD = 40, ASD = 40,
Total = 80

79.0% Anderson et al.
(2011)

sMRI ASD Thickness and volumetric of ROIs
along with interregional features

N/A Multi-kernel SVM HC= 59, ASD= 58,
Total = 117

96.3% Wee et al. (2014)

sMRI ASD Voxel-wise GM and WM maps N/A SVM TD = 24, ASD = 24,
Total = 48

92.0% Uddin et al. (2011)

sMRI ASD GM volume map N/A SVM HC = 40, ASD = 52,
ASD-Sib = 40

80.0–85.0% Segovia et al.
(2014)

sMRI ASD Regional thickness measurements
extracted from SBM

7 Logistic model trees HC = 16, ASD = 22,
Total = 38

87% Jiao et al. (2010)

sMRI ASD Morphometric features of selected
ROIs

314 SVM HC = 20, ASD = 21,
Total = 41

74% (AUC) Gori et al. (2015)

sMRI ASD GM and WM maps N10,000 SVM HC = 22, ASD = 22,
Total = 44

77% Ecker et al. (2010b)

sMRI ASD Volumetric and geometric features
of selected cortical locations

5 features
from each ROI

SVM HC = 20, ASD = 20,
Total-40

85% Ecker et al. (2010a)

sMRI ASD Gray maps from VBM-DARTEL 200 SVM TDC= 38, ASD= 30,
Total = 76

80.0% (AUC) Calderoni et al.
(2012)

sMRI ASD Volumetric measures and
cerebellar vermis area

9 Discriminant function
analysis

TDC= 15, ASD= 52,
Total = 67

92.3–95.8% Akshoomoff et al.
(2004)

fMRI-Task and dMRI ASD Causal connectivity weights, FC
values and FA values

19 SVM TDC= 15, ASD= 15,
Total = 30

95.9% Deshpande et al.
(2013)

sMRI, dMRI and MRS ASD Cortical thickness, FA and
neurochemical concentration

3 Decision tree TD = 18, ASD = 19,
Total = 37

91.9% Libero et al. (2015)

sMRI and rsfMRI ASD Volume of selected subcortical
regions, fALFF, number of voxels
and Z-values of selected regions
and global VMHC voxel number

22 Random tree classifier TDC = 153, ASD = 127,
Total = 280

70.0% Zhou et al. (2014)
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study, Fan et al. studied structural endophenotypes in unaffected family
members of schizophrenia patients using machine learning methods
(Fan et al., 2008a).

Semi-supervised studies

Themain focus of thiswork is on supervised studies. However, in the
cases that collecting data is difficult and costly, semi-supervised learn-
ing might help. This method uses both labeled and unlabeled data for
building the predictive model. For example, predicting MCI patients
that convert to AD (sMCI vs. pMCI) requires following up with the
subjects for a long time which makes the data collection cumbersome.
One remedy is to use labeled AD and healthy data to build a model
for predicting labels for MCI subjects. A few studies have utilized this
strategy and achieved accuracies comparable or even better than
those obtained from fully supervised learning (Batmanghelich et al.,
2012; Filipovych et al., 2011; Moradi et al., 2015; Zhang and Shen,
2012b).

Common machine-learning pitfalls in neuroimaging

In this section, common pitfalls among the surveyed papers are
discussed.
Feature selection bias

Most of the papers we surveyed consisted of two consecutive parts:
groupdifference analysis and classification. Usually, statistical tests such
as t-tests are used to show group differences on a set of extracted fea-
tures in the first part of the study, which is followed by a classification
approach to assess the discrimination ability of those features on a sin-
gle subject basis. Unfortunately, it is not rare to see that the results of
first part (group differences) are used to select features for the classifi-
cation part. In general, any use of test samples in any part of the training
(such as feature extraction, feature selection and classifier training)
poses a bias. Selecting features for classification based on the results of
group tests that were conducted on the whole dataset is a form of dou-
ble dipping and therefore leads to a biased (inflated) result (Bishop,
2006; Demirci et al., 2008b).

This form of feature selection also has another major problem. The
significance of group statistical tests, which are the basis of feature
selection in some of the studies, is mostly based on p-values. However,
the relationship between p-value and discrimination power is not
straightforward. Fig. 1 shows the p-value of a two-sample t-test as
well as overall accuracy based on one or two thresholds in three differ-
ent scenarios. It is seen that low p-value doesn't necessary mean a
strong feature (Fig. 1A) and high p-value doesn't mean a weak feature



Table 6
Summary of 22 MRI-based ADHD classification studies. N/A indicates information was not available or could not be found.

Modality Disorder Features # of
features

Classifier Number of subjects Overall
accuracy

Reference

fMRI (Stop Task) ADHD Whole brain GLM coefficient map 21,658 Gaussian process
classifier

HC = 30, ADHD = 30,
Total = 60

77% Hart et al.
(2014a)

fMRI (Six Tasks) ADHD Network measures based on FC
values

N/A SVM ADHD-IA = 13, ADHD-C=
21, Total = 34

91.2% Park et al. (2015)

fMRI (temporal
discrimination task)

ADHD Brain activation map N/A Gaussian process HC = 20. ADHD = 20,
Total = 40

75.0% Hart et al. (2014b)

rsfMRI ADHD ReHo maps N/A PCA-based Fisher
discriminative analysis

HC = 12, ADHD = 12,
Total = 24

85.0% Zhu et al. (2008)

rsfMRI ADHD ReHo maps 6500 SVM HC = 23, ADHD = 23,
Total = 46

80.0% Wang et al. (2013)

rsfMRI ADHD FFT and different variation of PCA on
the BOLD signals along with
phenotypic measures

About 7000 SVM HC = 429, ADHD-I = 98,
ADHD-C = 141,
Total = 668

68.86–76% Sidhu et al. (2012)

rsfMRI ADHD ReHO, ALLF and RSN 400 for each
feature type

Logistic regression
(best performance)

HC = 546, ADHD-IA =
122, ADHD-HI = 12,
ADHD-C = 249,
Total = 929

54% ADHD
Subtype:
67%

Sato et al. (2012)

rsfMRI ADHD Graph based features based on FC 150 SVM-based MVPA TDC = 455, ADHD-I = 80,
ADHD-C = 112,
Total = 647

63.4–82.7% Fair et al. (2012)

rsfMRI ADHD Graph-based measures compressed
by multi-dimensional scaling

2 SVM HC = 307, ADHD = 180,
Total = 487

73.5% Dey et al. (2014)

rsfMRI ADHD Directional connectivity measures 200 Artificial neural
network

TDC = 744, ADHD = 433,
Total = 1177

90% Deshpande et al.
(2015)

sMRI ADHD/
Dyslexia

Morphometric measures of ROIs 6 Discriminant function
analysis

HC = 10, ADHD = 10,
Dyslexia = 10, Total = 30

60.0–87%% Semrud-Clikeman
et al. (1996)

sMRI ADHD Cortical thickness measures 340 ELM HC = 55, ADHD = 55,
Total = 110

90.2% Peng et al. (2013)

sMRI ADHD Voxel-wise GM volumetric measures N/A Gaussian process
classifier

HC = 19, ASD = 19,
ADHD = 20, Total = 58

68.2–85.2% Lim et al. (2013)

sMRI ADHD WM maps N/A SVM HC = 34, ADHD = 34,
Total = 68

93% Johnston et al.
(2014)

sMRI ADHD Caudate nucleus volumetric measures N/A Adaboost and SVM HC = 39 AHDH = 39,
Total = 78

72.5% Igual et al. (2012)

sMRI ADHD Texture features based on isotropic
local binary patterns on three
orthogonal planes

117–33,630 SVM HC = 226, ADHD = 210,
Total = 436

69.9% Chang et al.
(2012)

sMRI ADHD Surface morphometric measures N/A Semi-supervised
(hierarchical
clustering)

HC = 42, ADHD = 41,
Total = 83

91.0% Bansal et al.
(2012)

sMRI, rsfMRI and
phenotypic data

ADHD Curvature index, folding index,
Gaussian curvature, gray matter
volume, mean curvature, surface area,
thickness average, and thickness
standard deviation along with
functional connectivity measures and
phenotypic data

20 NMF + decision tree TD = 472, ADHD = 276,
Total = 748

66.8% Anderson et al.
(2014)

sMRI and rsfMRI ADHD Various anatomical, network and
non-imaging measures

5–6000 SVM TDC = 491, ADHD = 285,
Total = 776

80.0%
(AUC)

Bohland et al.
(2012)

sMRI and fMRI-task
(Flanker/NoGo)

ADHD Whole brain GLM coefficients and GM
maps from VBM

N/A SVM HC = 18, ADHD = 18,
Total = 36

61.1–77.8% Iannaccone et al.
(2015)

sMRI and rsfMRI ADHD Cortical thickness and GM maps from
sMRI and ReHo and FC from rsfMRI

N/A SVM and multi-kernel
learning

TCD = 402, ADHD = 222,
Total = 624

61.5% Dai et al. (2012a)

sMRI and rsfMRI ADHD Morphological measures, FC, power
spectra and graph measures

Variable
(N100)

Multiple SVM TD = 491, ADHD = 285,
Total = 776

55% Colby et al.
(2012)
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(Fig. 1B). However, if the abnormality is one-directional, then a very
low p-value might translate to high classification accuracy (Fig. 1C).
So, by discarding features just based on the result of statistical tests
sensitive to group mean, valuable discriminatory information could
be lost.

Instead of feature selection based on univariate group-level statisti-
cal tests, more common filtering and wrapper methods should be used
(Blum and Langley, 1997;Hall and Smith, 1998; Kohavi and John, 1997).
Filtering methods assign scores to each feature from which a number
of top ones can be selected. A good filteringmethod should be sensitive
to the discriminative power of the features. Most of these methods
are univariate and therefore each feature is treated independently
from other features. Filtering methods have the advantage of low
computational cost, but their main drawback is ignoring the relation-
ship among features.

Wrapper methods, on the other hand, consider selection of a set of
feature as a search problem. Different combinations are evaluated and
finally the best set of features is selected. A popular wrapper method
is the recursive feature elimination (RFE) algorithm (Guyon et al.,
2002). Wrapper methods are computationally much more expensive
than filtering methods, but can result in superior performance by con-
sidering interaction among features.

There aremethods that aim at combining both filtering andwrapper
methods. Minimum-redundancy maximum relevancy (mRMR) is one
the methods popular for genetic feature selection. MRMR tries to select
features with maximum mutual information with class labels while
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minimizing themutual information among those features (Brown et al.,
2012a).

Finally, there are embedded feature selection methods (Guyon and
Elisseeff, 2003). These methods combine classification and feature
selection into one unified step. Embedded methods learn the features
that contribute the most to the accuracy of the model during the train-
ing phase. One of the common categories of the embedded methods
is using regularization to enforce the learning algorithm to find more
parsimonious models with lower complexity and therefore with fewer
parameters. A post training analysis of the model coefficients, deter-
mines the selected features. Examples of regularization algorithms
used in embedded feature selection methods are LASSO, elastic net
and ridge regression (Hastie et al., 2004; Ng, 2004; Park and Hastie,
2007; Zou and Hastie, 2005).

Overfitting

Overfitting happenswhen amodel describes noise in the data rather
than the underlying pattern of interest. Overfitting results in very good
performance on the observed data and very poor performance on
unseen data. Usingmodels that are very complex or have many param-
eters on datasets with small number of samples and large number of
features are more susceptible to overfitting. Neuroimaging datasets
have limited number of samples and millions of voxels per sample.
Based on Fig. 3D, the majority of surveyed studies built predictive
models based on a very small number of subjects. It is evident from
Fig. 3C that overall reported accuracy decreases with sample size
in our survey. Therefore, it is plausible that many surveyed studies
suffer from overfitting problem. It should be noted that by definition,
overfitted models work well on the training data and poor on the test
data. However, if the process of training and testing is repeated (by
varying the model parameters) until a desirable performance on the
test data is achieved, the model will likely overfit both the train and
test datasets and will not generalize to an unseen dataset. Cross valida-
tion and regularization are common methods to control for overfitting.
As mentioned earlier, more complex models have a greater chance of
overfitting the data. For example, non-linear SVM is more powerful
compared to linear SVM but has more hyperparameters and therefore
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is also potentially more capable of explaining noise in the data. As
discussed in the previous section, proper feature selection can also
help avoiding overfitting.

Reporting classification results

The result of classification is basically a confusion table/matrix also
known as a contingency table. The confusion matrix summarizes the
results in a table layout where each column represents the predicted
class and each row represents the actual class. Confusion matrix is
m×m where m represents the number of classes. In the case of binary
classification, several statistical measures can be computed from the
2×2 confusionmatrix, such as sensitivity (or recall), specificity, positive
predictive value (or precision), negative predictive value, F1 score, odds
ratio, kappa and false negative rate. Confusion matrix and some of the
performance measures are shown in Fig. 4. In order to understand the
performance of a classifier, it is important to report at least sensitivity/
specificity or precision/recall alongwith the overall accuracy.We highly
encourage reporting the confusion matrix itself as well. Some of the
studies in this review just reported the overall accuracy, which can be
very uninformative especially when classes have unequal sample sizes
(Alberg et al., 2004). Suppose there are 20 patients and 80 controls in
a test dataset. Reporting 80% accuracy is completely uninformative
since the classification of all subjects as healthy could also result in
80% (one of the scenarios). This problem is easily detectable by looking
at the confusionmatrix or sensitivity and specificitymeasures. In unbal-
anced sample size cases, balanced specificity and sensitivity is more
desirable than higher overall accuracy; therefore, measures such as F1
score (harmonicmean of precision and recall) are preferred for evaluat-
ing the classifier. The other very common way of reporting results for a
binary classifier is by plotting “receiver operating characteristic” (ROC)
curve. The ROC curve is the plot of sensitivity against “1-specificity”
by changing the discrimination threshold and therefore provides a
complete picture of classifier's performance. The ROC curve is usually
summarized by the area under the curve (AUC), which is a number
between 0 and 1.

The other common reporting issue is unjustified comparison of the
achieved overall accuracy with the random chance. This issue is critical
in this field due to small sample sizes. For example, an 80% achieved
overall accuracy might not be significantly different from a 50% random
chance in a statistical sense in a two-class problem if the sample size is
too small. Any achieved accuracy in a test sample is just one estimate of
the population accuracy. Like any other statistics, a confidence interval
can be computed for that measure. In the case of a two-class problem,
a binomial confidence interval can be computed for overall accuracy
that serves as the basis for comparison with random chance, or any
other accuracy. In our example (80% accuracy), if the test sample
size is 10, then the 95% exact binomial confidence interval would be
[0.444 0.975], which includes the random chance probability (0.50)
and therefore is not statistically above chance (significance level
of 0.05). Calculating this interval is straightforward usingmost of statis-
tical and technical computing software such as R and Matlab. This
approach should be employed when repeating the classification exper-
iment for number of times is not feasible. However, in most cases, the
null distribution of chance is empirically computable by randomly
assigning labels to test samples and repeating classification for a num-
ber of times. This method, known as a permutation or randomization
test, makes it possible to calculate the desired confidence interval
of the chance, which consequently could be compared against the
achieved classification accuracy using the correct labels (Collingridge,
2013; Fisher et al., 1960; Good, 2006; Mehta et al., 1988). Recently, for
special cases such as SVM, fast analytical estimation of permutation
testing has been proposed (Gaonkar and Davatzikos, 2013). Also, it
has been shown that p-value for permutation testing can be written
in the form of an infinite series whose terms are efficiently computable
(Gill, 2007).

Comparison of accuracies across studies

It was frequently observed that authors claim that their proposed
classification framework outperformed some other studies (and some-
times all other studies) just on the basis of overall accuracy. Considering
the number of variables in each study—such as sample size, scanner
parameters, sample age distribution, patients' status (e.g., severity,
medication), modality, length, type and design of study (for fMRI
studies), preprocessing parameters, number and type of extracted
features and type of classifier—such a comparison is essentially mean-
ingless. Even in the case of standard neuroimaging datasets, the statisti-
cal comparison discussed in the previous section, should be employed
to compare the results.

Hyperparameter optimization

Hyperparameter optimization or model selection is choosing a set
of parameters for the learning algorithm in order to maximize the per-
formance of the algorithm. Hyperparameters should be chosen during
training, usually via an inner loop cross validation inside the training
data. SVM, which is one of the most popular classifiers in this review
and in neuroimaging in general (Orrù et al., 2012), has at least one
hyperparameter (linear SVM) called soft margin. In addition to soft
margin, non-linear SVM has one or more hyperparameters depending
on the kernel (e.g. sigma/gamma for RBF kernel and degree for polyno-
mial kernel). Some of the studies that we reviewed just used the default
values for these parameters. A lack of parameter optimization can
degrade the classification performance significantly. To show this, a
toy example is illustrated in Fig. 5. SVM with three different kernels is
used to classify this simulated two-class problem. In the top row, 1.0
is chosen for soft margin hyperparameter (which is the default of
most machine learning software packages) for all kernels, degree of 3
was chosen for the polynomial kernel and gamma of 0.01 was selected
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Fig. 5. An example to show the effect of SVM hyperparameter optimization on classification accuracy for linear, polynomial and RBF kernels. Top row: un-optimized, bottom row:
optimized. Since the underlying pattern is non-linear, SVM with linear kernel fails to perform well in both scenarios. Performance of SVM with both polynomial and RBF kernels
significantly improve when the parameters are optimized.
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for RBF kernel. In the second row, the hyperparameters are optimized.
First, it is evident that the linear kernel failed to learn the non-linear
pattern under both settings. Increasing the polynomial kernel degree
by one, dramatically improved the classifier. Also, increased softmargin
value, significantly improved SVM with RBF kernel. So, both the choice
of kernel and hyperparameters are crucial for building a successful
SVM-based classifier. SVM hyperparameters are usually selected based
on a grid search over plausible values.

Machine learning in neuroimaging: shortcomings and emerging
trends

Machine learning has more than two decades of history in neuroim-
aging and despite all of the promising results of numerous studies, it is
still immature and not ready for integration into clinical healthcare. In
this section, we review some of the challenges and emerging solutions.

Sample size in neuroimaging studies

The most limiting factor in this field is by far the limited sample size
issue. As summarized in Fig. 3B, the majority of studies in this review
and in general have sample size of less than 150. This sample size ismin-
iscule in comparison with other fields in which machine learning is
used. As an example, ImageNet,2 which is commonly used as standard
computer vision dataset, has over onemillion samples and 1000 classes.
As a result of such big datasets, dramatic improvement has been
achieved in the field of computer vision in the past few years. However,
sample size limitations in neuroimaging pose several problems. First,
the classifier performance is directly affected by the sample size. It is
shown that large training data sets increase classification accuracy
(Franke et al., 2010; Klöppel et al., 2009). Small sample size does
not represent the patient population and therefore promising results
2 http://image-net.org/.
may not generalize to other patient groups. In a study conducted by
Nieuwenhuis et al., it was shown that for small training sample sizes
(N b 130) the predictive model for classification of schizophrenia
patients based on sMRI was not stable (Nieuwenhuis et al., 2012).
More than 63% of the studies we reviewed didn't meet this criterion.
Large datasets may reduce problems with disease heterogeneity as
they can represent the whole spectrum of the disorder. Although
there are some machine learning methods that are less sensitive to
data, a limited number of data samples can cause model overfitting,
resulting in poor generalization of the method to independent data
sets (Pereira et al., 2009).

To understand the etiology of complex conditions such as mental
health, we must develop a better understanding of the structure of the
signals and measurements we make of the brain. Thanks to advances
in imaging and assaying technology,we can gather increasingly detailed
information about individuals, but the cost and complexity of these
techniques means that individual researchers may not have sufficient
data to build a compact and informative representation of the data.
For example, a single sMRI may have tens of thousands of voxels, but
a single site may have only a hundred subjects in their study. With
increasingly complex data, the classical “curse of dimensionality”
would seem to indicate that there is no way to determine signal from
noise in this setting. To address the “small N” problem in other settings,
many researchers have proposed open sharing of data to leverage data
from multiple sites as well as commercial cloud computing infrastruc-
tures to handle the additional computational burden. In the past few
years, several multi-site data sharing initiatives such as FBIRN, MCIC
and COBRE for schizophrenia, ADNI for Alzheimer's disease, ABIDE for
ASD, ADHD-200 for children with ADHD and Functional Connectomes
project for healthy have been started.

In neuroscience, measurements often come from human subjects;
in some cases legal, ethical, and sociological concerns may preclude
or prohibit such open sharing. In particular, local administrative rules,
concerns about re-identification of study participants, and a desire to
maintain control over data in ongoing research projects may prevent

http://image-net.org/
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individual research sites from sharing the data (Sarwate et al., 2014).
The status quo is a patchwork of institution-to-institution data use
agreements whose complexity stymies automated analyses across
more than a handful of data sets.

Operating on decentralized data

We believe that a more convenient and scalable solution will come
from design and implementation of algorithms which learn from data
distributed across research groups. These algorithms shall include
feature learning as well as classification, prediction and inference.
Dropping the requirement of moving the data, these algorithms will
better match the current decentralized and efficient organization of
research society and substantially lower barriers to entry for collabora-
tive work. The resulting network effect will enable new innovative
opportunities for research that we cannot envision today. The need
for such approaches to general data computation is realized by some
researchers (Bai et al., 2005) but not yet fully appreciated by the neuro-
imagingfield. The field is currently in the state of establishing central re-
positories of anonymized raw data (Bockholt et al., 2009; Buccigrossi
et al., 2007; Di Martino et al., 2014; Jack et al., 2008; Keator et al.,
2008; Landis et al., 2016; Marcus et al., 2007; Poldrack et al., 2013;
Scott et al., 2011; Turner, 2014; Van Essen et al., 2013). In the past
10 years, release of multi-site neuroimaging datasets such as: FBIRN,
MCIC for schizophrenia (Ford et al., 2009; Gollub et al., 2013), ADNI
for Alzheimer's disease (Jack et al., 2008), ABIDE for ASD (Di Martino
et al., 2014), ADHD-200 for children with ADHD (Consortium et al.,
2012) and Functional Connectomes project for healthy subjects
(Biswal et al., 2010) have been started.

Certainly, access to raw data is the best way to drill down to the
finest details and resolve any inconsistencies due to data handling.
However, even in the centralized repositories, it is often more conve-
nient to start analysis from a point in the processing pipeline where
less detailed but possibly more informative features are generated.
Furthermore, there are three categories of data that pose challenges
for public availability for easy access: (1) data that are non-shareable
due to obvious re-identification concerns, such as extreme age of the
subject or a zip code/disease combination that makes re-identification
simple; (2) data that are non-shareable due to more complicated or
less obvious concerns, such as genetic data or other data which may
be re-identifiable in conjunction with other data not under the
investigator's control; and (3) data that are non-shareable due to the
local institutional review boards (IRBs) rules or other administrative de-
cisions (e.g., stakeholders in the data collection not allowing sharing).
For example, even with broad consent to share the data acquired at
the time of data collection, some of the eMERGE sites were required to
re-contact the subjects and re-consent prior to sharing within the
eMERGE consortium, which can be a permanent show-stopper for
some datasets (Ludman et al., 2010). An extensive account of the prob-
lems that go alongwith these concerns is given by Sarwate et al. (2014).
An example of how a decentralized data feature learning algorithm
could use decentralized data joint ICA in given by Baker et al. (2015).
In short, the algorithm performs a joint ICA on datasets distributed
across research sites which enables one to perform temporal ICA on
fMRI data as an increasingly large data sample becomes available
when many research groups join the collaboration. Importantly, Baker
et al. have demonstrated (on synthetic data) that with their approach
the estimated components are virtually identical for the pooled data
(i.e. a central repository), two sites with data split in half, multiple
sites with data evenly split across, and even a very large number of
sites with very few subjects at each of them. Once globally consistent
features are available they may be used in building classification
algorithms.

Nevertheless, decentralized data computation under serious privacy
concernswill need additional protection besides simple protection from
only sharing summaries and not the raw data samples. A solution for
this setting has been offered in the ε-differential privacy model and
explained extensively in the neuroimaging context with published
examples (Dwork, 2006; Sarwate et al., 2014). This approach defines
privacy by quantifying the change in the risk of re-identification as a
result of publishing a function of the data. Notably, privacy is a property
of an algorithm operating on the data, rather than a property of the
sanitized data, which reflects the difference between semantic and
syntactic privacy. Importantly for our applications, it can be applied to
systemswhichdonot share data itself but instead share data derivatives
(functions of the data). Algorithms that guarantee differential privacy
are randomized in how theymanipulate the data values (e.g., by adding
noise) to bound the risk. Enabling individual subject prediction in the
classification framework is one of the applications where the above-
described approaches can provide the most benefit—especially for rare
conditions that are easy to identify by cross referencing when raw
data is openly shared and hard to collect enough data at a single site
to provide high generalization. The former is perfectly addressed by ap-
plying ε-differential privacy approach to classification (Chaudhuri et al.,
2011), while the latter can be addressed by running decentralized algo-
rithms over multiple sites. As mentioned already, differentially private
algorithms provide guarantees by necessarily lowering the quality of
the solution due to the required noise addition. The same happens to
differentially private classifiers (Chaudhuri et al., 2011) and the effect
is an undesirable increase in prediction error (Sarwate et al., 2014).
Fortunately, combining the approaches (differential privacy and
decentralized algorithms) can improve the situation considerably by
dropping classification error from25% to 5%while preserving all privacy
guarantees (Sarwate et al., 2014).

In these “big data” times, the need for computation on large-scale
datasets creates the best climate for software for distributed com-
putation. Many useful and powerful projects came to the scene
such as Apache Spark (Zaharia et al., 2010) and H2O (H2O [WWW
Document], 2015). On closer inspection, these implementations are
essentially striving for the efficiency of computation given a big data
overload (typically easy to get data stored centrally). They suggest opti-
mization toward an environment that is quite orthogonal to what we
have to deal with—hard to get to and expensive to collect data spread
across research labs around the nation and the world. The goal of
decentralized approaches that we are describing here stands principally
as preserving correctness of the computationwhileminimizing the data
passed around and reducing the number of iterations. The tools and
methods are not conflicting and decentralized data algorithms can and
shall take advantage of what is being developed for large-scale compu-
tation in the distributed computing community.

Differential diagnosis and disease subtype classification

Using machine learning methods, promising results have been
reported for automatic diagnosis of various cognitive and neurodegen-
erative disorders, usually from healthy controls based on neuroimaging
features. However, one of themain challenges in psychiatric and neurol-
ogy diagnoses is to differentially diagnose a disorder that shares symp-
toms with multiple other disorders. Examples of such overlapping
disorders are schizophrenia, bipolar, schizoaffective, unipolar and
mood disorders. Except for differentiating MCI for AD, only a few con-
sidered much needed automatic differential diagnosis in the studies
we surveyed. Costafreda et al. used fMRI with a verbal fluency task to
classify schizophrenia, bipolar and healthy controls (Costafreda et al.,
2011b). Calhoun et al., andArribas et al. both used fMRIwith an auditory
oddball task and an ICA approach to extract features from the default
model network and the temporal lobe of the brain (Arribas et al.,
2010; Calhoun et al., 2008). Both of these studies reported high differen-
tial accuracy between schizophrenia and bipolar disorder. Pardo et al.
used a combination of volumes of 23 ROIs derived from structural MRI
along with 22 neurophysiological test scores to automatically classify
schizophrenia, bipolar and healthy controls (Pardo et al., 2006).
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Recently, Schnack et al. proposed using gray matter densities for classi-
fication schizophrenia, bipolar and healthy controls (Schnack et al.,
2014). Koutsouleris et al., used gray matter maps from structural MRI
to classify schizophrenia from mood disorder (Koutsouleris et al.,
2015). Ota et al. combined volumetric measures derived from structural
MRI with fractional anisotropy from dMRI in selected ROIs to classify
schizophrenia from MDD (Ota et al., 2013). Sacchet et al. proposed
using gray matter volumes of caudate and ventral diencephalon to dif-
ferentiate MDD, bipolar and remitted MDD patients (Sacchet et al.,
2015).

Pathologies like autism and schizophrenia are spectrum disorders
with multiple etiologies under the umbrella of the same diagnostic cat-
egory. While classification of these disorders using the generic category
is commonly used to finddiagnostic biomarkers, one of the key issues in
mental healthcare is the differential diagnosis of patients across several
disease subtypes. Common binary patient–control classification ignores
the underlying heterogeneity of the disorder. Usually, the treatment
path used for these subtypes differs from each other and therefore the
correct subtype diagnosis is very important. For example, several cogni-
tive deficits are observed in schizophrenia patients, but the magnitudes
of such symptoms are highly variable among the patients. To reduce
this phenotypic heterogeneity two major subtypes named “cognitive
deficit” and “cognitively spared” have been defined (Green et al.,
2013; Jablensky, 2006). These two subtypes exhibit different genetic
and cognitive profiles (Green et al., 2013; Morar et al., 2011). An auto-
matic classification of schizophrenia subtypes has been rarely studied.
Ingalhalikar et al. proposed that unsupervised spectral clustering of
multi-edge graphs built from a structural connectivity network among
78 ROIs be used to identify subtypes of autism and schizophrenia
(Ingalhalikar et al., 2012). Gould et al. proposed using whole brain,
voxel-based morphometry to classify schizophrenia patients with
cognitive deficit from those that are cognitively spared (Gould et al.,
2014).

There are several studies on automatic differentiation of stable MCI
fromprogressiveMCI (those that convert to ADwithin a certain amount
of time). Most of these studies reported modest accuracies around 65–
80% (Plant et al., 2010; Salvatore et al., 2015; Tangaro et al., 2015;
Tong et al., 2014;Wolz et al., 2011; Zu et al., 2015). ADHD subtype stud-
ies are scarce and limited to few studies such as the one by Sato et al.
with the intent to automatically differentiate ADHD-IA, ADHD-HI and
ADHD-C using resting-state fMRI (Sato et al., 2012).

Again, onemajor limitation in differential diagnosis and disease sub-
type classification is the limited sample size. In most of the current
datasets, the number of subjects in each disease subtype is small and
therefore provides limited ability to develop robust single-subject
predictor to accurately differentiate them.

Multimodal neuroimaging studies
Each imagingmodality provides a different view of brain function or

structure, and data fusion capitalizes on the strengths of each imaging
modality/task and their inter-relationships in a joint analysis. This is
an important tool to help unravel the pathophysiology of brain disease
(Calhoun et al., 2006a; Sui et al., 2012). Recent advances in data fusion
include integrating multiple (task) fMRI data sets (Kim et al., 2010;
Sui et al., 2009, 2015) from the same participant to specify common
versus specific sources of activity to a greater degree than traditional
general linear model-based approaches. This can increase confidence
in conclusions about the functional significance of brain regions and
of activation changes in brain disease. In addition, the combination
of function and structure may provide more informative insights
into both altered brain patterns and connectivity in brain disorders
(McCarley et al., 2008; Michael et al., 2009; Sui et al., 2011). These find-
ings suggest that most studies favor only one data type or do not com-
bine modalities in an integrated manner, and thus miss important
changes which are only partially detected by each modality (Calhoun
and Adali, 2009). On the other hand, multimodal fusion provides
a more comprehensive description of altered brain patterns and
connectivity than a single modality, which has shown increasing utility
in answering both scientifically interesting and clinically relevant
questions.

Single-subject prediction using multimodal neuroimaging data
There is increasing evidence from multimodal studies that patients

with brain disorders exhibit unique morphological characteristics, con-
nectivity patterns, and functional alterations, which could not have
been revealed through separate unimodal analyses as typically per-
formed in the majority of neuroimaging experiments. Hence, applying
classification techniques to these characteristics could identify bio-
markers for psychiatric diseases. This could expedite differential diag-
nosis, thus leading to more appropriate treatment and improved
outcomes for patients with brain disorders. There has been number of
studies showing the benefits of combining both rest and task fMRI
data for group differences in functional connectivity between schizo-
phrenia patients and controls (Arbabshirani and Calhoun, 2011; Cetin
et al., 2014). The change of functional connectivity from rest to task con-
tains novel information present in neither of the states, which could be
beneficial for single subject prediction (Arbabshirani and Calhoun,
2011). Based on these evidences, future studies might benefit from
combining resting-state and task-based data for classification of brain
disorders.

As another example, MCI is difficult to diagnose due to its rather
mild and nearly insignificant symptoms of cognitive impairment. Wee
et al. integrated information from DTI and resting fMRI by employing
multiple-kernel SVM, yielding statistically significant improvement
(N7.4%) in classification accuracy of predicting MCI from HC by using
multimodal data (96.3%) compared to using each modality indepen-
dently (Wee et al., 2012). There are additional studies that demonstrate
the potential of the fusion of structural and functional data combined
with multi-modal classification techniques to provide more accurate
and early detection of brain abnormalities (Fan et al., 2008b). By taking
advantage of these two complementary approaches, Sui et al. proposed
a framework based on mCCA + jICA, that allows both high and weak
connections to be detected and shows excellent source separation per-
formance (Sui et al., 2011). It enables robust identification of correspon-
dence among N diverse data types and enables one to investigate the
important question of whether certain disease risk factors are shared
or are distinct across multiple modalities, which can also serve as mul-
timodal feature selection method for schizophrenia (Sui et al., 2013a,
2013b). Similarly, Jie et al. adopted SVM-FoBa to classify between bipo-
lar versus unipolar disorders by combining GM and ALFF features,
achieving an accuracy of 92% This suggests that using complimentary
multimodal biomarkers may be more informative and effective to dis-
criminate brain disorders (Jie et al., 2015).

There are number of recent studies looking at combined biomarkers
of sMRI, FDG-PET, and CSF (mostly for ADNI dataset) to discriminate be-
tween AD,MCI and HC (Gray et al., 2013; Xu et al., 2015; Yu et al., 2015;
Zhang et al., 2011, 2014). Similarly, a few studies combined functional
and structural data to build such predictive models (Dai et al., 2012b;
Dyrba et al., 2015).Most of those studies reported superior performance
of models built based on multimodal features compared to those based
on a single modality (Calhoun and Sui, in press).

Deep learning in neuroimaging

In recent years, deep learningmethodology hasmade significant im-
provement in representation learning and classification in various areas
such as speech recognition, natural image classification and textmining.
Twomain features have made deep learning very attractive to machine
learning researchers. First deep learning in contrast with traditional
machine learning methods is capable of data-driven automatic feature
learning. This important capability removes the subjectivity in selecting
the relevant features especially in cases where too many features exist
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or prior knowledge in selecting features is not conclusive. The second
important feature of deep learning is the depth of models. By applying
a hierarchy of non-linear layers, deep learning is capable of modeling
very complicated data patterns in contrast with traditional shallow
models.

Typical approaches in single subject prediction in neuroimaging
consist of selecting features sometimes from thousands of voxels. As
reviewed in this report, the basis for such a feature selection is usually
inefficient univariate statistical tests. Recently, deep belief networks, a
class of deep learning, has been applied to both structural and functional
MRI data (Plis et al., 2014). Plis et al. showed that deep learningmethods
could produce physiologically meaningful features and reveal relations
from high dimensional neuroimaging data (Plis et al., 2014). Hjelm
et al. applied restricted Boltzmannmachines (RBM) to identify intrinsic
networks in fMRI data (Hjelm et al., 2014). They showed that RBMs
could extract spatial networks and their activation with the accuracy
of traditional matrix factorization methods such as ICA. Provably, deep
models need exponentially smaller number of parameters in order to
model the same thing shallow models can model (Bengio, 2012,
2013). Moreover, deep learning structures such as RBM are generative
models and therefore it can be sampled from. This way it is easy to
access uncertainty in the estimates compared to the point estimates of
matrix factorization models. Furthermore, for deep learning RBM
could be stacked to obtain deeper models as needed. This cannot be
readily done with ICA, NMF, or sparse PCA.

Recently, deep learning is employed in classification of patients
using neuroimaging data. Suk et al. used stacked autoencoder (another
class of deep learning) to discriminate patients with AD from thosewith
MCI (Suk et al., 2013). Kim et al. used deep learning for classification of
schizophrenia patients from healthy controls based on functional con-
nectivity patterns. They showed that their approach outperforms SVM
by a significant margin (Kim et al., 2015).

Deep learning is a very promising tool for understanding the neural
basis of brain disorders by extracting hidden patterns from high-
dimensional neuroimaging data (Kriegeskorte, 2015). In our opinion,
this method has the potential to improve brain disorder diagnosis—
especially if larger neuroimaging datasets become available and/or
improved methods of training based on existing data are developed
(Castro et al., 2015).

Standard machine learning competitions in neuroimaging

Themachine learningfield has benefited hugely from standard com-
petitions in many applications. In such competitions, usually the partic-
ipants are provided with a labeled training dataset and an unlabeled
testing dataset. The participants try to develop the best predictive
model based on the training dataset, predict the labels of the provided
testing dataset and submit the results. Such a setting ensures that the
results are not biased. These competitions usually attract many groups,
even those with less domain knowledge and expertise. By providing a
standard dataset and some initial preprocessing, the participants can
primarily concentrate on the machine learning aspect of the analysis.

Due to all of the data sharing problems previously discussed, such
competitions are rare in neuroimaging. The ADHD-200 competition
was held in 2011 with the goal of predicting ADHD from healthy con-
trols in children and adults, using resting-state fMRI alongwith anatom-
ical and phonotypical data of 776 subjects (491 TDC and 285 ADHD) for
training along with additional 197 subjects for testing (Consortium
et al., 2012). The competition was a successful example of large-scale
ADHD data sharing among several sites. However, the ‘winning’ team
of ADHD-200 competition didn't use the imagingdata in their predictive
model (just the phenotypical data), which caused discussion in the
community about usefulness of brain data in diagnosing a brain disor-
der (Brown et al., 2012b; Consortium et al., 2012).

More recently, The IEEE MLSP workshop held a schizophrenia
classification challenge with the goal of automatic classification of
schizophrenia patients from healthy controls using just brain imaging
features (Silva et al., 2014). Functional network connectivity values of
resting-state fMRI along with ICA loadings of source-based morphome-
try of sMRI were calculated from 144 subjects (75 healthy controls, 69
schizophrenia patients) and shared with participants. Interestingly,
245 teams participated in the competition and the winning team
achieved an AUC of around 0.90. Moreover, by combining the top
three models, an AUC of around 0.94 was achieved (Silva et al., 2014).
In our opinion, sharing ready to use, well-defined features as opposed
to imaging data itself, was one of the success factors of theMLSP compe-
tition in both attracting numerous groups and also achieving high
accuracy results. That experience shows that imaging data has a lot
of predictive potential at least in the case of separating schizophrenia
patients from healthy controls.

We believe that thefield of neuroimaging can benefit a lot from stan-
dard machine learning competitions such as the ones discussed above.
Such competitions can assess the realistic, unbiased, discriminative
power of brain data for detecting brain disorders. Also, by attracting a
large number of participants, a variety of machine learning methods
will be examined for the specific problem. By providing brain features,
machine learning experts with less neuroimaging domain knowledge
can participate and develop predictive models.

Summary and conclusions

Previous single-subject prediction surveys

In this study, we comprehensively reviewed past efforts in
neuroimaging-based single subject prediction in several brain disorders
such as MCI, AD, ASD, ADHD, schizophrenia and depressive disorders.
Previous reviews include disease-specific surveys such as schizophrenia
(Calhoun and Arbabshirani, 2012; Dazzan, 2014; Demirci et al., 2008b;
Kambeitz et al., 2015; Veronese et al., 2013; Zarogianni et al., 2013),
autism spectrum disorder (Retico et al., 2013, 2014), Alzheimer's
disease (Falahati et al., 2014; Klöppel et al., 2008) and in general
(Klöppel et al., 2012; Lemm et al., 2011; Orrù et al., 2012) as well as
modality-specific reviews such as machine learning based on fMRI
(Sundermann et al., 2014). Also, there are few children specific reviews
such as a recent one by Levman et al. on multivariate analyses studies
in neonatal and pediatric patients (Levman and Takahashi, 2015). Prob-
ably themost comprehensive review so far is the recent one byWolfers
et al., where they reviewed about 120 single subject prediction studies
in schizophrenia, mood disorders, anxiety disorders, ADHD and ASD
(Wolfers et al., 2015). While there is some overlap among the men-
tioned studies and this survey, to our knowledge, this is by far the larg-
est survey in the field based on the number of papers reviewed (about
240 papers). Moreover, as discussed previously, the majority of single
subject prediction studies have been published in recent years; conse-
quently, an updated survey ismuch needed. In thiswork, several pitfalls
such as feature selection bias, incomplete reporting of results, unfair
comparison across studies and improper hyperparameter selection
were discussed and suggestions to address those issues were provided.
Moreover, emerging trends in this exciting field such as decentralized
data sharing, differential diagnosis and disease subtype classification,
multimodal neuroimaging, applications of deep learning in neuro-
imaging and merits of standard machine learning competitions were
discussed in detail.

Limitations

There are several limitations in this work. We limited our search to
MRI-based English journal papers in specific disorders. There are other
single subject prediction studies that are based on other modalities
such as EEG andMEG. Also, other brain disorders suchParkinson disease
and anxiety disorders were not reviewed in this work. From the studies
we reviewed, we tried to extract the key features as it relates to the
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machine learning. Many of those studies contained multiple experi-
ments under different scenarios but we just reported one of them (usu-
ally the most successful one) here. Also, there are many important
details in each study and for that reason interested readers should al-
ways refer to each reference for full information on experiment setup
and other details. The other reason for this, is the chance of error in re-
ported information in Table 2–6, considering the large number of sur-
veyed studies despite our efforts to be as accurate as possible.

In terms of common pitfalls, we mostly focused on the potential
problems from the machine learning point of view. There are many
other important potential issues in topics such as experimental design,
effect of head motion and other factors such as the impact of draining
veins on fMRI studies (Boubela et al., 2015; Power et al., 2012, 2014,
2015), wakefulness of subjects during rsfMRI (Tagliazucchi and Laufs,
2014) and the selecting of preprocessing steps (Vergara et al., 2015).
Effect of those potential issues on single subject prediction deserves a
full paper by itself.

In conclusion, we are optimistic about the use of brain imaging
for single subject prediction, and many of the issues we recom-
mend are within reach. Larger studies are available and reposito-
ries with pooled data across studies are growing rapidly (Eickhoff
et al., 2016).
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