Grashof

shortest + longest < sum of the others

Boston Dynamics RiSE

MEII2: Four Bar Linkage

Top and Front views of the <u>RISE</u> robot leg linkage

RiSE at SWRI San Antonio, TX 5 April 2006

MEII2: Four Bar Linkage

Top, Left side, and Front views of the RISE robot leg linkage

MEI 12: Four Bar Linkage

MEII2: Four Bar Linkage

Top, Left side, and Front views of the RISE robot leg linkage

MEI 12: Four Bar Linkage

Summary:

- Depict linkage as a series of vectors: $\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4}$.
- Add fictitious hypotenuse, and use Law of Cosines to solve for angles.
- Keep track of which quadrant (0, π/2, π, 3π/2, 2π) angles are in.
- Using tan half angle identity, one can convert equations to a quadratic, for which the roots are the two inversions

Video: <u>https://www.youtube.com/watch?v=4fMRIrNLB58</u>

Linkage warmup - done by final crawler teams

Pentapedal Locomotion

Pentapedal Locomotion

a. Roo released, heads across toward tasty grass.

b. 2nd roo released ~5 seconds later

c. 3rd roo, ~5 seconds later (etc.)

d. Bench

e. Possible congestion zone in area with paving blocks

f. Finish (pickup by hand)

Final project background

http://www.nytimes.com/2014/07/28/science/for-kangaroos-tailbecomes-a-fifth-leg.html

S. O'Connor *et al.*, "The kangaroo's tail propels and powers pentapedal locomotion," <u>http://rsbl.royalsocietypublishing.org/content/10/7/20140381</u> especially look at the "supplemental material"

Animal Gaits

Insects use an alternating tripod under most circumstances.

Mammals use various quadrupedal gaits: diagonal stride, tripedal crawl, bound, gallop, etc. — tradeoff speed versus stability.

For programmable robots, <u>gait tuning</u> is an important topic; you will have a fixed gait, determined by your mechanism.

"Neuroethology of Insect walking"

Gait tuning for RiSE, Stickybot

http://bdml.stanford.edu/twiki/bin/view/Rise/GaitPlanner.html

adjust relative phasing and overlap of left, right sides

Force and power from each leg over the one stride (supplemental data from the article)

Approximate pentapedal gait chart

Gait timing versus the coupler curve

Good coupler curve shape, but wrong velocities — need more time on ground (slower) and less time in air (faster)

How to get started?

- Look at details of kangaroo pentapedal locomotion.
- Look at other small legged robots and toys for mechanism ideas.
- Look at various linkages and think about how they might be adapted.
- Use the Atlas and Simulator programs to get some ideas of plausible solutions (see LinkageLinks on Canvas)
- Experiment with Legos and then with Matlab, Python, etc.