
2/16/16, 10:16 AMCircCirc4Bar

Page 1 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

Example of using utilities for 4-Bar linkage
solution

This short example walks us through the program CircCirc4Bar.py, showing how it uses the functions in
LinkageUtilities.py to solve the trajectory of a coupler point. The solution of more complex mechanisms
(e.g. GearedFiveBar, Klann, Jansen) follows the same basic approach.

Setup
We start by loading numpy and matplotlib for Matlab-like calculations and plotting. We also check that
we are in the right local directory (change this to suit your setup) so we can load in the initial data.

In [4]: import numpy as np
from matplotlib.pyplot import * #Lazy...
import os

#Make sure we are in the right directory...
As necessary:
os.chdir('/Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample')

#Import handy utility functions:
from LinkageUtilities import arcpoints, circcirc, coupler, grashof

Allow plots and impages to appear in iPython notebook
%matplotlib inline
from IPython.core.display import Image # Import function to display pr
emade figures
Image(filename="FourBarNotation.jpg")

2/16/16, 10:16 AMCircCirc4Bar

Page 2 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

Out[4]:

In this image, link1 is along the X axis, but it could be in any orientation.

Create linkage using some initial joint locations

For comparison with the free Linkage animation program (http://blog.rectorsquid.com/linkage-mechanism-
designer-and-simulator/), we specify the mechanism in terms of joint locations for a particular configuration.
(Note that the Linkage program is useful for visualizing the path, but will not give us detailed trajectories of
data points which we'll need for velocity, power and force calculations.)

We load the initial configuration assuming the input (crank) joint is first, and then work around the loop in
series. The last line gives the coupler location, which is assumed on link3. The input data file looks like this:
51. -25.5
51. -14.7
76.6 -14.7
76.6 -36.6
70.0 0.0
#First four rows are XY positions of joints 1-4, last row is coupler point

2/16/16, 10:16 AMCircCirc4Bar

Page 3 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

In [5]: pointsdata = np.loadtxt('InitialJoints4Bar.txt')
initjoints = pointsdata[0:4,:] #Joints 1-4 in order
initcoupler = pointsdata[4,:]

Specify range of angles to rotate input and number steps to take

Note that range can be negative and can be more than one revolution. Angles are in radians, anticlockwise
measured from the X axis. Number of steps is whatever you want depending on resolution.

In [6]: thetastart = 0.
thetaend = 1.95*np.pi
#Specify number steps to take
numsteps = 26

Find lengths of the links

Although it was convenient to input the linkage in terms of joint locations, we also need the link lengths.
Notation: d12 is an [x,y] vector from first joint to second joint. Then L2 is the length of link2, and so forth.

numpy.linalg.norm() computes the norm of a matrix; in this case it's just the length of the vector :-)

In [7]: d12 = initjoints[1,:]-initjoints[0,:] #(x,y) distance between joints
L2 = np.linalg.norm(d12)
d23 = initjoints[2,:]-initjoints[1,:]
L3 = np.linalg.norm(d23)
d34 = initjoints[3,:]-initjoints[2,:]
L4 = np.linalg.norm(d34)
dc3 = initcoupler - initjoints[1,:]
Lc = np.linalg.norm(dc3)
d14 = initjoints[0,:]-initjoints[3,:]
L1 = np.linalg.norm(d14)

Calculate the angle to the coupler point
Calculate the angle gamma_c between the coupler link and the coupler point. This angle could be defined
from either end of the link; here we do it from the joint between links 2 and 3.

The image below shows the notation of joints, links and gamma_c we have just calculated.

2/16/16, 10:16 AMCircCirc4Bar

Page 4 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

In [8]: gamma1 = np.arctan2(d23[1],d23[0])
gamma2 = np.arctan2(dc3[1],dc3[0])
gammac = -gamma1+gamma2

Image(filename="FourBarVectors.jpg") #Display image showing the notat
ion

Out[8]:

Solve for the current assembly
Although we have loaded in joint locations, the program needs to know the angles so it can compute the
right "assembly." (Recall there are two solutions.) We can use CircCirc() to solve the system and see which
assembly matches the one we actually have:

In [9]: # Use numpy.allclose() to check if negligible difference.
joint34 = circcirc(initjoints[1,:],L3,initjoints[3,:],L4)
if(np.allclose(joint34[0,:],initjoints[2,:])):
 assembly = 0
elif(np.allclose(joint34[1,:],initjoints[2,:])):
 assembly = 1
else:
 print('Hmmm, neither solution matches the input point...')

2/16/16, 10:16 AMCircCirc4Bar

Page 5 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

Compute the crank position for each input angle
The result is `joints23' which is an array of [x,y] positions corresponding to locations of the joint between
Link2 and Link3.

In [10]: joints23 = arcpoints(initjoints[0,:],L2,thetastart,thetaend,numsteps)

Check Grashof condition
If we want the crank to undergo a full revolution (crank-rocker), we should check if the Grashof condition is
satisfied. (Depending on the application, we might not care about this.)

In [11]: if (grashof(L1,L2,L3,L4) == False):
 print('\n Linkage is non-grashof!')

Compute remaining joint locations
Finally, we compute the locations of the remaining points for each location of joint23. The solutions are
stored as n*2 arrays of (x,y,) coordinates.

In [12]: joints34 = np.zeros((numsteps,2),float)
couplerpts = np.zeros((numsteps,2),float)
for i in range(0,numsteps):
 intersects = circcirc(joints23[i,:],L3,initjoints[3,:],L4)
 joints34[i,:] = intersects[assembly,:]
 couplerpts[i,:] = coupler(joints34[i,:],joints23[i,:],Lc,np.pi+gam
mac)

Plot the results
First, plot the initial configuration to make sure it looks as we expected:

2/16/16, 10:16 AMCircCirc4Bar

Page 6 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

In [13]: clf()
grid(True)
axes().set_aspect('equal', 'datalim') #square and limited by data

Check: plot initial configuration in blue, with black line to couple
r
plot(initjoints[:,0],initjoints[:,1],'b')
plot((initjoints[1,0],initcoupler[0]),(initjoints[1,1],initcoupler[1])
,'k')

Out[13]: [<matplotlib.lines.Line2D at 0x105888710>]

Now plot joint locations for the range of angles specified. For the crank and coupler locations, the plot
shows a fat dot at the start angle and a square at the end. The crank trajectory is a green circle. The rocker
trajectory is a red arc. The coupler locations for each step are shown as stars, which gives some idea of
where the curve is faster and slower.

Also save the plot to a PDF file: CircCirc4Bar.pdf

2/16/16, 10:16 AMCircCirc4Bar

Page 7 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

In [14]: clf()
grid(True)
axes().set_aspect('equal', 'datalim') #square and limited by data

Check: plot initial configuration in blue, with black line to couple
r
plot(initjoints[:,0],initjoints[:,1],'b')
plot((initjoints[1,0],initcoupler[0]),(initjoints[1,1],initcoupler[1])
,'k')
plot(joints23[:,0],joints23[:,1],color = 'g',linewidth=0.5)
plot(joints23[0,0],joints23[0,1],'o')
plot(joints23[numsteps-1,0],joints23[numsteps-1,1],'s')
plot(joints34[:,0],joints34[:,1],color = 'r',linewidth=0.5)
plot(couplerpts[:,0],couplerpts[:,1],color = 'k',linewidth=0.5)
plot(couplerpts[:,0],couplerpts[:,1],'*')
plot(couplerpts[0,0],couplerpts[0,1],'o')
plot(couplerpts[numsteps-1,0],couplerpts[numsteps-1,1],'s')
#show()
#Save a PDF of the plot
fig1 = gcf()
fig1.savefig('CircCirc4Bar.pdf')

Save trajectory data
Save the various trajectories in a tab-delimited text file for further analysis (e.g. in Excel)

2/16/16, 10:16 AMCircCirc4Bar

Page 8 of 8file:///Volumes/ExTraSpace/Courses/linkages/CircCirc4BarExample/CircCirc4Bar.html

In [15]: Table = np.column_stack((joints23,joints34,couplerpts))
f_handle = file('CircCirc4BarTrajectory.txt', 'w')
headerstring = "joint23(x,y), joint34(x,y), coupler(x,y)"
np.savetxt(f_handle,Table,header=headerstring,delimiter='\t',newline='
\n',fmt='%4.2f')
f_handle.close()

In []:

In []:

