Grashof

shortest + longest < sum of the others

MEII2: Four Bar Linkaqe

Top and
Front views of the RISE robot leg linkage

RiSE at SWRI
San Antonio, TX
5 April 2006

MEII2: Four Bar Linkage

Top, Left side, and Front views of the RISE robot leg linkage

MEI I2: Four Bar Linkage

MEII2: Four Bar Linkage

Top, Left side, and Front views of the RISE robot leg linkage

MEI I2: Four Bar Linkage

Pin-slider mechanisms

Summary:

- Depict linkage as a series of vectors: $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \overrightarrow{r_{3}}, \overrightarrow{r_{4}}$.
- Add fictitious hypotenuse, and use Law of Cosines to solve for angles.
- Keep track of which quadrant $(0, \pi / 2, \pi, 3 \pi / 2,2 \pi)$ angles are in.
- Using tan half angle identity, one can convert equations to a quadratic, for which the roots are the two inversions

Video: https://www.youtube.com/watch?v=4fMRIrNLB58

Linkage warmup - done by final crawler teams

Pentapedal Locomotion

Pentapedal Locomotion

a. Roo released, heads across toward tasty grass.
b. 2nd roo released ~ 5 seconds later
c. 3rd roo, ~ 5 seconds later (etc.)
d. Bench
e. Possible congestion zone in area with paving blocks
f. Finish (pickup by hand)

Final project background

http://www.nytimes.com/2014/07/28/science/for-kangaroos-tail-becomes-a-fifth-leg.html
S. O'Connor et al., "The kangaroo's tail propels and powers pentapedal locomotion," http://rsbl.royalsocietypublishing.org/content/10/7/20140381 especially look at the "supplemental material"

Animal Gaits

Insects use an alternating tripod under most circumstances.

Mammals use various quadrupedal gaits: diagonal stride, tripedal crawl, bound, gallop, etc. - tradeoff speed versus stability.

For programmable robots, gait tuning is an important topic; you will have a fixed gait, determined by your mechanism.
A.
B.

From Ritzman \& Zill,
"Neuroethology of Insect walking"

Gait tuning for RiSE, Stickybot

http://bdml.stanford.edu/twiki/bin/view/Rise/GaitPlanner.html

adjust relative phasing and overlap of left, right sides

Force and power from each leg over the one stride (supplemental data from the article)

Approximate pentapedal gait chart

seconds

$$
\begin{array}{llllllllllll}
0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 & 1.1
\end{array}
$$

Gait timing versus the coupler curve

Hoekens linkage using TanHalfAngle.py
airborne phase

ground

Good coupler curve shape, but wrong velocities - need more time on ground (slower) and less time in air (faster)

How to get started?

- Look at details of kangaroo pentapedal locomotion.
- Look at other small legged robots and toys for mechanism ideas.
- Look at various linkages and think about how they might be adapted.
- Use the Atlas and Simulator programs to get some ideas of plausible solutions (see LinkageLinks on Canvas)
- Experiment with Legos and then with Matlab, Python, etc.

