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Population receptive field estimates in human visual cortex
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We introduce functional MRI methods for estimating the neuronal
population receptive field (pRF). These methods build on conven-
tional visual field mapping that measures responses to ring and wedge
patterns shown at a series of visual field locations and estimates the
single position in the visual field that produces the largest response.
The new method computes a model of the population receptive field
from responses to a wide range of stimuli and estimates the visual
field map as well as other neuronal population properties, such as
receptive field size and laterality. The visual field maps obtained with
the pRF method are more accurate than those obtained using con-
ventional visual field mapping, and we trace with high precision the
visual field maps to the center of the foveal representation. We report
quantitative estimates of pRF size in medial, lateral and ventral
occipital regions of human visual cortex. Also, we quantify the
amount of input from ipsi- and contralateral visual fields. The human
pRF size estimates in V1–V3 agree well with electrophysiological re-
ceptive field measurements at a range of eccentricities in correspond-
ing locations within monkey and human visual field maps. The pRF
method is non-invasive and can be applied to a wide range of con-
ditions when it is useful to link fMRI signals in the visual pathways to
neuronal receptive fields.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Bridging the gap between technologies that measure neural
signals at different length scales is an important objective in
neuroimaging research. Here, we introduce new experimental and
computational methods that quantitatively couple fMRI signals,
measured at the millimeter scale, with receptive field properties of
visual neurons measured at the micron scale.
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The new methods build on techniques that were developed for
visual field mapping (DeYoe et al., 1996; Dumoulin et al., 2003;
Engel et al., 1997; Engel et al., 1994; Sereno et al., 1995). In visual
field mapping, the experimenter measures responses to contrast-
defined rings and wedges shown at a series of visual field loca-
tions. Conventionally, the responses to these stimuli are used to
estimate the visual field position that produces the largest fMRI
response for each voxel.

While conventional methods estimate only the most effective
visual field location, the neuronal population within a voxel in fact
responds to a range of visual field locations. The region of visual
space that stimulates the recording site is the population receptive
field (pRF) (Victor et al., 1994). The pRF method estimates the
visual field map, the pRF size, laterality and surround suppression
using the temporal responses to multiple stimuli.

Intuitively, the pRF size can be estimated because we
understand how pRF size influences the fMRI time course. This
pRF influence was observed by Tootell et al. (1997), who noticed
different time courses in V1 and V3A in response to expanding
ring stimuli commonly used to map the visual field (Engel et al.,
1994). They explained this time course difference by suggesting
that pRF sizes in V3A exceed those of V1. Smith et al. (2001)
extended this analysis by measuring the relative amount of active
versus inactive epochs (duty cycle) in the fMRI response to the
ring stimulus (see also Larsson and Heeger, 2006; Li et al., 2007).
In addition to comparisons between areas, Smith et al. (2001) also
found a systematic relationship between the duty cycle and visual
eccentricity.

The advance we describe here is a quantitative framework to
model pRF properties and fit these models to the fMRI time series.
Specifically, we show how to derive visual field maps and pRF
sizes by integrating data from multiple types of stimuli, including
rings, wedges, and moving bars. We show that this model-based
approach reconstructs the cortical visual field map more accurately
than conventional mapping methods. We use the pRF method to
obtain quantitative estimates of population receptive field sizes in
lateral and ventral occipital regions of human visual cortex.
Finally, we show that the human pRF size estimates in areas V1–
V3 agree well with electrophysiological receptive field measure-
ments in the corresponding areas in monkey and human visual
cortex.
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Materials and methods

Subjects

Measurements were obtained from six subjects (one female;
ages 24–36 years). All subjects participated in experiments
containing wedges and ring stimuli, three subjects participated in
experiments containing the moving bar stimuli. All subjects had
normal or corrected-to-normal visual acuity. All studies were
performed with the informed written consent of the subjects and
were approved by the Stanford Institutional Review Board.

Stimulus presentation

The visual stimuli were generated in the Matlab programming
environment using the PsychToobox (Brainard, 1997; Pelli, 1997)
on a Macintosh G4 Powerbook. Stimuli were displayed in one of
two configurations. In both configurations the subjects viewed the
display through an angled mirror. The first display configuration
consisted of an LCD (NEC, 2080UX) housed in an electrically
shielded box with conductive glass on the front side. The
experiments were performed with the LCD positioned at the back
of the magnet bore, behind the subject’s head (distance 2.8 m). The
maximum stimulus radius was 3° of visual angle. The second
display configuration consisted of an LCD projector (NEC LT158)
with optics that imaged the stimuli onto a back-projection screen in
the bore of the magnet. In this configuration, the maximum
stimulus radius was 14° of visual angle.

Stimulus description

In one set of experiments we used conventional rotating wedge
and expanding ring sections of a high-contrast, moving, dartboard
pattern (DeYoe et al., 1996; Dumoulin et al., 2003; Engel et al.,
1997; Engel et al., 1994; Sereno et al., 1995). The dartboard pattern
is exposed by slowly moving apertures either in the shape of a
rotating wedge or an expanding ring (see Figs. 1A and B). The
Fig. 1. Illustration of the stimuli. (A–D) Static images of the wedge, ring, mean-lum
change within a single fMRI scan. (E) The wedge rotates through 6 full cycles per s
mean-luminance replaces the wedges at four intervals in time. (G) The bar moves t
apertures follow a periodic pattern and complete a full cycle in 24 s
with a total of 6 cycles per scanning run (for a schematic diagram,
see Fig. 1E). The wedge subtended 45° and the rings were 1/4th of
the maximum stimulus radius.

We also used a modified version of the ring and wedge stimuli
that included periods in which the observer saw only a mean
luminance (zero contrast) field (see Figs. 1C and F). These mean-
luminance periods were inserted at a different rate (4 cycles/scan)
than the rotating wedge or expanding ring cycles (6 cycles/scan).
Using this method, each mean-luminance presentation replaces a
different position of the wedge or ring stimulus.

Additionally, we measured responses to drifting bar apertures at
various orientations; these bar apertures exposed a checkerboard
pattern (100% contrast; Fig. 1D). The bar width subtended 1/4th of
the stimulus radius. Four bar orientations and two different motion
directions for each bar were used, giving a total of 8 different bar
configurations within a given scan (Fig. 1D). Note that the bars are
not “phase-encoded” stimuli; there is no repetition of the stimulus
because the bars change orientation and motion direction within a
scan.

Finally, we estimated the hemodynamic impulse response
function using briefly pulsed (3 s) full-field checkerboard patterns
that were displayed six times, separated by 30-s intervals.

Magnetic resonance imaging

Magnetic resonance images were acquired with a 3 T General
Electric Signa scanner and a custom-designed surface coil (Nova
Medical, Wilmington, MA) centered over the subject’s occipital
pole. Foam padding and tape minimized head motion.

Functional MR images (TR/TE 1500/30 ms, flip angle 55°)
were acquired using a self-navigated spiral-trajectory pulse
sequence (Glover, 1999b; Glover and Lai, 1998) with 20 slices
oriented orthogonal to the Calcarine sulcus with no slice gap. The
effective voxel size was 2.5×2.5×3 mm3 (FOV=24×24 cm2).
Functional scans using wedge or ring stimuli were acquired during
106 time frames (scan duration of 2.65 min). Between 8 and 16
inance and bar stimulus, respectively. Panels E–G illustrate how the stimuli
can. (F) The rotating wedge with the mean-luminance blocks (gray regions);
hrough each of four orientations in two opposing directions during one scan.



Fig. 2. A flow chart describing the pRF linear model estimation procedure.
The pRF linear model is calculated for every voxel independently. See text
for details.
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scans were performed in each session. Functional scans using bar
stimuli measured at 138 or 202 time frames (3.5 or 5 min,
respectively). Functional scans to measure the HRF acquired 128
time frames (3.2 min). Between 4 and 8 functional scans were
performed in each session. T1-weighted anatomical MR images
were acquired using a fast spoiled gradient echo (SPGR) sequence
prior to the functional scans and using the same slice prescription
as the functional scans.

In a separate session, high-resolution T1-weighted MRI images
were acquired on a 1.5 T Signa LX scanner with a vendor-supplied
head-coil using a 3D-SPGR pulse sequence (1 echo, minimum TE,
flip angle 15°, effective voxel size of 0.94×0.94×1.2 mm3). We
acquired at least 2 whole brain T1-weighted anatomical MRI data
sets for each subject.

Processing of anatomical images

The T1-weighted anatomical MRI data sets were averaged and re-
sampled to a 1 mm3 isotropic resolution. The surface-coil anatomical
MRI, taken at the same time as the functional images, was aligned
with the head-coil anatomical MRI using a mutual information
method (Ashburner and Friston, 2003; Maes et al., 1997). The func-
tional images and surface-coil anatomical data acquired in the same
session and thus were co-registered. Using the spiral acquisition
and small field of view surface-coil limits the size of the distortions
between the functional and surface-coil anatomical images. Hence,
we used the transformation derived from the surface-coil ana-
tomical to align the functional data to the head-coil anatomical.

Gray and white matter was segmented from the anatomical
MRI using custom software and hand-edited to minimize seg-
mentation errors (Teo et al., 1997). The cortical surface was re-
constructed at the white/gray matter border and rendered as a
smoothed 3D surface (Wandell et al., 2000).

Preprocessing of functional images

The first 8 timeframes of each functional run were discarded
due to start-up magnetization transients. Head movement and
motion artifacts within and between scans were measured
(Nestares and Heeger, 2000). With these experienced adult
subjects, the scans contained minimal head motion (less than one
voxel), so no motion correction algorithm was applied.

Model-based analysis

The pRF parameters were estimated from the time series data
(Fig. 2) using a linear spatio-temporal model of the fMRI response.
Although this linearity fails under certain conditions, it is a
reasonable approximation over a wide range of spatio-temporal
conditions (Birn et al., 2001; Boynton et al., 1996; Hansen et al.,
2004). Assuming a linear relationship between the blood oxy-
genation levels and the MR signals, y(t), can be described as:

yðtÞ ¼ pðtÞbþ e ð1Þ

where p(t) is the predicted BOLD signal, β is a scaling factor that
accounts for the unknown units of the fMRI signal, and e is
measurement noise. It is common practice in neuroimaging to use a
general linear model (GLM) and enter the predicted BOLD signal
into a design matrix. The experimenter then estimates the response
strength (β) for each column of the design matrix (Friston et al.,
1995; Worsley and Friston, 1995). In the model-based analysis
developed here, the prediction p(t) is calculated using a para-
meterized model of the underlying neuronal population and the
stimulus. We estimated the neuronal model by finding the model
parameters that best predict the observations. The value of this
procedure is that the estimated parameters are connected mean-
ingfully to the neuronal parameters.

We illustrate the calculation of the prediction, p(t), using a
Gaussian model of the neuronal population. A similar procedure
can be applied using other models. A two-dimensional Gaussian
pRF, g(x,y), is defined by three parameters, x0, y0 and σ,

gðx;yÞ ¼ exp� x� x0ð Þ2þ y� y0ð Þ2
2r2

 !
ð2Þ
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where (x0,y0) is the center and σ is the Gaussian spread (standard
deviation). Note that these parameters are stimulus-referred; the
units of x0, y0 and σ are all in degrees of visual angle.

Next, we define the effective stimulus, s(x,y,t). In the experiments
reported here, the stimulus contrast pattern, either a checkerboard or
a dartboard, is revealed as the stimulus aperture moves across the
pattern. We assume that all parts of the pattern within the aperture
contribute equally to the fMRI response. This assumption is justified
because fMRI responses to these kinds of stimuli are dominated by
contrast edges and the checks within the aperture are moving so that
contrast edges are present throughout the aperture (Engel et al.,
1997). With these stimuli and apertures, the formula describing the
effective stimulus is simply a binary indicator function that marks
the position of the stimulus aperture at each time.

For a given pRF model and effective stimulus, we calculate the
predicted pRF response. Because the pRF and effective stimulus
formula are defined in the common units of visual space, the first
step towards predicting the fMRI time series is to calculate the
overlap between the effective stimulus and the model pRF at a
voxel

rðtÞ ¼
X
x;y

sðx;y;tÞgðx;yÞ ð3Þ

We then obtained the time series prediction by convolving r(t)
with a model of the hemodynamic response function (HRF; h(t))
(Boynton et al., 1996; Friston et al., 1998). We estimated h(t)
separately for each subject (Appendix A).

pðtÞ ¼ rðtÞThðtÞ ð4Þ
The goodness-of-fit is estimated by computing the residual sum

of squares (RSS) between the prediction, p(t), and the data, y(t). We
calculate this error term allowing for a scale factor, β, that accounts
for the unknown units of the fMRI signal

RSS ¼
X
t

ðyðtÞ � pðtÞbÞ2 ð5Þ

The optimal pRF parameters were found by minimizing the
RSS using a two-stage coarse-to-fine search. To do this, the fMRI
data were resampled to an isotropic 1-mm resolution within the
identified gray matter of the cortex. In the first stage, the fMRI data
were smoothed along the cortical surface using a diffusion
smoothing process that approximated a 5-mm full-width at half-
maximum Gaussian kernel (Andrade et al., 2001). Hence, the
smoothing process respects the topology of the cortical surface.

We then generated 100,000 different fMRI time series pre-
dictions by varying the pRF model parameters, x0, y0 and σ, across
a wide range of plausible values on a regular sampling grid. The
spatial smoothing increases the signal-to-noise ratios by removing
high spatial frequency noise, and it imposes a spatial correlation
between voxels. Hence, we can safely estimate the parameters on a
sub-sample of the voxels (every other voxel) and accurately inter-
polate the remaining voxels. Hence, the smoothing provides a good
first estimate of the pRF parameters in minimal processing time.
Importantly, the grid search is guaranteed to find a global minimum
at the coarse grid sampling density.

In the second stage, we apply an optimization algorithm
(Fletcher and Powell, 1963) to the 1-mm data for every voxel
whose first stage estimates explain more than 15% of the variance
of the coarse fMRI signal. In the second stage, no smoothing is
applied; the final pRF size estimates are derived by fitting data
without any of the spatial smoothing used in the first stage. The
coarse-to-fine approach minimizes the processing time and
increases the likelihood of finding a global minimum.

We estimate three pRF model parameters for each voxel inde-
pendently: x0, y0 and σ. These are estimated simultaneously using
multiple fMRI time series measured with several different stimulus
apertures (rings, wedges, and bars). In the experiments described
here, each stimulus cycle comprises 16 time points and each cycle
is repeated six times per scan. We use up to six different stimulus
apertures (4 bars, rings, and wedges). Hence, the three pRF para-
meters are estimated from a total of 96 measured values, repeated
roughly 36 times.

Various descriptions of the data can be derived from the pRF fit,
including traditional eccentricity and polar-angle maps. Impor-
tantly, the Gaussian width parameter is a novel estimate that
provides information about the population receptive field size. We
can also derive the percent variance explained and conventional
statistical t- and p-maps that specify how well the pRF linear model
fits the time series. We note that the t-values (and p-values) are
biased towards larger (smaller) values because they result from the
best fits out of a large search space. Therefore we use percent
variance explained as our primary measure of the goodness-of-fit.

Results

V1 and LO respond differently to identical traveling wave stimuli

The V1 and lateral occipital (LO) responses to the same
stimulus differ qualitatively. The time series in Figs. 3A and B are
typical examples of how the responses to a rotating wedge stimulus
differ. These voxels respond preferentially to a similar wedge
position, conventional analyses would assign them similar phases
(Engel et al., 1994; Sereno et al., 1995), and duty-cycles or duty-
cycle-related measures (21.5% and 33.5%, respectively) (Larsson
and Heeger, 2006; Li et al., 2007; Smith et al., 2001). However, the
V1 modulation is much higher than the LO modulation (Figs. 3C
and D). The low response modulation to the rotating wedge
stimulus in LO cortex is typical, and the same low modulation is
found in ventral occipital (VO). Some groups concluded that the
low modulation in these regions implies that there are no angular
maps in LO or VO (Levy et al., 2001; Tootell et al., 1996; Tootell
and Hadjikhani, 2001). Other groups find small but reliable
modulations and maps in these regions (Brewer et al., 2005;
Larsson and Heeger, 2006; Wandell et al., 2005).

The responses differences are explained by pRF size differences

Why are the LO response modulations much smaller than those
in V1? The reason is clarified by measurements using a stimulus
containing the mean-luminance (zero-contrast) blocks (Fig. 1F).
Inserting the mean-luminance block alters the time series in V1
only when the mean-luminance replaces a wedge at the preferred
position (Fig. 3E). The LO response, however, drops whenever the
mean-luminance block is inserted (Fig. 3F). We conclude that the
V1 voxel responds only to a narrow range of wedge positions; the
LO voxel responds to some extent to all wedge positions.

These differences are captured by the pRF model in the popu-
lation receptive field parameters. These are derived from rotating
wedge (Figs. 4A and B) and expanding ring (Figs. 4C and D)
responses to stimuli that include mean-luminance blocks. The pRF
estimates for the voxel in V1 and LO are shown Figs. 4E and F.



Fig. 3. BOLD fMRI time-series from two voxels located in V1 (left panels) and lateral occipital cortex (LO, right panels). The circles in the top two panels (A and
B) indicate the position of each voxel. The middle two panels (C and D) illustrate the responses to a conventional rotating wedge mapping stimulus. The arrows
indicate the wedge orientations that elicit the strongest fMRI response; the peak response is slightly delayed with respect to the presentation of the best orientation
due to the hemodynamic lag. The two cortical locations responded best to similar wedge positions, but the percent BOLDmodulation in V1 is about three to four
times stronger than the modulation in LO. The bottom two panels (E and F) show the responses to the new stimulus with mean-luminance blocks inserted (gray
regions). In V1, the insertion of mean-luminance blocks replaces some presentations of the preferred wedge position (first and third block) and hence no fMRI
modulation is observed. In LO, the insertion of mean-luminance blocks causes a drop in the BOLDmodulation, demonstrating that this LO voxel is responsive to
all wedge orientations.
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The pRF center position in visual space, (x0, y0), is similar for
the V1 and LO voxels. The differences between the time series are
explained entirely by the larger pRF size (σ) in LO compared to V1.
The pRF model predicts the V1 and LO time-series about equally
well. Thus, the reduced modulation in LO in conventional mapping
experiments can be explained by the difference in pRF size.

The difficulty in measuring LO and VO maps with conven-
tional ring and wedge stimuli arises because large receptive fields
are poorly analyzed by these stimuli. Inserting a mean-luminance
block provides an important baseline condition. Without this base-
line these large differences in pRF size cannot be distinguished. As
we illustrate next, improving the quantitative analysis will enable
us to measure maps and pRF properties in a much larger extent of
cortex, including LO and VO.
The model-based approach measures more accurate visual field
maps than conventional approaches

The pRF center positions define a visual field map. Next, we
compare the pRF visual field maps estimates with those de-
rived using conventional phase-encoding method (Engel et al.,
1994).

Specifically, we compute a correlation coefficient that measures
the agreement between visual field maps estimated from the same
data using the two methods (Dumoulin et al., 2003). The cor-
relation coefficient is computed using all voxels within the cortex
with a response modulation whose coherence exceeds 0.3
(pb0.003, uncorrected) (Bandettini et al., 1993; Brewer et al.,
2005). The position estimates of the phase-encoded and pRF



Fig. 4. Example of a model fit to BOLD time-series at cortical samples in V1 (left panels) and LO (right panels, see Fig. 3). The model is simultaneously fit to the
rotating wedge (A and B) and expanding ring (C and D) data. The best fitting Gaussian isotropic model is shown in the bottom row (E and F). The thick lines pass
through the horizontal (y=0) and vertical (x=0) meridians, whereas the thin lines identify the pRF center. These models explain 72% and 68% of the variance in
the time series, respectively. In panels A–D, the BOLD time-series are shown with dotted lines and black dots; the model fits are shown with solid lines (E and F).
The response amplitude of the pRF models for a given stimulus is given by the integral within the stimulus aperture (see Fig. 2).
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model-based method are highly correlated (Table 1, all correlations
are significant pb0.0001). The correlation levels are similar for
maps derived using conventional stimuli or stimuli with mean-
luminance blocks inserted.

The correlation coefficients between methods are consistently
higher for angular than eccentricity estimates. This is because the
Table 1
Average correlation coefficient (r) and standard deviation for three subjects

Correlation coefficient (r) Polar-angle Eccentricity

Conventional stimuli 0.97 (0.01) 0.87 (0.08)
Stimuli with mean luminance 0.97 (0.01) 0.84 (0.10)

The correlation coefficient compares position estimates of conventional
phase-encoded methods and the pRF model-based method. The correlation
coefficient was computed for all voxels in the scanned cortex with coherence
larger than 0.3.
conventional phase-encoding eccentricity estimate is slightly dis-
torted. This distortion can be traced to an interaction between the
ring stimuli and pRF size. In Appendix B, we explain this inter-
action and show that the pRF model-based method is more accu-
rate than the phase-encoding method.

An important advantage of the pRF model-based method is
that visual field maps can be derived from responses to a wide
array of stimuli, including those that are not well-suited to the
phase-encoding method. To evaluate the consistence of these
estimates, we correlated the V1–V3 field maps derived using
different stimuli (Figs. 1E–G), including stimuli that conven-
tional phase-encoded methods cannot analyze (Fig. 1G). The
average correlation coefficient (r±S.D.) for the maps estimated
using the three types of stimuli was 0.84±0.06 (three subjects).
The high correlation is similar to the correlation observed
between two sessions when using the same stimuli (0.88±0.02)
and when measuring conventional visual field sign maps (0.79±
0.06) (Dumoulin et al., 2003). Hence, the pRF visual field



Fig. 6. pRF size estimates on an inflated cortical surface. The pRF size maps
are displayed on the enlarged part of the occipital lobe, as indicated by the
black squares in the top two cortical surfaces. The colors indicate the
different pRF sizes as shown in the color bar. The pRF size map for one
subject is shown from the medial (A) and lateral view (B). The borders
between visual field maps V1 and V3 are delineated by the solid lines.
Lateral views from two additional subjects are shown in panels (C and D).
The pRF sizes are much smaller in the maps near V1 than those on the lateral
occipital surface. Supplementary Fig. 1 shows right, left, medial and lateral
views for all three subjects.
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maps are stimulus-independent but the exact stimulus parameters
will determine the precision of the estimates (Wandell et al.,
2005).

The pRF visual field maps derived by combining the mea-
surements with bars, rings and wedges (including mean-luminance
blocks) are shown as angular and eccentricity maps in Fig. 5. The
maps are shown on an inflated cortical surface in the region near
the occipital pole (Fig. 5A). The stimuli covered only the central 3°
radius of the visual field. For many years, labs using conventional
methods stopped visual field mapping at 0.5°–2° eccentricity,
believing that central foveal maps could not be accurately mea-
sured (Dougherty et al., 2003; Liu et al., 2005; Schira et al., 2007;
Silver et al., 2007; Somers et al., 1999; Tootell and Hadjikhani,
2001). Notice that with the pRF model-based method, we trace
with high precision the visual field maps to the center of the foveal
representation. For example, we can find boundaries between V1,
V2 and V3 at an eccentric representation below half a degree (Figs.
5B and C).

Population receptive field size is 5× larger in LO and VO than
V1–V3

Fitting a symmetric Gaussian pRF model produces both visual
field map and pRF size estimates (σ). The pRF size estimates from
a 14° radius field of view are shown for three subjects in Fig. 6.
There is a significant increase in pRF size as one compares the
responses in V1–V3 (σ∼0.5°–2°) with those in LO and VO
(σ∼4°–8°).

The quality of the pRF fit to the data is illustrated by com-
paring the measured and predicted time series in Fig. 4. For all
of the data shown in Fig. 6 (and Supplementary Fig. 1) the
average (minimum) percent variance-accounted-for (r2) is 60%
(25%).

The pRF is lateralized in V1–V3 but not in LO and VO

The laterality of the pRFs varies across cortex. The pseudo-
color overlay in Fig. 7 indicates the percentage of the pRF that is in
the ipsilateral visual field. In V1–V3, the pRFs are confined largely
to the contralateral visual field; the main exception occurs at the
vertical meridian representations that separate V1/V2 and the
vertical meridian of V3. At these boundaries, the pRF extends into
the ipsilateral visual field (Fig. 7).
Fig. 5. pRF position estimates on an inflated cortical surface. The corpus collosum (
inflated cortical surface. The position maps are displayed on the enlarged part of th
polar-angle (B) and eccentricity (C) are shown. The insets indicate the color map th
are identified by the solid black lines.
The pRFs in LO and VO extend significantly into the ipsilateral
visual field. These laterality estimates quantify previous observa-
tions of ipsilateral responses in LO (Hemond et al., 2007; Niemeier
et al., 2005; Tootell et al., 1998). We note that the pRF estimates
here are based on a circularly symmetric Gaussian model; it may
be that models allowing asymmetric shapes will result in a different
assessment of laterality.
CC) and the calcarine sulcus (CS) are labeled to clarify the orientation of the
e occipital lobe, as indicated by the large black square in (A). The maps for
at defines the visual field representation. The boundaries between V1 and V3



Fig. 7. The percent of the pRF within the ipsilateral visual field is shown on
an inflated cortical surface of one subject. The pRF in lateral (LO) and
ventral (VO) occipital cortex overlaps substantially into the ipsilateral visual
field.
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Population receptive field size estimates increase with eccentricity
in V1–V3

Within V1–V3, the pRF size increases as a function of
eccentricity (Figs. 8A–C). The pRF-sizes increase systematically;
the within-map increase is roughly twofold when measuring from 1°
to 12° of eccentricity. The size increases by about a factor of 4
between V1 and V3, and a factor of five or six between V1 and LO.

Discussion

We introduce a functional MRI method that computes a model
of the pRF from responses to a wide range of stimuli. The method
estimates both a visual field map estimate as well as other neuronal
population properties, including size and laterality. We show that
the visual field maps are more accurate than conventional methods.
The eccentricity maps are improved by the new method, whereas
the polar-angle maps around the fovea are improved by the new
methods in combination with new stimuli. We report quantitative
estimates of pRF size in medial, lateral and ventral occipital
regions of human visual cortex. We show that incorporating mean-
luminance baseline stimulus conditions is essential to estimate the
pRF size. Also, we quantify the amount of input from ipsi- and
contralateral visual fields. The human pRF size vary across visual
Fig. 8. The relationship between eccentricity and pRF size in visual field maps V1–
pRF size increases systematically from V1 to V3. Separate panels are data from se
field map.
field maps as well as within a visual field maps as a function of
eccentricity. The method is non-invasive and can be applied to a
wide range of conditions when it is useful to link fMRI signals to
models of the neuronal population.

Comparisons of human pRF and neuronal receptive fields

We compare the human pRF size estimates with independent
pRF estimates made using single- and multi-unit activity (S/MUA)
and local field potentials (LFP) in non-human primates (Fig. 9). We
make these comparisons for pRF size measurements in V1 (Gattass
et al., 1981; Gattass et al., 1987; Van Essen et al., 1984; Victor et al.,
1994), V2 (Burkhalter and Van Essen, 1986; Gattass et al., 1981;
Rosa et al., 1988) and V3/VP (Burkhalter et al., 1986; Felleman and
Van Essen, 1987; Newsome et al., 1986; Rosa et al., 2000).

This comparison links electrophysiological and fMRI pRF
estimates but the comparisons are limited by differences in
experimental procedures, such as stimuli, species, anesthetics and
pRF size criteria. The electrophysiological studies generally mea-
sured the neuronal–pRF area qualitatively. To make a quantitative
comparison with the reports from the literature, we assumed the
electrophysiological measurements correspond to the full area at
half maximum (Victor et al., 1994). In the future, it will be possible
to improve the quantification in the animal experiments.

There are many similar trends in the two sets of measurements,
but the fMRI estimates are generally larger than the S/MUA
estimates. This is expected because the fMRI signal samples a
larger neural population than the S/MUA measurements. The larger
sample has wider variance in visual field position, and this should
increase the human pRF size estimate (see discussion near Eq. (6)).
The fMRI–pRF estimates are very close to the LFP–pRF estimate,
which is expected since the fMRI signal is correlated more with
LFP than S/MUA signals (Logothetis et al., 2001). Within each
visual field map, the rate of increase the visual field eccentricity
follows a similar slope.

In addition, the fMRI–pRF sizes are comparable to human
electrophysiological measurements estimated using surface elec-
trode with a 2.2-mm-diameter recording area (Yoshor et al., 2007).
Yoshor et al. (2007) report pRF sizes in early visual cortex, roughly
corresponding to V1/V2, as σ=0.76°±0.23°. Sizes in later visual
cortex roughly corresponding to V3/V3A/hV4, are estimated as
σ=1.49°±0.81°. Both of these values are consistent with the
fMRI–pRF size estimates.
V3. Within each field, the pRF size increases with eccentricity. Furthermore,
parate subjects. The solid lines are fit to the data (circles) within each visual



Fig. 10. The average relationship of the HRF width and estimated pRF size.
The horizontal axis represents the full-width at half-maximum of the HRF.
The vertical axis represents the pRF size. The data are averaged from three
subjects. There is a weak inverse relationship (r=−0.1), suggesting that
HRF variations cannot explain the large estimated pRF variations.

Fig. 9. A comparison between fMRI–pRF (A) and electrophysiological receptive field sizes (B) in visual field maps V1–V3. The average fMRI–pRF estimates
are indicated by the solid lines from Fig. 8; the average of single- and multi-unit receptive field size measurements from the literature are indicated by the solid
lines (Burkhalter and Van Essen, 1986; Felleman and Van Essen, 1987; Gattass et al., 1981; Gattass et al., 1987; Newsome et al., 1986; Rosa et al., 1988, 2000;
Van Essen et al., 1984). We also plot LFP–pRF size and range estimates with a black square, white cross and dashed lines, respectively (Victor et al., 1994).
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Nuisance and HRF factors influence pRF estimates

The estimated pRF size depends on a number of unwanted fac-
tors; only some of these are explicitly modeled. These include eye-
movements, head-movement, brain pulsatility and optical defocus.
All of these factors create a bias towards larger estimated pRF size;
they add noise, but no bias, to the visual field position estimates.

The temporal hemodynamic response function (HRF) is the
most important non-neural influence on the pRF size estimate.
Differences between the true and assumed HRF also influence
estimated pRF parameters. Given its importance, we explicitly
model the temporal HRF and derive subject-specific fits (Appendix
A). We model the HRF as a space–time invariant convolution
kernel (Boynton et al., 1996; Logothetis and Wandell, 2004;
Worsley et al., 2002) and we show that inexact characterization of
the HRF temporal spread influences the absolute values of our pRF
measurements, but not relative pRF measurements (Appendix C).

We used a space-invariant HRF because of its relative
simplicity and because it is possible to obtain a secure estimate
of the HRF by averaging over cortex. It may be, however, that the
HRF varies across cortex within individuals (Handwerker et al.,
2004; Miezin et al., 2000). Systematic failures of HRF space-
invariance may introduce systematic errors into the pRF size
estimate. In particular for our stimulus design, increased HRF
widths would be interpreted as increased pRF sizes. There are
several reasons why this possibility is unlikely to explain any of the
key results from our measurements.

First, the BOLD response to the same stimulus in V1 and LO
(see Figs. 3E and F) differ enormously. The difference is more 10
times larger than the typical HRF variation and therefore the
difference between these responses is not due to HRF variation
(Aguirre et al., 1998; de Zwart et al., 2005; Handwerker et al.,
2004; Miezin et al., 2000; Neumann et al., 2003).

Second, the small variations within cortical maps, such as the
changes we observe between central and peripheral representations
within V1–V3, are consistent with neuronal properties (Fig. 9).

Third, we made additional measurements of the spatial HRF
variation to see whether the differences might predict estimated
pRF size (Fig. 10). Specifically, we estimated the HRF a full-width
at half-maximum of a canonical model of the HRF at every cortical
location. We then plotted the estimated pRF size as a function of
the estimated HRF width. There is a weak negative correlation (r=
−0.1) between the HRF width and the pRF size (Fig. 10;
Supplementary Fig. 2). Hence, the pRF size differences are not
explained by increasing HRF widths. We repeated this analysis
using two different models of the HRF and the results are the same
for both models (Boynton et al., 1996; Friston et al., 1998).

The spatial–HRF also can influence the pRF parameters.
Experimental evidence does not reveal systematic variation in the
spatial spread of the HRF (Das andGilbert, 1995; Engel et al., 1997).
While these are only limited measurements, the reported variance in
the spatial extent of the HRF (b1 mm) is unlikely to play a
significant role in the fMRI data given the effective resolution of the
fMRI voxels (2.5×2.5×3 mm3). In the future, with more precise
estimates of the HRF across cortex, it should be possible to extend
the HRF analysis to include the spatial component (3–4 mm full-
width at half-maximum along the cortical surface (Das and Gilbert,
1995; Engel et al., 1997; Iadecola et al., 1997; Malonek and
Grinvald, 1996; Shmuel et al., 2007)). By assuming no spatial
spread, we introduce a bias towards increased pRF size.

Neuronal factors

The pRF is a statistical summary of the neuronal properties
within the sampled region, and pRFmodel parameters depend on the
size and intrinsic properties of the sampled neuronal population. In
many ways, the sampling problems in fMRI parallel those in
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electrophysiology. In the case of electrophysiology, measurement
parameters such as electrode impedance determine the neuronal
sampling properties and membrane properties of certain neurons
may produce larger amplitude action potentials (Logothetis, 2003).
In fMRI, the voxel size influences the neuronal sampling population
and the metabolic influence of certain neurons may be greater. In
both cases, certain stimuli but not others may drive neuronal
responses, further biasing the sampling of the neural population.

There are three main neuronal factors that contribute to the pRF
size estimate. First, the pRF is dependent on the average receptive
field of the neurons that drive the response. This includes both the
classical receptive field as well as any responses driven by stimuli
beyond the classical receptive field. Second, the pRF is influenced
by the position scatter of the individual receptive fields. The neu-
ronal receptive field and scatter have been reported to covary
(Hubel and Wiesel, 1974). Third, the fMRI response from a
cortical voxel may be driven by different groups of cells depending
on the stimulus properties.

Suppose we consider only a single type of stimulus and assume
that signals are from a single neuronal population. The pRF size
estimate depends on a combination of neural and non-neural
components.

r2pRF ¼ r2nRF þ r2position þ k ð6Þ
where σnRF is the mean size of the neuronal receptive field, σposition

is the position variance, and k is a constant factor that captures the
non-neural factors.

This formal description of the pRF size should enable us, ulti-
mately, to separate different factors and improve the estimates of
individual neuronal properties. For example, if we have some
indication of the position variance, we can account for this in the
modeling. Similarly, additional information about the spatial
spread of the HRF or other non-neural factors will enable us to
sharpen our estimates.

We distinguish two stimulus components: the carrier and the
aperture. The carrier is the background pattern that predominantly
drives neuronal activity. In this study, the carrier is a checkerboard
pattern. The aperture reveals the carrier. In this study, the aperture
is a wedge, ring or bar. The pRF model predicts the fMRI response
using the position of the aperture (see Fig. 2) as an independent
variable and assigns the carrier as a side-condition.

As we change the carrier, we expect that to stimulate different
neuronal populations. In some cases, the change in neuronal popu-
lation will cause the pRF model estimates to change. For example,
we expect pRF sizes to vary as we change properties of the carrier,
such as its color, contrast, and motion. The pRF model-based me-
thod can be used to verify that certain carriers predominantly stimu-
late pathways (magnocellular, parvocellular, and koniocellular) that
are known to have different receptive field sizes (Rodieck, 1998).

Future extensions and applications

In the analyses here, we use a single pRF model: an isotropic
2D Gaussian. This model provides a compact description of the
pRF using only three parameters. As we collect more data, it will
become possible to compare more complex pRF models with sig-
nificant statistical power. For example, the pRF can be modeled as
an anisotropic Gaussian to test hypotheses concerning integration
biases in the pRF as suggested by some studies (Sasaki et al.,
2006).
Additionally, the pRF may be modeled using nonlinear models
and sums and differences of Gaussians to test hypotheses about
surround suppression. These suppressive effects have been de-
monstrated using fMRI (Dumoulin and Hess, 2006; Kastner et al.,
2001; Williams et al., 2003; Zenger-Landolt and Heeger, 2003),
and it has been shown that the strength and spatial extent of these
suppressive effects increase in later visual areas (Kastner et al.,
2001; Zenger-Landolt and Heeger, 2003). This increase may be
related to increases in the RF sizes in these areas (Bles et al., 2006;
Kastner et al., 2001).

Furthermore, we note that some investigators include visual
field maps and 2D Gaussian pRF models in algorithms for in-
ferring the stimulus from the fMRI response (Thirion et al., 2006).
Preliminary work on this topic has incorporated a constant pRF
size (σ=0.75°). We suspect that better estimates of the pRF
properties from the data should improve algorithms in that field.
The large increase in pRF size in LO (Fig. 6) and the decrease
in laterality (Fig. 7) support the hypothesis that these regions
perform functions distinct from other map clusters (Grill-Spector
et al., 2001; Malach et al., 1995; Wandell et al., 2005). In future
experiments, we will be able to combine detailed mapping and pRF
size estimates to further clarify whether these changes in pRF
properties are tightly coupled to the transitions between maps and
clusters.

The properties of the neuronal–pRF may change during
development or as a consequence of various disease conditions.
In this case, the fMRI measurements may be of value in early
diagnosis or to track healthy development.

Conclusion

The pRF method links fMRI measurements at the millimeter
scale to response neuronal properties at the micron scale and
reduces the gap between functional imaging and electrophysiology.

The estimated human pRF agrees with electrophysiological and
conventional fMRI estimates in three ways. First, the pRF-derived
visual field maps agree well with those estimated from monkey
electrophysiology and conventional human fMRI visual field
mapping methods (Fig. 5). Second, pRF size increases system-
atically from V1 to V3 (Fig. 8), matching electrophysiological
measurements (Fig. 9). Third, pRF size estimates across the visual
cortex agree with estimates acquired using cortical surface
electrodes in humans (Yoshor et al., 2007).
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Appendix A. HRF estimation

The HRF was derived from V1 responses to flickering
checkerboards (Fig. 11). The responses were measured in the
region that represents between 5° and 9° of visual eccentricity. The

http://white.stanford.edu/software/


Fig. 11. The average BOLD fMRI time series in V1 (5°–9°) following a 3-s stimulus presentation. Each panel shows measurements from a different subject. The
circles connected by the dotted lines show the measured data. The solid lines indicate the fit of the data with an HRF model using a difference of two gamma
functions (Friston et al., 1998; Glover, 1999a; Worsley et al., 2002). The dashed line shows the HRF model prediction to a 1.5-s stimulus presentation. The HRF
model explains 97.1%, 98.7% and 98.7% of the variance in the data (A–C, respectively).
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stimuli were 3 s in duration and separated by 30-s intervals. Each
scan contained six repetitions and data were combined from six
scans.
Fig. 12. Illustration of the bias in pRF center estimates using phase-encoded metho
indicates the predicted BOLD response amplitude as a function of ring eccentricity.
unit (large ring), not for the ring that overlaps with the center of the pRF (small ring
an estimate of the pRF's center. (B) The graph illustrates the eccentricity estimates
These phase-encoded estimates deviate increasingly from the true pRF eccentricity
show the eccentricity estimates of the pRF model-based method (x-axis) versus p
according to the pRF size estimates similar to the pRF sizes used in the simulation (p
the smooth curves predicted by the theoretical calculations, (ii) the eccentricity di
method, and that (iii) the pRF model-based method estimates the positions of nea
The HRF was derived as the response to a 1.5-s stimulus (the
fMRI sampling rate). We used a 3 s rather than a 1.5-s stimulus
because (a) linearity deteriorates at short stimulus durations (Birn
ds. (A) The background image shows a theoretical pRF. The solid white line
The maximal response is at a position slightly beyond the center of the pRF
). The phase-encoded method incorrectly takes the phase of the larger ring as
of the phase-encoded method (y-axis) for different simulated pRF sizes (σ).
(x-axis) as a function of eccentricity and pRF size. (C–D) The three graphs
hase-encoded method (y-axis) of one subject. The three graphs are divided
anel B). These plots indicate that (i) the phase-encoded estimates are close to
stortions do not appear in the estimates derived from the pRF model-based
r foveal pRFs with large sizes, while the phase-encoded method fails.
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et al., 2001; Boynton et al., 1996; Logothetis and Wandell, 2004)
and (b) in our experiments the effective stimulus duration is 3 s
or more. Therefore, deriving the HRF based on the 3-s stimulus
will yield a more accurate prediction for our measurement
conditions.

The responses to the 3-s stimuli were fit as the convolution of
the responses to two 1.5-s responses, each of which is the HRF. We
parameterized the HRF as difference of two gamma functions
(Friston et al., 1998; Glover, 1999a; Worsley et al., 2002). This
functional form of the HRF captures the late undershoot of the
response better than a single gamma function (Boynton et al.,
1996; Lange and Zeger, 1997). The percent variance explained
(mean±S.D.) is 98±0.9% and 93±2.0% for the two-gamma and
one-gamma HRF, respectively. The small difference has almost no
effect on the estimated pRF; we computed these values using both
HRF models and the results were in excellent agreement. The HRF
(dashed line) and expected response to the 3-s stimulation (solid
line) are plotted in Fig. 11.

Appendix B. Limitations of traveling wave methods

The traveling wave calculations assume that the peak fMRI
response occurs when the expanding ring is centered on the pRF;
this assumption can fail. Suppose we measure a simple pRF
centered slightly to the right, but overlapping, the fovea (Fig. 12A).
The magnitude of the fMRI response (arbitrary units) is denoted by
the white curve shown on the image. The peak fMRI response
occurs when the overlap between the ring and the pRF is highest,
and this position differs from the ring location that covers the pRF
center. The size of the deviation between the estimated and true
eccentricity varies as a function of eccentricity and pRF size, as
shown in Fig. 12B.

The simulations of Figs. 12A and B match the fMRI estimates
plotted in Figs. 12C–D. These panels compare eccentricity
estimates using the pRF model-based method and traveling wave
methods. The data are divided into separate panels according to the
receptive field size estimate from the pRF model-based method.
We treat the pRF estimates as accurate and plot them on the
horizontal axis. The traveling wave estimates are plotted on the
vertical axis.
Fig. 13. The relationship between the HRF model parameters and the pRF size esti
parameters are shown. The HRFs are generated by a 30% perturbation of the optima
(Boynton et al., 1996; Friston et al., 1998). (B) We computed the average pRF size i
sizes are plotted as a function of the HRF width (full-width at half-maximum, FWH
data set. (C) The relative pRF size as a function of HRF width. The relative pRF size
The relative estimates are constant over a range of HRF width values.
The data illustrate several points. First, the traveling wave
eccentricity estimates are close to the smooth curves predicted by
the theoretical calculations in Figs. 12A and B. Second, the
eccentricity distortions do not appear in the estimates derived from
the pRF model-based method. Third, the pRF model-based method
estimates the positions of near foveal pRFs with large sizes (Fig.
12E), while the phase-encoded method fails.

Appendix C. Analysis of HRF model errors

We demonstrate that differences in the HRF model change the
absolute – but not the relative – pRF size estimates. We varied the
simulated HRF by perturbing the parameters of the optimal HRF fit
by 30% (Fig. 13A) for either the one- or the two-gamma HRF
models (Boynton et al., 1996; Friston et al., 1998). This is a large
parameter range, and in some instances the HRF parameter
variations produces an uncharacteristic HRF profile. We included
only HRF profiles with one positive peak and one negative peak
with a total time course of maximal 30 s. This perturbation yielded
a total of 55 HRFs that we used in the calculations (Fig. 13A).

Using each HRF, we estimated the pRF model parameters in V1
to V3. We calculated the average pRF size between 1° and 13°
eccentricity for V1 to V3 from the best straight line fit (Fig. 13B).
The average pRF size decreases as a function of the HRF width
(full-width at half-maximum). This relationship is nearly perfect
(average V1–V3, r=−0.98) for the one gamma model (Boynton et
al., 1996; Lange and Zeger, 1997), but not for the two gamma
model (Friston et al., 1998; Glover, 1999a; Worsley et al., 2002)
(average V1–V3, r=−0.26), we assume this is due to the variation
of the late undershoot which is not characterized by the fwhm but
will also affect the pRF size estimates. The relative pRF sizes,
obtained by dividing the average pRF estimates of V1 to V3 by
their mean for each HRF, are constant and independent of the HRF
width (Fig. 13C). In all cases, average pRF size estimates in V2
and V3 are larger than V1 by about 40% and 100%, respectively.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2007.09.034.
mates for the same dataset. (A) The different HRFs used to estimate the pRF
l HRF (thick lines, see Fig. 11) of both the one- and two-gamma HRF model
n V1 to V3 between 1° and 13° eccentricity for each HRF. The resulting pRF
M). Increasing HRF width yields decreasing pRF size estimates for the same
was computed by dividing the V1–V3 estimates by their mean for each HRF.

http://dx.doi.org/doi:10.1016/j.neuroimage.2007.09.034
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