
Summary

Gears scale and transmit force/torque, power, and energy across machines
and mechanisms. Manufacturers produce various types of gears (e.g., helical, spur,

herringbone, worm, rack and pinion, bevel and hypoid) for different applications and
design tradeoffs (e.g., cost, efficiency, vibration/noise, angled-drives, etc.)

Gear teeth: do they break? Loads, geometry, and material.

Three factors for designing gear teeth are:

1. Contact stress: As the photoelastic image to the right shows,
there is high stress around the gear’s contact point due to the contact
force �F near the tip of the gear tooth.

2. Bending stress: The photoelastic image also shows high stress
around the base of the tooth due to bending caused by �F. The
bending causes the left-side base of the tooth to be in tension whereas
the right-side base is in compression.

3. Fatigue: Gears rarely fail due to a single application of force �F.
Problems are exacerbated by cyclical loading. Each revolution of
the gear causes loading and unloading of each tooth. To account
for fatigue, we estimate actual gear stresses and compare them to
maximum allowable lifetime stresses. The process is not hard,
but requires iteration (e.g., with MATLABR© or Python or a spreadsheet).

Experiment with fatigue:
Break a paper-clip by cyclical loading.

Example of cyclical loading in an automobile: With average driv-
ing/engine speed of 2000 rpm, the input gear of a transmission has

2000 rotations

min
∗ 60 min

hour
∗ 10 hours

week
∗ 50 weeks

year
∗ 10 years = 6 x108 cycles

This section covers how to design gears to hold up over time. The
basics derive from beam theory and contact stress theory. Both Re-
naissance gear teeth (shown right) and modern gear teeth with an in-
volute profile (shown above-right) can be analyzed as cantilever beams.
Note that the contact force �F, which is along the line of action
between the two gears, has both a tangential and radial component.

1. We start by computing desired speed ratios (e.g., to get a desired output torque or speed).

2. Then we pick some standard gears with appropriate dimensions (experience helps here).

3. Next we compute gear stresses, including some empirical conversion and service factors that we can
apply from tables and charts for our application.

4. We compare the estimated stresses to the allowable stresses and, if necessary, we iterate, with new
gear choices (bigger or smaller, depending on the result).
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The diagram below shows the basic flow of calculations. The lines in bold are the main paths:
(a). Choose some gears; get dimensions; estimate the main bending stresses (Lewis formula).

At this time, also check the contact ratio (for smooth action and load sharing).
(b). Compare (a) with the allowable lifetime stresses in bending. Choose new gears if necessary.
(c). Also check the contact stresses and surface wear. Compare these against the allowable lifetime contact

stress σz. Choose new gear dimensions or a harder material, if necessary.

As the flow chart shows, there are various secondary considerations (e.g. speeds, vibration, manufacturing qual-

ity) that affect calculations and require iteration. There are also many conversion factors which is why a
spreadsheet or computer program is helpful.

1. Choose gear ratios, initial estimate of pitch P etc.

Based on your desired speed and torque ratios, you have an idea of the relative diameters of the two gears
in a pair. At this point, take a look in a gear catalog. Recall Richard Feynman’s advice1.
Most catalogs have a chart or calculator to get an idea of the gear size. For example:
Boston Gear Catalog ”theory” http://www.bostongear.com/products/open/theory.html

Pic: http://pic-designcatalog.com/cgi-bin/lansaweb?srve=PRDLST+F(LW3CATURL)=SPUR_IN

1http://bdml.stanford.edu/Main/FeynmanGears
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2. Accounting for bending stress (Lewis/AGMA)

The tangential and radial stress produce stress in the gear tooth.
The most significant of these is bending stress caused by the tan-
gential force Ft. As shown right, a gear tooth has an interesting
shape, which raises the question: “where is stress highest?”

In 1892, Wilfred Lewis presented an analysis that is still used as the basic principle for gear stress analysis.
He started with the observation that a gear resembles a cantilever beam. He then used the result that
a cantilever beam with a parabolic shape has equal strength when loaded at its tip. This idea dates to
Galileo Galilee work in 1638 (Discourses and Mathematical Demonstrations Relating to Two New Sciences).

To see why, consider cross-section aa of a cantilever beam that is located a distance l from the beam’s tip.
From beam-bending theory (Euler), the maximum bend-
ing stress σ is calculated as follows. This shows σ is
constant for any arbitrary cross-section aa.

σ =
M c

I
=

(Ft ∗ l) t
2

b t3

12

=
6 Ft l

b t2
= 6 Ft

α

b

Ft Tangential force at tip of gear tooth
(computed using known torque and pitch radius).

M Moment = Ft ∗ l due to Ft at section aa.
c Distance from beam’s neutral axis (c = t/2).
b Face width of gear tooth.
t Thickness of gear tooth.

This shows that for a parabolic shape, the maximum bending stress σ does not depend on the distance l
from the tip (Galileo actually proposed this based on ratios of volumes and not as a bending stress calculation).

Lewis used this idea to come up with strength factors for gear
teeth graphically. Using large drawings of tooth profiles, he
found the largest parabola that would fit and determined the
strength accordingly.

This gave a geometrical factor in the stress analysis that was
independent of pitch but dependent on the design pressure
angle and the number of teeth (and the type of gear).
Lewis’ initial calculations assumed FT was applied at the tip since he argued that gears could not be
precisely manufactured to assume a second tooth would help share the load (with modern manufacturing, this

is no longer the case). Also, the stress concentration at the root of the tooth from the fillet was recognized
as a contributor to the stress. The American Gear Manufacturer’s Association (AGMA) publishes tables
for stress analyses, tabulating geometry factors that combine Lewis’s initial ideas with these two additions
(load sharing and fillet/stress concentration).

The cantilever beam stress σ is written as:

σ =
M c

I
=

(Ft ∗ l) c

I
=

Ft P

b J
Lewis formula

P Diametral pitch (see figure to right)

J Lewis geometry factor depends on number of teeth of
both gears in mating pair and on the Contact Ratio.
J is tabulated for various families of gears (next page).

Collectively, P , b, J account for l, c, I as P
b J

= l c
I

.
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A worst case loading condition has Ft at the highest point of the tooth when only one tooth in contact.
However, the geometry factor J depends upon the number of teeth in the gear. For precision gears, the
number of teeth in the mating (other) gear is also important. This is because gears with a greater number
of teeth tend to have more teeth in contact (on average).

Lewis factor J for 20◦ pressure angle gears. Worst case if l is full tooth length (Ft at tip).

AGMA uses a modified version of the Lewis formula, adjust-
ing for things like speed (higher speeds produce larger dynamic loads),
mounting rigidity, and shock and overload conditions.

Modified Lewis formula

σ =
Ft P

b J
Km Ko Kv

Km Mounting factor: If gears are poorly mounted, load will be unevenly shared between teeth or
across the face-width of the tooth. Km depends on face-width and mounting accuracy.

Ko Overload factor: Shock loading can dislodge pinned dislocations and seriously shorten the fatigue
life. Thus if the gears are subject to shock loads, this should be taken into account.
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Kv Velocity factor: Kv is based on the velocity v = rp ω (rp is the radius of the pitch circle) of the gear
teeth along the tangent line where the gear meshes with its mating gear. There are higher loads
when gear teeth impact. The variation in load on impact depends upon the precision of the gear
teeth – with higher precision teeth requiring a factor between 1 and 1.5 (depending upon velocity v).

AGMA formulas: Kv =
(

A +
√

v

A

)B

where v is in
ft

min
or Kv =

(
A +

√
200 v

A

)B

where v is in
m

s

A = 50 + 56 (1 − B) B = 0.25 (12− Qv)2/3 If Qv > 12, let B = 0.

Qv is the AGMA quality factor found in a catalog such as AGMA 10 or AGMA 12.

Example from Juvinill and Marshek for high precision gears: Kv ≈
�

78 +
√

v
78

where v is in ft
min
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3. Compute allowable bending and contact lifetime stresses

For steel alloys commonly used in gears, etc. the failure trend is as follows. The heavy black line is regarded
as a ”safe” value for steel in bending. Su is the ultimate tensile stress, S

′
n (labeled simply as S in the ratio

for the vertical axis in the figure below) is the allowable bending stress ḟor a given number of cycles. Thus, if
a steel has an ultimate stress of Su = 200 ksi, the allowable stress S

′
n for 106 cycles is about 1

2 of that.

S
′
n from Juvinall and Marshek: Moore bending test data and conservative linear fit on log/log plot. (

S
′
n

Su
versus cycles).

Finally, we adjust by various factors for allowable lifetime stress Sn.

Sn = S
′
n CL CG CS kt kms kr

S
′
n is the endurance limit from the data in J&M (previous figure).

CL is a factor that accounts for the type of loading. CL = 1.0 for
bending loads (such as gear teeth experience).

CG is a gradient factor that accounts for the fact that larger features
have more places where cracks can start. CG = 1.0 for gears of
pitch P ≥ 5; CG = 0.85 for P < 5.

CS accounts for the effects of surface finish and treatment.
Smooth is better as seen right (in the figure).

kt accounts for temperature. If T < 160◦F, kt = 1, else kt = 620
460+T

.
kms accounts for mean stress. If stress is fully reversed, kms = 1.0.

For non-idler gears, stress is in one direction so kms = 1.4.
kr accounts for statistical distribution and desired reliability

Fig 8.13 from J&M: Surface Cs factors for various types of steel.

”Machined or cold-drawn” is appropriate for many commercial gears.

The allowable lifetime stress Sn must be compared against the computed stress in the gear teeth, with
any additional safety factor applied as desired.
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4. Check for contact stress and compare against allowable contact stress

As seen in the photoelastic image, gears are subject to wear due to contact
stresses on their surfaces. The same is true for ball bearings, rollers, etc. The
contacting faces are subject to Hertz contact stresses, which can produce failures
such as pitting and erosion. Like bending stresses, contact stresses must be
compared against corresponding allowable lifetime contact stresses.

Contact stress is computed as a variation of the classic Hertz contact stresses for spheres and cylinders.
We approximate the curved gear tooth of each gear locally as a cylindrical surface of radius r.

Hertz contact stress: σc =
√

1

π
(1− ν2

1 )
E1

+ π
(1− ν2

2 )
E2︸ ︷︷ ︸

Cp (material property only)

√
Kv Ft

F cos(φ)

√
1
r1

+
1
r2︸ ︷︷ ︸

(geometry)

Written in AGMA form: σc = Cp

√
Ft Ko Kv Ks Km Cf

dp b I

Rewriting this result in terms of standard gear parameters, we get the Hertz-AGMA contact stress:

σc = Cp

√
Ft Ko Kv Km Cf

dp b I
I =

1
2

sin(φ) cos(φ)
R

R + 1
(where R =

dgear

dpinion
using the pitch radii of each.)

where we have assumed Cf = Ks = 1 (same materials and finish for both gears).

Cp is an elastic constant (see Tables 15.4a, 15.4b on

next page) that depends on the Young’s modulus
of both the pinion and the gear it mates with.

dp is pinion pitch diameter – diameter of smaller of
the two meshing gears.

Ks size factor intended to account for material non-
uniformity due to tooth size, material etc. (use

Ks = 1 unless otherwise directed).

Cf relative hardness factor - Use 1 if both gears are
the same material. Or look it up (e.g. Marks’

Standard Handbook) for other cases.

Note: We do this analysis for the pinion (the

smaller of the two gears) which has the higher
cycles and stresses. If this pinion is OK, the other
gear will be fine if it is made of the same material.
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As the figure below shows (from Juvinall & Marshek), the allowable lifetime contact stresses σz are considerably
higher than the allowable lifetime bending stresses. More specifically, for less than 107 cycles, the contact
stresses can be rather high compared to the ultimate tensile stress in bending. However, for much higher
cycles ( > 109) they are comparable. Notice also that small, polished and hardened elements like ball
bearings can sustain even higher lifetime contact stress than gear teeth.
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