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Abstract

Progress in magnetic resonance imaging (MRI) now makes it possible to
identify the major white matter tracts in the living human brain. These tracts
are important because they carry many of the signals communicated between
different brain regions. MRI methods coupled with biophysical modeling can
measure the tissue properties and structural features of the tracts that impact
our ability to think, feel, and perceive. This review describes the fundamental
ideas of the MRI methods used to identify the major white matter tracts in
the living human brain.
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INTRODUCTION

Magnetic resonance imaging (MRI) noninvasively measures function and structure in the human
brain at millimeter resolution. Because MRI measurements are noninvasive, they provide an op-
portunity to study the neural basis of human cognition, behavior, and mental health over time
and how the brain changes in response to experience and clinical interventions. Thousands of
scientists routinely use MRI, and advances in these methods now reveal far more than what we
thought possible 25 years ago.

Diffusion MRI (dMRI) and related analysis methods, including tractography, are particularly
effective at clarifying the role of human white matter in health and disease. The methods for
analyzing and interpreting dMRI are in a period of rapid development as our field learns how
to rigorously relate the data to both biological structures and behavior. Even at this early stage,
diffusion measurements and analysis methods show that human white matter changes across the
life span and responds to experience.

Any new technology requires an investment of time and effort to develop rigorous theoretical
methods to interpret the data and relate them to scientific and clinical problems that matter. The
excellent progress made on algorithms for interpreting dMRI is evident from the large, active,
and technical literature that spans both dMRI and modeling methods, such as tractography. This
review introduces the fundamental ideas of dMRI and tractography and serves as an entry point
for those who wish to explore the technical literature more deeply and to participate in these
exciting new developments.
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WHY WHITE MATTER?

The brain’s white matter is principally composed of bundles of axons and glia. The axons conduct
nerve impulses between neurons, whose cell bodies are in major brain structures, including the
cortex, thalamus, hippocampus, and brainstem. During the past 100 years, the overwhelming
emphasis in neuroscience has been on the synapse and spike rates, not the bundles of axons and
glia that carry the spikes over long distances. Hence, it is worth taking a moment to ask why a
neuroscientist or a cognitive scientist might be interested in the properties of the white matter
tracts themselves.

One answer begins with the observation that different cortical systems are specialized to per-
form different biological functions. Many of these specializations must arise from the pattern of
long-range cortical connections rather than the local properties of cell bodies, synapses, and den-
drites. This is the classic concept of connectionism, usually credited to Wernicke [1874 (1977)].
He argued that most innovations in the neural mechanisms of thought and emotion arise because
of the evolution of novel connections, and this hypothesis continues to be relevant nearly 150 years
on (Catani et al. 2013; Geschwind 1965a,b). Studies of human white matter are likely to provide
insight into the organization of brain systems and the functions they perform.

A second answer begins with the observation that the properties of the brain’s white mat-
ter tissue correlate with cognitive abilities, decision making, emotional states, and developmental
changes (Fields etal. 2014; Gabrieli 2009; Hoeft et al. 2011; Johansen-Berg et al. 2012; Leong etal.
2016; McKenzie etal. 2014; Purger etal. 2015; Sagi etal. 2012; Samanez-Larkin etal. 2012; Sasson
etal. 2013; Schnieder et al. 2014; Tavor et al. 2013; Tsang et al. 2009; Wandell & Yeatman 2013;
Yeatman etal. 2011, 2012a). The key technologies for measuring human white matter, including
dMRI, tractography, and quantitative MRI (¢QMRI), measure the tissue properties of healthy hu-
man brain development. The field has already demonstrated convincingly that human cognition
and emotion depend on the integrity of tissue properties within the white matter. Our under-
standing of brain function will be incomplete until we understand the significance of the pattern
of white matter connections and how the properties of white matter tissue impact neural signals.

HUMAN WHITE MATTER

My colleagues remind me from time to time that tools for measuring the nervous systems of
rodents, flies, zebrafish, and Caenorbabditis elegans are vastly better than the tools for measuring
the human brain. It is worth asking, then, Why measure human white matter? I am specifically
interested in the human brain, and I am concerned about the ability to translate findings between
species. Knowing when the translation between species can be rigorously established is a significant
challenge. The recent literature shows that there are no agreed standards that define which results
from rodents and other species can be rigorously interpreted with respect to human biology
(Nestler & Hyman 2010, Seok et al. 2013, Smith & Dragunow 2014, Takao & Miyakawa 2015).
This limits the power of animal models for understanding the topic that interests me: the human
mind and brain. For this reason, studying the white matter in humans should be part of our
research portfolio.

A great deal has been learned about human white matter during the past two decades. The
volume of human white matter is approximately 4 x 10° mm® (Zhang & Sejnowski 2000) and
comprises 45% of the total cortical volume (Allen et al. 2003, Schiiz & Braitenberg 2002). The
volume of white matter and gray matter differs greatly among species; for example, the volume of
the entire mouse brain is approximately 0.03% of the human brain (Koch & Reid 2012, table 1),
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and mouse white matter comprises less than 10% of its cortical volume. The large difference in
scale brings to mind that Anderson (1972) famously titled his analysis of reductionism in physical
science “More is Different”; I am convinced that his observation applies to neuroscience.

In humans, the longest white matter fibers are those in the callosal tract, connecting the two
hemispheres, and the very-long-range axons deep within the white matter; together, these com-
prise approximately 4% of the volume of human white matter. The majority of axons make much
shorter connections between nearby cortical regions (Schiiz & Braitenberg 2002). The ability of
axons to carry signals depends on the health of their cell bodies and the nearby glia, including
both the oligodendrocytes, whose extensions wrap the axons and form the myelin sheath, and
the microglia, which attend to basic immunological processes essential for signal communication
(Hanisch 2002).

The coupling of diffusion with gMRI methods that assess tissue properties has had some success
in measuring specific features of the white matter axons, including axon diameter (Assaf & Basser
2005; Assaf et al. 2008; Barazany et al. 2009; De Santis et al. 2012, 2014; Huang et al. 2015)
and the ratio of the myelin sheath thickness to axon diameter (Purger et al. 2015, Rushton 1951,
Stikov etal. 2011). These fundamental tissue properties limit the signaling capabilities of individual
axons. These properties may also influence to what extent the signals in nearby axons influence one
another, perhaps by synchronizing electrical activity (Damasio & Carvalho 2013, Reutskiy et al.
2003). There are many potential mechanisms of such interaction, including the fact that a single
oligodendrocyte wraps multiple axons, and even the possibility of electrical interactions. As one
would expect of a living system, the tissue properties of these axons change during development,
in response to experience, and across the life span (Lebel et al. 2008, 2012b; Mezer et al. 2013;
Wandell & Yeatman 2013; Yeatman et al. 2014a).

CONNECTOMES

Most cortical neurons form synaptic connections only with other nearby neurons; most of these
local signals are never communicated to other parts of the brain. But the signals from some neurons
are carried on axons that leave the cortical sheet and enter into the white matter. These signals
have a special status in that they communicate the results of local computations to other parts of
the brain.

Adjacent neuronal cell bodies often project axons in bundles that traverse the white matter
together, arriving at a similar destination. These small bundles, usually called fascicles, are some-
times grouped into larger pathways within the core of the white matter that are called tracts. These
larger bundles are assigned a name that includes the Latin term for bunch, which is fasciculus [e.g.,
superior longitudinal fasciculus (SLF); arcuate fasciculus].

A large tract, such as the SLF, can include many fascicles, but not all of these fascicles traverse
the full length of the tract. In some cases, say in the optic tract or the optic radiation, there are
many fascicles that extend the length of the entire tract. But in other cases, say in the SLF, many
fascicles enter and exit at different points. A common metaphor for these pathways is a highway;
the fascicles, like vehicles, enter and exit the highway (tract) at different points. Furthermore, the
fascicles and tracts sometimes cross through one another.

Tractography algorithms estimate the fascicles from dMRI data. The computational represen-
tation of a fascicle is often called a streamline. The term estimated fascicle (eFascicle) would also
be appropriate. Tractography algorithms create streamlines whose orientations match the local
diffusion orientation. In addition, the algorithms follow principles that ensure the streamlines re-
flect the general anatomical features of brain fascicles. For example, the end points of streamlines
are located in brain structures containing cell bodies (cortex, thalamus, brainstem). The fascicles
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are constrained within the white matter; they must not pass through the ventricles or outside the
brain. Like brain fascicles, the streamlines do not loop back on themselves, nor are they permitted
to curve sharply. Thoughtful algorithms have proposed procedures for estimating fascicles from
the dMRI data that are subject to these types of constraints (see the section titled Tractography
Algorithms). Beyond following these general principles, tractography algorithms require the set-
ting of specific parameters. For example, the maximum fascicle curvature is a typical parameter; a
range of permitted streamline lengths is another typical parameter.

The complete set of streamlines generated by whole-brain tractography is called a connectome
(or a tractome or a projectome). A connectome is a model of the white matter fascicles. The
streamlines in modern connectomes capture the geometric features of the brain fascicles. The
visualizations of streamlines can be compelling (Figure 1), sometimes making it hard to remember
that these streamlines represent only the geometry of a model and that even the most elaborate
connectomes model only a small number of the properties of the underlying biology. For example,
there is no representation of the nearby glia or the vasculature or the surrounding fluid. The
complexity and molecular richness of modern cellular measurements are phenomenal and extend
to the nanometer scale (Figure 1). There is much ongoing work aimed at extending the scope and
accuracy of the connectome models, and this is discussed in the section titled Validation (Accolla
et al. 2014, De Santis et al. 2016, Lutti et al. 2014, Mezer et al. 2013, Stikov et al. 2011, Stuber
etal. 2014, Yeatman et al. 2014a, Zhang et al. 2012).

Human neuroimaging estimates fascicles and tissue properties at roughly millimeter resolution.
The connectome models are approximations of the full complexity of the underlying tissue, and
the strengths and weaknesses of these approximations depend on the algorithms used. There is
no consensus on a single best algorithm or even the best parameters for a specific algorithm.
We know that different algorithms produce significantly different estimates (Bastiani et al. 2012,
Parizel etal. 2007, Takemura et al. 2016a), and further, we know that changes in the parameters of
a single algorithm can produce different results. This review describes the choices for producing
connectome models and the tools available to evaluate those models.

THE DIFFUSION MRI SIGNAL

The most basic MRI signal (proton density) measures the number of spins (hydrogen nuclei in
free water) within a small volume. The general principle of MR is that the instrument excites these
spins to produce a signal, and the spin excitation signal decays over time. The MR instrument
can be programmed in a variety of ways that influence which interactions with the brain substrate
cause the signal to decay.

For diffusion, the MRI instrument is programmed so that the random displacements of the spins
attenuate the signal. Moreover, the size of signal attenuation can be measured in each direction by
applying appropriate magnetic field spatial gradients. Signal attenuation in a particular direction,
0, is measured by the apparent diffusion coefficient [4(#)] (Le Bihan & Johansen-Berg 2012,
Stejskal & Tanner 1965). Specifically, suppose that the signal from a voxel is Sy when no diffusion
gradients are used. When we apply the spatial gradients and measure, the signal is attenuated by an
amount that depends on the direction of the gradient, so that A(f) is related to signal attenuation
by the equation:

S0, b)/Sy = exp[—b AW)).

The variable & groups together a set of physical constants and experimental parameters. These
include the strength and duration of the magnetic field gradients. The b-value depends on a
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Inferior frontal
occipital fasciculus

Figure 1

White matter measurements across spatial scales. (#) Tractography estimates fascicles at millimeter resolution. The organization of
large numbers of estimated fascicles (streamlines) is shown. Streamlines with both end points in the occipital lobe are shown as brown,
blue, and purple on the left. The inferior frontal occipital fasciculus, inferior longitudinal fasciculus, optic radiation, and vertical
occipital fasciculus are shown in the image on the right. (b)) Measurements at the micrometer scale reveal a multitude of additional
structures and local connections. This image shows a thin strip through the cortex from the pia mater to the white matter (about

140 pm wide and 1 mm high). Of course, measurements at this scale are also models that do not represent finer structures. (¢) For
example, myelin sheaths around individual axons can be identified at the submicrometer scale, which shows the border between the
white matter (fower) and layer 6 (upper) (approximately 130 pm wide and 90 pm tall). These histological images show myelin by basic
protein immunostaining (white), nuclei by DAPI staining (blue), and GABA by immunostaining ( green). (d) The histological images,
too, are abstractions that coarsely approximate the molecular organization found within cells at the nanometer scale. For example, at
this scale the darkened ring shows the bilipid membranes of the oligodendrocytes that form the myelin wrapping an axon. The scales in
this figure span six orders of spatial linear scale, and the abstraction at each scale clarifies certain aspects of the brain architecture; no
single scale captures all of the important biological information. I thank Kristina Micheva and Stephen Smith for sharing the
histological images and Rosemary Le for preparing the tractography images.
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Figure 2

Representation of magnetic resonance signal attenuation caused by diffusion. The surfaces represent
measurements and models for 96 different gradient directions. (#) The top row shows data from a voxel in
the corpus callosum, where the fibers are oriented mainly in the same direction. The bottom row shows the
diffusion tensor model fitted to the data. The directions with heavily attenuated signals show the principal
direction of these callosal axons. The diffusion tensor model predicts the values in an independent set of
measurements better than test-retest. This suggests that the many little ripples in the surface are largely
measurement noise. (b) A similar set of data is shown from a voxel in the centrum semiovale; this region
contains many crossing fibers. The next row shows the ball and stick model fitted to the data. Each column
shows data from a different -value. At low b-values, only a single principal direction is estimated. At higher
b-values, the model contains two regions with low values, suggesting that there are crossing fibers in this
voxel. The diffusion tensor model cannot capture crossing fibers. Figure adapted from Rokem et al. (2015);
calculations can be replicated using these online Jupyter Notebooks: https://github.com/vistalab/
osmosis/blob/master/doc/paper_figures/, https://github.com/vistalab/osmosis/blob/master/doc/
paper_figures/Figurel.ipynb, and https://github.com/vistalab/osmosis/blob/master/doc/paper_
figures/Figure7.ipynb.

combination of experimental parameters (such as gradient strength and gradient duration). Al-
though measurement conditions are generally summarized by a single s-value, two scans with
the same /-value but different combinations of gradient strength and duration measure different
tissue properties. This principle is used to good effect in some of the MRI experimental methods
described in the section titled Experimental Measurement Choices.

Tractography has its origins in the observation that signal attenuation depends substantially
on the orientation distribution of the local axon bundles. Figure 2 shows the attenuation for a
voxel in the corpus callosum, where the fibers are highly directionally coherent (Figure 24), and
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a voxel at the confluence of multiple tracts within the centrum semiovale (Figure 2b). The figure
also illustrates how signal attenuation increases as the #-value increases.

The change in diffusion signal attenuation with orientation is called the diffusion orientation
distribution function (dODF). The underlying fiber orientation distribution function (fODF) is
estimated from the dODF using one of several models described in the section titled Diffusion
MRI Signal Modeling and Statistical Validation.

Experimental Measurement Choices

When measuring for tractography, one must decide on many experimental parameters, including
the number of #-values and number of gradient directions. The three dimensions defined by the
b-values and directions are collectively called g-space. The experimentalist selects parameters based
on the goals and experimental conditions (e.g., equipment and subjects). A number of papers offer
advice on acquisition issues (Campbell & Pike 2014, Jones & Cercignani 2010, Jones et al. 2013,
Parker et al. 2013, Tournier et al. 2013).

In practice, it is common to choose a single b-value and to measure in 30-60 directions.
Acquisitions made with a single s-value are called single shell because in the three-dimensional
g-space each b-value defines a sphere (shell). When only a small number of measurements are
made on a single shell, the data are usually summarized using a diffusion tensor model. When
many directions are measured, the acquisition is called high angular resolution diffusion imaging
(HARDI), and more complex models are used. The ability to resolve fascicles oriented in different
directions improves as the #-value increases. Unfortunately, the signal-to-noise ratio declines with
increasing b-value, so there is an inherent trade-off between signal-to-noise and angular resolution.

The question of how many different samples and shells to measure is a scientific judgment. The
Human Connectome Project sampled ¢-space at three different shells (b-values = 1,000, 2,000,
and 3,000 s/mm?) and in approximately 90 directions for each shell (Human Connectome Project
2014, Sotiropoulos et al. 2013). Sampling on multiple shells is called both multishell and Q-BALL
imaging (QBI) (T'uch 2004). Sampling at many ¢-space points on a regular three-dimensional grid
is called diffusion spectrum imaging (DSI) (Tuch et al. 2003, Wedeen et al. 2000). The number
of samples in DSI studies ranges, typically, on the order of 256-512.

People have strong opinions about what you should do. Tournier et al. (2013) have recom-
mended that, to make effective use of their fiber tractography methods, measurements should be
taken at a single b-value near 3,000 s/mm? and in approximately 45 directions. Pestilli et al. (2014,
supplemental figure 4) supported this observation, showing that the number of statistically reliable
fascicles measured at 2,000 s/mm? saturates at approximately 40-60. However, Lebel et al. (2012a)
have shown that as few as six directions are sufficient for analyses that aim to locate only the largest
tracts. Changing the acquisition parameters also changes which tissue structures determine the
attenuation. For example, as the gradient strength or diffusion time increases, structures of differ-
ent size influence the signal (Stanisz et al. 1997), and this can be used for a purpose: Experimental
measurements varying both gradient strength and diffusion time form the basis of efforts to esti-
mate features of the underlying tissue, including axon size and the fanning of axonal arbors and
dendrites (Assaf & Basser 2005; Assaf et al. 2008; De Santis et al. 2012, 2014; Zhang et al. 2012).
As models advance, DSI sampling will be used to infer fascicle properties in addition to local fiber
orientation, such as axon diameters and the thickness of the myelin sheet. But combining these
methods is not yet standard practice.

Two other important variables are the voxel size and the amount of time required to obtain the
scan. There is extensive work on methods that measure with smaller voxel sizes, down to 1 mm
isotropic and smaller. The human connectome data are at 1.25 mm isotropic. There continues to
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be active exploration of diffusion measurements with high mean field strength, gradient strength,
high spatial and angular resolutions, and using postmortem tissue (Amunts et al. 2013, Foxley
etal. 2014, Miller et al. 2011, Seehaus et al. 2015). But the vast majority of scans in the literature
are of at least eightfold greater volume (2 mm isotropic).

Recently developed techniques have significantly shortened the measurement time. These
technologies measure multiple slices (Feinberg & Setsompop 2013), reducing measurement time
by more than half for equal signal-to-noise. Finally, diffusion measurements are being carried
out in combination with other methods for studying the properties of white matter tissue. There
is hope that the contributions of the different methods can be thoughtfully combined to form a
better and more complete assessment of white matter tissue (Axer etal. 2011, Bartzokis et al. 2012,
Caspers et al. 2015, Leuze et al. 2014, Magnain et al. 2015, Yeatman et al. 2014a).

Diffusion MRI Signal Modeling and Statistical Validation

Streamlines (or eFascicles) are derived from the diffusion signals in individual voxels. Typically,
the derivation begins with a model of the diffusion within the voxel. There are three general
approaches to modeling the dMRI signal within a voxel.

The diffusion tensor model treats diffusion as an anisotropic Gaussian process (Basser & Jones
2002, Filler 2009). This leads to a mathematical formulation based on tensors and gives rise to
the term diffusion tensor imaging (D'TT). The tensor model uses six parameters to describe the
Gaussian diffusion within each voxel. The DTI formula also gives rise to several simple, useful
scalar statistics (mean diffusivity, radial diffusivity, axial diffusivity, fractional anisotropy).

Initially, it had been hoped that at the spatial scale of individual voxels (2 mm isotropic) human
white matter might generally comprise fascicles in a single direction. Were this true, the principal
diffusion direction might correspond to the direction of these fascicles. At present, this view has
no defenders and many critics. There is nearly universal agreement that the orientation of the
ellipse is not a good measure of fascicle orientation in a voxel.

Nonetheless, under many conditions, particularly 5-values at or below 1,000 s/mm?, the tensor
model approximates the measurements extremely well. Even authors who strongly favor other
models use the tensor as a convenient phenomenological description of the data and a means of
setting up certain calculations (Tournier etal. 2013). Further, if one simply wants to compare signal
attenuation at similar locations in two brains, the tensor model provides an excellent summary of
the data and the tensor parameters provide a simple parameterization for comparing the signals.

The ball and stick model predicts signal attenuation as a weighted sum of terms: an isotropic
term (ball) and a weighted sum of anisotropic terms (sticks). This parameterization separates
the relatively free diffusion of water (ball) and the restricted diffusion imposed by the local cell
membranes (sticks). There are several variants of this model. For example, the sticks can be
modeled as very thin or as having some thickness (tubes). Often, the diffusion model of a stick
is estimated empirically, using data from a region in the brain that comprises only coherently
oriented fibers, such as the corpus callosum. Also, some authors include multiple balls in an
attempt to characterize different isotropic pools within structures that have different diameters
(Daducci et al. 2015, Lemkaddem et al. 2014). Here, I use the general ball and stick metaphor
because none of these variants changes the basic concepts of tractography.

Conceptually, there are two approaches for estimating the number and direction of the sticks
and the size of the ball, although there have been many different implementations (Behrens et al.
2007, Cook etal. 2006, Daducci etal. 2015, Ferizi etal. 2015, Garyfallidis et al. 2014, Lemkaddem
et al. 2014, Rokem et al. 2015, Tournier et al. 2004). In one approach, ball and stick statistical
models fit the fiber orientations (Behrens etal. 2007, Rokem etal. 2015). In a second approach, the
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fiber orientations are estimated using a spherical harmonic representation of the diffusion data,
known as constrained spherical decomposition (Alexander et al. 2002; Frank 2002; Tournier et al.
2007, 2008). These two approaches are not in conflict: It is a matter of choosing to fit the data in
the space domain or in the spherical harmonics domain.

The principal output of ball and stick models is the fODF (the distribution of the stick ori-
entations). This is an unwieldy representation and, consequently, some univariate statistics have
been proposed, such as generalized fractional anisotropy (Tuch et al. 2003), hindrance modulation
(Dell’Acqua et al. 2013), and the dispersion index (Rokem et al. 2015). Consensus on useful uni-
variate statistics may be important to achieve widespread use in scientific and clinical applications.

Both the diffusion tensor model and the ball and stick models fit the signal attenuation data
and cross-validate well (Rokem et al. 2015). Cross-validation tests predict a second, independent
measurement much better than test-retest reliability. The diffusion model predicts the data better
than test-—retest reliability in 97% of the voxels, and the ball and stick model predicts the data
better in 99.9% of the voxels (Rokem et al. 2015). Hence, both models are a better description
of dMRI signal attenuation than the raw data, presumably because the fits eliminate instrumental
noise.

How closely do the number, orientation, and dispersion of the sticks reflect the number, ori-
entation, and dispersion of fascicles within a voxel? For certain measurements—those at relatively
low gradient strengths (b =800 s/mm?)—the angular resolution of the measurements is low and
the ability to resolve fascicles at slightly different orientations is poor. As the gradient strength
increases (say, b = 3,000 s/mm?), the angular resolution increases, and it is possible to clearly re-
solve some fascicles with sufficiently different orientations. These algorithms cannot resolve all
local fascicles, but the success of tractography in identifying well-known tracts is good evidence
that the estimates provide reliable guidance about the largest fascicles within each voxel.

The term model-free dMRI is generally associated with DSI and QBI: “[DSI is a] model-free
diffusion MRI technique . . . without the need for a priori information or ad hoc models” (Wedeen
etal. 2005, p. 1385). What is meant is that the diffusion data are collected using a range of b-values
and directions without any formal model (tensor, ball and stick) of the signal attenuation function.
The signal attenuation levels are interpolated, and the result is the dODF. (Although, of course,
interpolation is a simple model.)

Models quickly come into play when investigators determine the fODF from DSI data. In
early papers, the fODF was estimated as the peaks in the dODF [“The QBI map is rendered as [a]
multicuboid field where the cuboids represent the peaks of the ODF within that voxel” (Tuch etal.
2003, p. 888, figure 2), which is surely a model]. An explicit fiber estimation method (diffusion
deconvolution) has been introduced (Yeh et al. 2011).

For both the tensor and ball and stick models, the model predicts an independent data set
(cross-validation) more accurately than using the first data set as a prediction of the independent
data (test-retest reliability) (Rokem et al. 2015). The excellent predictive ability of the model
suggests that a model-free dODF is not an advantage. Rather, the model descriptions are valuable
because they combine the data into a summary that reduces the impact of instrumental noise.

TRACTOGRAPHY ALGORITHMS

Tractography algorithms combine dMRI voxel data to estimate relatively long fascicles (stream-
lines). Each streamline is a model of a biological fascicle that traverses the white matter carrying
information between cortical regions. Taken as a whole, these streamlines make up the connec-
tome and are a model of the geometry of the white matter tracts.

In many algorithms, the search for streamlines begins by setting seed points at specific white
matter or gray matter locations. For each seed point, the algorithm generates one or more
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streamlines. Sherbondy et al. (2008a, 2009) have suggested a number of principles that we might
expect to find in a tractography algorithm. These are:

1. Symmetry. If an algorithm starts at a seed location S1 and finds a streamline to location S2,
then we expect that starting at S2 the algorithm should be equally likely to find a streamline
to S1.

2. Independence. The likelihood of a path between S1 and S2 should depend on data near the
path and not on data remote from the path.

3. Data prediction. The collection of streamlines comprising a connectome is a model derived
from the diffusion data. The connectome model should, in turn, predict these dMRI data.

4. Physical realizability. The streamlines in the connectome should be consistent with the
constraints of physical realizability. For example, the volume of streamlines in a voxel must
fit within the voxel.

First Generation

The first tractography models estimated one streamline at a time without accounting for the
properties of the complete connectome. These algorithms were deterministic and used the prin-
cipal direction of the Gaussian diffusion (tensor model) as an estimate of the local fiber direction.
Despite their limitations, these algorithms yielded useful estimates of the larger tracts (Conturo
et al. 1999, Lazar et al. 2003, Mori & van Zijl 2002, Mori et al. 1999). The ability to find such
tracts noninvasively in the living human brain was appropriately met with enthusiasm by many.

The outline of a typical deterministic algorithm is straightforward. Start in a seed voxel. Calcu-
late the diffusion tensor in that voxel. Extend the streamline path along the principal orientation of
the tensor in both directions by some step size, say 0.5 mm. Compute the tensors at the new path
positions; this might require interpolating among diffusion data at nearby voxels. Decide whether
to take another step. There are several reasons you might stop. If the orientation of the tensor at
the new position is unclear, stop. If the path is turning too sharply, stop. If the path has exited
the white matter, stop. Otherwise, carry on until the two end points of the fascicle are within the
gray matter. Then, start again, beginning with a seed at a slightly different location. Even such
a simple, deterministic algorithm requires the selection of parameters (stopping criteria, number
of seeds to sample), and these choices have a significant impact on the streamlines and, thus, the
connectome.

The algorithms generally satisfy the properties of symmetry and independence. But the al-
gorithms are local and greedy, so they never assess whether the connectome model as a whole
predicts the data or whether the model satisfies basic physical realizability constraints. Greedy
algorithms can produce connectome models with properties that are quite implausible, such as
the estimated fascicle densities (Sherbondy et al. 2009).

Second Generation

Many authors have observed that using the principal direction of the diffusion tensor as a summary
of the fiber orientation is a poor model. Most obviously, there is no possibility of accurately rep-
resenting crossing fibers within a voxel, and these crossing fibers are likely widespread (Jeurissen
etal. 2013). Further, deterministic tensor-based algorithms do not account for uncertainty in the
data. These objections prompted the development of probabilistic tractography methods using
dMRI voxel models that allow for multiple fiber directions and also account for measurement
uncertainty. An important feature of probabilistic algorithms, which distinguishes them from de-
terministic, is how the path is traced. Rather than precisely following the peak directions of the
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fODF, probabilistic algorithms take steps in a direction that is a random variable around these
directions.

Behrens and colleagues (Behrens et al. 2003, 2007; FMRIB Software Library 2015) conceived
and implemented tractography algorithms using ball and stick models. These algorithms rely
on Bayesian inference mechanisms for deciding how to extend the fascicles. The focus of this
implementation is not the tracts themselves, but rather the gray matter end points and cortical
connections. This algorithm also includes a derived parameter (connection probability), which is
the ratio of the number of tracts between S1 and S2 and the total number of tracts from S1. This
statistic fails the principle of independence because the connection probability between S1 and S2
depends on fascicles that have nothing to do with the path between S1 and S2 (Friman & Westin
2005, Sherbondy et al. 2008a). Intuitively, suppose that S1 projects to S2 and S3, but S2 projects
only to S1. In that case, the connection probability violates symmetry: The connection probability
from S2 to S1 will be much higher than the connection probability from S1 to S2, even though the
data along the path between them are the same. The connection probability measures the chance
of diffusing from S1 to S2, and because of the branch to S3, this chance may not be the same as
diffusing from S2 to S1. The connection probability should not be used as a proxy for connection
strength between two gray matter locations.

Tournier et al. (2012) used similar tractography principles but a different computational strat-
egy. They estimated the dODF of a single fascicle using a spherical harmonic representation.
They approximated the dODF as a truncated set of spherical harmonics, and they estimated the
fODF from the approximation. Their probabilistic tractography algorithm starts with the {ODF
estimates. In their clear explanation, Tournier et al. (2012) highlight the fact that choosing dif-
ferent parameters and algorithms produces very different results (Figure 34). Similarly, Feinberg
& Setsompop (2013) have pointed out that estimates vary depending on acquisition parameters
(Figure 3b).

The same limitations can be found in many types of measurements, including electrophysiology
and anatomical tracer studies, which are sometimes described as a gold standard. For example,
significant sampling bias occurs depending on the size (resistance) of microelectrodes (Stone 1973).
Similarly, history teaches us that there can be significant problems interpreting histological data
(Gould 2007, Gould et al. 1999, Rakic 2002), and the differences in estimates of the fundamental
properties of white matter based on histology in animals remain large (Jbabdi et al. 2015). These
are importantissues that the field of tractography is beginning to confront (Takemura et al. 2016a),
and this topic is addressed more fully in the section titled Third Generation.

Tract Identification Algorithms

Tractography is sometimes used to estimate tracts and identify connections. But in many applica-
tions, we know that a tract is present: For example, we know there is an optic tract in a normally
sighted person. Atlases have been created to guide people to the likely identity or location of
known tracts (Catani & Thiebaut de Schotten 2008, Hermoye et al. 2004, Wakana et al. 2004,
Yeatman et al. 2012b, Yendiki et al. 2011).

Another approach is to develop algorithms to find the most likely path between two locations
in individual subjects. Several groups have developed algorithms for finding the most probable
path between any two locations (Iturria-Medina et al. 2007, Schreiber et al. 2014, Sherbondy et al.
2008a). These multiple contributions show the need for algorithms that identify specific pathways
in individuals.

When we seek to identify a known pathway in the human brain, it is possible to compare trac-
tography with postmortem anatomical methods. Sherbondy et al. (2008b) quantitatively compared
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Figure 3

Fascicle estimates depend on the tractography algorithm and magnetic resonance imaging acquisition
methods. (#) Different algorithms applied to the same diffusion data set generate different streamlines. The
three images compare estimates of the optic radiation using a tensor model with deterministic tracking (DT
stream), or a spherical deconvolution (SD stream) estimate of the fiber orientation distribution with
spherical deconvolution and probabilistic tracking (SD PROB). (b) Different acquisition techniques produce
different connectomes, even with the same algorithm. The algorithm and acquisition dependences imply
that we need methods that decide which estimates are supported by the data. Methods that estimate the
confidence intervals given a data set are essential tools for most scientific measurements, and diffusion
imaging is no exception. Panel # adapted from figure 4 in Tournier et al. (2012). Panel # adapted from figure
2 in Feinberg & Setsompop (2013).

the position of key points of the optic radiation measured with tractography and in postmortem
analyses, and they found excellent agreement.

Global Tractography

Global tractography describes methods that evaluate connectomes based on the entire set of
fascicles with respect to some objective function (Aganj et al. 2011; Daducci et al. 2015; Fritzsche
et al. 2012; Jbabdi et al. 2007; Kreher et al. 2008, Lemkaddem et al. 2014; Mangin et al. 2013;
Reisertetal. 2011; Sherbondy et al. 2008a, 2009, 2010; Smith etal. 2013, 2015b). The word global
is applied both when the algorithm evaluates a whole streamline or the whole connectome; these
cases should be distinguished (Pestilli et al. 2014). Here, I concentrate on algorithms for whole
connectome evaluation.

Mangin etal. (2002) have presented a range of approaches to global tractography, focusing on an
architecture that is motivated by a combination of spin glass theory and spaghetti. The idea of the
spin glass is to consider a starting condition as comprising many small line segments that initially
cover the white matter volume (spins). An optimization applies simulated forces that bind these
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small segments into longer fascicles by adjusting their orientation and number simultaneously to
match the diffusion data. The motivation for these forces arises from the authors’ thinking about
spaghetti—something that I enjoy—although the combination of glass and spaghetti does give
one pause.

Reisert et al. (2011) significantly advanced global methods by building a practical algorithm.
Their optimization included a method that relies on the ball and stick model for predicting the
diffusion data from the collection of fascicles. The optimization uses this forward calculation
repeatedly both to form connections among all of the local sticks and to minimize the difference
between the connectome and the diffusion data.

Another approach to global tractography is to evaluate the entire set of streamlines with respect
to an objective function and then to add and remove entire streamlines, rather than to use segments
to build the fascicles. Zhang & Laidlaw (2006) implemented a clear example of this type of global
tractography algorithm. They proposed comparing the predicted dMRI signal from all streamlines
in a candidate connectome. At first, the set of streamlines predicted a signal that differed from
the measurements. They used a sampling procedure to add and remove entire streamlines from
the connectome; streamlines were added or removed with the goal of minimizing the difference
between the observed and predicted diffusion signals (Figure 4).

Sherbondy et al. (2009, 2010) explored a similar method that differs in two ways. First, they
noted that many algorithms produced connectomes in which the number of streamlines within
different white matter voxels differed by several orders of magnitude. This large dynamic range is
inconsistent with the relatively uniform density of the white matter. Thus, Sherbondy et al. (2009)
added a constraint to find connectomes with relatively uniform streamline density throughout the
white matter, and they expanded the connectome model parameters further in their next paper
(Sherbondy et al. 2010). Second, Sherbondy et al. (2009) used a computational architecture that

Iterations

Y

Figure 4

An early global tractography algorithm. The connectome model is used to predict the diffusion data.

The decision to add or remove a fascicle is based on the effect the action has on the difference between

the predicted and observed signal from diffusion magnetic resonance imaging. The images at the left

show the initial stage of this iterative algorithm. The number of fascicles (inset numbers) changes over iterations.
The difference between the measured and predicted diffusion signals is shown by the grayscale images (bottom
row). Abbreviations: A, anterior; L, left; P, posterior; R, right. Adapted from Zhang & Laidlaw (2006, figure 2).
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separated the process of streamline generation from the process of connectome evaluation. Their
algorithm began with a large set of candidate connectomes and then searched for subsets of the
connectome that minimized the objective function. As a computational matter, the separation of
pathway generation and connectome evaluation still seems like a good idea.

Third Generation

A recent group of algorithms might be considered as a third generation. The new idea is that we
have already learned how to produce a wide range of estimated fascicles, and itis even possible that
current methods already produce candidate connectomes that include streamlines that are repre-
sentative of all plausible fascicles. The new algorithms tackle the problem of selecting streamlines
from the candidate connectome, mainly by removing streamlines that are either false alarms or
repeats of other similar streamlines.

There are two main ideas about how to evaluate the whole connectome and eliminate these
unwanted streamlines. Smith et al. (2013, 2015a,b) proposed editing candidate connectomes by
evaluating how well the estimated fiber orientation distribution in each voxel matched the stream-
line orientations in the connectome. In a pair of papers, they proposed methods of editing (fil-
tering) the connectome so that the fiber orientation distribution in the connectome matched the
data. They used the word tractogram rather than connectome, and they derived the fODF using
spherical deconvolution. Hence, they labeled their approach the spherically informed filtering of
tractograms (SIFT). The firstimplementation of the method filtered by removing fascicles (Smith
etal. 2013). The second version added the ability to assign weights to individual fascicles (Smith
etal. 2015b).

Daducci etal. (2015) and Pestilli etal. (2014) used a biophysical equation to predict the diffusion
data from the connectome model. To fit the connectome to the data, the predicted diffusion from
each streamline plus an anisotropic term were added; each streamline contributed some weight
that was determined from the fitting procedure.

The two groups use similar mathematical formulations, but they focused on different scientific
goals. Daducci et al. (2015) and Lemkaddem et al. (2014) used tractography to link dMRI with
tissue microstructure. They argued that the connectome is helpful because in the majority of the
voxels the local linear equations between diffusion signals and tissue are underdetermined. The fas-
cicles in the connectome serve as regularizers that guide the interpretation of tissue microstructure
in individual voxels.

Pestilli et al. (2014) used tractography to clarify the position of major white matter tracts, and
they emphasized methods for evaluating the strength of the evidence in support of specific groups
of tracts (T'akemura et al. 2016b). They began by observing that the fitting process produced many
streamlines with zero weights that do not contribute to the prediction, and these streamlines can be
eliminated as false alarms. Surprisingly, as many as 80% of the streamlines have a zero weightin the
connectome model and, thus, no empirical support. They went on to develop methods to estimate
the strength of support for groups of streamlines with positive weights. They used the methodology
to assess the strength of support in the dMRI data in favor of a specific tract, such as the streamlines
connecting two cortical locations. The test is based on comparing the error distributions when the
streamlines are included versus excluded from the connectome. The statistical techniques build
on the linear formula that predicts the diffusion data from the connectome; hence, they call the
method linear fascicle evaluation (LiFE).

There is one conceptual difference in the approach used by Smith et al. (2013, 2015a,b)
compared with the approach used by Daducci et al. (2015) and Pestilli et al. (2014). Rather
than using an objective function that predicts the diffusion data, Smith et al. matched the fiber
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orientation distribution, a model that is derived from the diffusion data. I am not sure how well the
spherical harmonic approximations do in cross-validation. But if these harmonics cross-validate
well, as Rokem et al. (2015) showed for the ball and stick models, this seems like the right
approach. Further, the other groups (including my group) should probably minimize error with
respect to the model fit rather than the raw data.

Takemura et al. (2016a) added one more twist to the new generation of methods. They ob-
served that, in most cases, users create candidate connectomes using a fixed set of tractography
parameters. For example, each choice of the curvature parameter biases the candidate connec-
tome. Takemura et al. (2016a) suggested that a systematic procedure should be applied to create
candidate connectomes: Specifically, a set of connectomes created by sweeping out key param-
eters should be merged. The prediction error that begins with such a candidate connectome
(@) improves model accuracy and (b) includes a more diverse (less biased) set of fascicles. The
method builds on LiFE and is called ensemble tractography.

APPLICATIONS TO SCIENCE AND MEDICINE

After only 15 years of development, we can use dMRI and tractography to noninvasively measure
white matter structures and tissue properties in the living human brain at millimeter resolution in
experiments requiring 10-20 min. The quality of the data and models supports analyses in indi-
viduals, making the technique appropriate for clinical applications. These methods are advancing
a range of clinical and scientific research projects.

Human Cognition and Clinical Applications

In recognition of the importance of dMRI, the National Institutes of Health supported a project
to acquire dMRI data at high resolution from a large number of healthy subjects. These data
would enable further processing to specify the human connectome (Van Essen et al. 2012). The
project succeeded at providing a high quality, carefully curated, public dAMRI data set of the healthy
population. These data can be used as a baseline for comparison with subjects studied for other
reasons (e.g., a clinical disorder or damage or select behavioral phenotypes).

There is a vast literature describing correlations between white matter tracts and human behav-
ior. This includes the fields of cognition, psychiatry, and neurological disorders (Ameis & Catani
2015, Ben-Shachar et al. 2007, Civier et al. 2015, Fields et al. 2014, Johansen-Berg et al. 2012,
Kubicki & Shenton 2014, Mezer et al. 2013, Nordahl et al. 2015, Ogawa et al. 2014, Sagi et al.
2012, Sasson et al. 2013, Schnieder et al. 2014, Tavor et al. 2013, Tsang et al. 2009, Wandell
& Yeatman 2013, Wandell et al. 2012, Yeatman et al. 2012a). Advances in applying information
technology to combine neuroimaging data from many sites may enable the research from many
centers and labs to be assembled into a large and accessible data set (Wandell et al. 2015).

Databases and T'ract Profiles

To support the development of tractography, several groups offer tools that analyze the connec-
tomes. There is a set of tools designed to help label the fascicles in a connectome as part of a
specific tract. One approach is to label the streamlines based on the voxels it traverses, as specified
in a normalized coordinate frame (Calabresea et al. 2015, Hermoye et al. 2004, Lawes et al. 2008,
Oishi et al. 2008, Wakana et al. 2004). These atlases are being developed for both human and
nonhuman primates. A second approach groups streamlines into tracts based on defining a few
criteria, such as their passage through a particular plane or the position in the cortex in the native
coordinate frame of the subject (Yeatman et al. 2012b, Yendiki et al. 2011).
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Figure 5

Integrating tractography and quantitative magnetic resonance imaging (QMRI). Tractography localizes white matter tracts using
diffusion MRI. (#) Quantitative T'1 data were collected in healthy controls for each tract at each position. The color overlay on the
tracts shows the z-scores of the R1 (1/T1) data for a single patient with multiple sclerosis. For two of the tracts, the z-scores are within
the typical range. On the occipital-callosal tract, the R1 values are outside of the expected distribution. The data from the
occipital—callosal tract are plotted in panel 4, which shows the mean (black curve) and standard deviation (SD) ( gray shaded regions) lines
for a population of age-matched controls. The purple curve shows R1 data from this patient. The regions of low R1 value likely
represent tissue loss. The red arrows point to locations where the R1 value differs (3—4 SD) from the control population. Adapted with
permission from Yeatman et al. (2014a).

In early analyses, summary measures were provided for some measures (e.g., radial diffusivity),
averaged across the entire tract. More recently, papers have included measurements of a diffusion
value or another quantitative MRI value assessed along each position of the tract (Yeatman et al.
2012b). Such a tract profile represents the value of either individual streamlines or a summary
of the data near the central position of the tract of streamlines (Figure 5). This framework is
particularly useful for analyzing multimodal data sets; it seems likely that these multimodal data
will reveal a great deal about the organization of fibers in the human brain (Bartzokis et al. 2012,
Yeatman et al. 2014a).

One aspect of tract profile analysis clearly needs improvement. Currently, we use connectome
streamlines to identify voxels in the original data. The tract profiles show a summary of the
complete voxel measurements, even though many voxels contain streamlines from several different
tracts. We should plot the diffusion prediction from the streamlines of single tracts rather than
plotting the values from the raw data.

A second place where we might improve is this: We should strive to develop connectome
models that predict both the dMRI and ¢MRI signals. This advance will take a bit of nerve and
some arguing with reviewers, but it will come.

Cellular Biology

There is a natural alliance between scientists studying tissue properties in human white matter
and scientists analyzing glia at the cellular level. New results from diffusion and from cell-level
measurements all point to the idea that models of white matter and glia will be essential for
clarifying how we learn, remember, and feel (Fields 2010, Gibson et al. 2014, Hughes et al. 2013,
Long & Corfas 2014, McKenzie et al. 2014, Purger et al. 2015, Sagi et al. 2012). This alliance
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is part of a broadening of neuroscience to consider the impact of nonneuronal cells on cognition
and behavior (Schnieder et al. 2014). dMRI, gMRI, and tractography can be used noninvasively
to study the living human brain and bridge behavior and tissue properties.

VALIDATION

Connectomes are models of white matter. Investigators use these models for at least three different
purposes. For some investigators, their primary interest is the matrix of connections between gray
matter locations that are defined by the fascicle end points (Hagmann et al. 2008, Sporns 2011,
Sporns et al. 2005). The goal of identifying the connections gives rise to the term connectomics.
Others are exploring the tissue properties in specific tracts to develop a neuroscience that relates
white matter pathways to cognition, emotion, development, or disease (Fitzsimmons et al. 2013,
Kubicki & Shenton 2014, Takemura et al. 2016b, Wandell & Yeatman 2013, Wandell et al.
2012, Yeatman et al. 2014b). Yet others are interested in developing biophysical models of tissue
properties and using fascicle estimates as regularizers (Daducci et al. 2015). Even when there is a
common goal, tractography tools should be selected to serve the experimental conditions. Multiple
methods will coexist because different methods are needed for different measurement conditions.

In all cases, we need tools that assess the reliability of our inferences. This is the question
of validation, and we can divide validation into three distinct parts. First, measuring parameter
reliability can validate models. The connectome model produces many derived parameters (e.g.,
fascicle density, volume, and orientation; long-range connections; diffusion predictions), and we
would like to have some confidence range for the parameter values when we repeat the mea-
surements. Parameter reliability depends on measurement noise, general experimental conditions
(e.g., the pulse sequence, field level of the scanner), and biological variability. Bassett et al. (2011)
have examined the parameter reliability of connectome models. A number of investigators have
examined parameter reliability within voxel diffusion (see Rokem et al. 2015, table 1).

Second, a parameter can be reliable and yet wrong. An algorithm might fit a curve with a
straight line. This fit may be stable, but that does not make the curve straight. In this example,
parameter reliability is high, but how well the model fits the data (model accuracy) is low. For
another example, consider a model that summarizes data with a single parameter, the sample mean.
The parameter reliability can be quite good if there are many samples. But the model accuracy
will be low if there is significant variance in the data. It is informative to analyze both parameter
reliability and model accuracy. This question is not yet part of standard practice in tractography,
and I have met scientists who see little value in specifying model accuracy; I find this puzzling.

Third, model parameters may be reliable and the model fit may be excellent, yet the parameters
may not correspond uniquely to single biological objects. For example, diffusion signals depend
on fiber orientations, but they also depend on the properties of nearby glia, and they may depend
on the state of macromolecules that manage protein trafficking. To address parameter validity,
we typically turn to methods that pair diffusion with postmortem biological tissue or phantoms
(Azadbakhtetal. 2015; Dauguet etal. 2007a,b; Fillard etal. 2009, 2011; Neher et al. 2014; Thomas
etal. 2014). Even so, I am not optimistic about the central role of such validations, and others have
also pointed out that these types of experiments have significant challenges of their own (Jbabdi
& Johansen-Berg 2011). A postmortem validation using an animal model on a 7 T scanner would
not convince me to accept that the same methods and accuracy apply to data from young children
in a 3 T scanner.

The issue of parameter validity came up frequently during the early days of functional MRI
(fMRI). Some challenged the value of this signal because it does not correspond uniquely to
action potentials (Calford et al. 2005). But such parameter validity is not a prerequisite for having
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a valuable measurement; scientists and clinicians can usually make good use of an accurate model
that has reliable parameter estimates. With hindsight, it is clear that the quantitative models of
the fMRI signal produced much new knowledge about the human brain (Wandell & Winawer
2015, Wandell & Yeatman 2013) even though fMRI captures a mixture of neural signals and
has poor parameter validity with respect to action potentials (Logothetis 2008, Logothetis &
Wandell 2004). In fact, my reading of the past 25 years is that the fMRI signal opened the field of
electrophysiology to be accepting of additional signaling mechanisms, as Bullock and his students
(Bullock et al. 2005) had been proposing for many years.

Tam not at all opposed to analyzing parameter validity, of course. But I do believe we can learn
a great deal and build useful tools based on diffusion even if the model parameters do not match
a unique anatomical property at a finer spatial scale. The rigorous development of diffusion and
tractography models is advancing our understanding of the human brain and providing helpful
clinical advice. Coordinating with equally rigorous models of cognition and emotion and models
from medicine will make the field even stronger.

REPRODUCIBLE RESEARCH

Modern tractography software is so complex that a paper describing the software is never capable
of capturing the full implementation. An algorithm is reproducible when the author provides an
open-source implementation thatis well documented and clearly written. The complexity of dMRI
and tractography algorithms, combined with the rapid growth of measurement techniques, poses
a problem for reproducible science (Buckheit & Donoho 1995, Chan et al. 2014, Donoho 2010).
A few paragraphs in a methods section are not enough to permit an independent lab to check a
publication for errors, and such checking is fundamental to science. It is time to use software tools
for scientific data management that support reproducible research (Marcus etal. 2007, 2013; Scott
etal. 2011; Wandell et al. 2015).

CONCLUSIONS

During the next decade, tractography models will include a more comprehensive representation
of the biological substrate. The connectome’s streamlines will become more complex and include
biological tissue properties derived in part from diffusion and also from experiments that combine
diffusion with other gMRI measurements. The quantitative measurements may specify axonal size
or tissue properties, such as T'1, magnetization transfer, or T2 (Assaf et al. 2008; De Santis et al.
2012; Mezer et al. 2010, 2013, 2016; Stikov et al. 2011; Stuber et al. 2014; Weiskopf et al. 2015).
Tractography calculations will be one component of a general system that noninvasively charac-
terizes many aspects of white matter structure and tissue properties at submillimeter resolution in
the living human brain.

The information we obtain noninvasively from the living human brain is precious, and we have
achieved measurements far beyond what students of my generation thought to be possible. Like
any technique, there are limitations, but let us take what the terrain will give.
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