
ME112 Mechanical Systems Design, Winter 2016

1 Affine Transformations

Thus far we have plotted coupler curves for a single point. But the kangaroo has large hind feet.
How can we plot the swept path of a foot? Also, as we discovered, the tangent half-angle solution
assumes that a local x axis is aligned with the ground link (link1). How can we transform the
computed coupler curve to a rotated (X,Y) world frame?

Affine (shape preserving) transformations are useful whenever you have a rigid body or a cloud
of points (e.g., a coupler curve) and you want to compute:

• new coordinates after you translate and rotate the body
• coordinates in a new coordinate frame translated and rotated with respect to the original frame.

A useful way to handle the transformations is to first convert points (e.g., vertices of a polygon,
or points of a coupler curve) to homogeneous coordinates. This method is used widely in robotics
and computer graphics. We augment each point, (px, py), with a ’1’ to create a column vector
p = [px, py, 1]t of homogeneous coordinates (where t signifies transpose).

Then we define 3x3 transformation matrices for translations by r = [rx, ry]t:
p′x

p′y

1

 =

1 0 rx

0 1 ry

0 0 1

px

py

1

 or: p′ = [T]p (1)

and rotations by θ (anti-clockwise, in radians):
p′x

p′y

1

 =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

px

py

1

 or: p′ = [R]p (2)

These matrices correspond to the operations shown in Fig. 1.

me112 extra notes 3/2/10 1

Affine Transformations
Suppose you have a rigid body (e.g., a link) or a bunch of points (e.g., a coupler curve) defined with

respect to some coordinate frame. You want to compute:

• new coordinates if you translate and rotate the points by a some given amount,

• coordinates with respect to a new coordinate frame that is translated and rotated with respect to the

original frame.

Rigid body translation and rotation are examples of affine (shape preserving) transformations. There are

many ways to compute the results, but a particularly convenient one on computers is to use homogeneous

coordinates and transformation matrices. This is method used widely in robotics and computer graphics.

In the plane we, we can augment each point, p = (px, py), with a “1” to create a column vector

p = [px py 1]
t
 of homogeneous coordinates. Then we define 3x3 affine transformation matrices for (x,y)

translations by r = [rx ry]
t
 and rotations by θ:

These operations correspond to the following pictures:

Note that multiplying by T
-1

 is the same as translating by –r, and multiplying by R
-1

 is the same as

rotating by -θ. Thus, if we keep the body fixed and instead translate or rotate the coordinate frame, we

have p’ = T
-1

p and p’ = R
-1

p using T and R as defined above.

Finally, because translation and rotation are both 3x3 matrices, we can concatenate the results to show the

effects of multiple translations and rotations. For example, suppose T1 is a translation that would move

the object to the origin; what does the following achieve?

p’ = T1
-1

RT1p

Figure 1: Translation by (rx, ry) and rotation by θ

Note that multiplying by T−1 is the same as translating by (−rx,−ry), and multiplying by R−1

is the same as rotating by −θ. Thus, if we keep the body fixed and instead translate or rotate
the coordinate frame, we have p′ = T−1p and p′ = R−1p using T and R as defined above. The
corresponding operations are shown in Fig. 2.

Finally, because translation and rotation are both 3x3 matrices, we can concatenate the results,
right to left, to show the effects of sequential translations and rotations. For example, suppose T1

1

ME112 Mechanical Systems Design, Winter 2016

me112 extra notes 3/2/10 1

Affine Transformations
Suppose you have a rigid body (e.g., a link) or a bunch of points (e.g., a coupler curve) defined with

respect to some coordinate frame. You want to compute:

• new coordinates if you translate and rotate the points by a some given amount,

• coordinates with respect to a new coordinate frame that is translated and rotated with respect to the

original frame.

Rigid body translation and rotation are examples of affine (shape preserving) transformations. There are

many ways to compute the results, but a particularly convenient one on computers is to use homogeneous

coordinates and transformation matrices. This is method used widely in robotics and computer graphics.

In the plane we, we can augment each point, p = (px, py), with a “1” to create a column vector

p = [px py 1]
t
 of homogeneous coordinates. Then we define 3x3 affine transformation matrices for (x,y)

translations by r = [rx ry]
t
 and rotations by θ:

These operations correspond to the following pictures:

Note that multiplying by T
-1

 is the same as translating by –r, and multiplying by R
-1

 is the same as

rotating by -θ. Thus, if we keep the body fixed and instead translate or rotate the coordinate frame, we

have p’ = T
-1

p and p’ = R
-1

p using T and R as defined above.

Finally, because translation and rotation are both 3x3 matrices, we can concatenate the results to show the

effects of multiple translations and rotations. For example, suppose T1 is a translation that would move

the object to the origin; what does the following achieve?

p’ = T1
-1

RT1p

Figure 2: Translating the coordinate frame by (−rx,−ry) has the same effect as translating the
polygon by (rx, ry). Rotating the coordinate frame by −θ has the same effect as rotating the
polygon by θ about the origin.

is a translation that would move the object to the origin. What does the following achieve?

p′ = [T1]−1[R][T1]p (3)

1.1 Transforming polygons or point clouds

Now suppose we have a group of points – for example a coupler curve or a polygon representing
a foot. To translate and rotate the polygon, we augment each point with a ’1’ and put them into
the columns of a matrix. Thus, to perform the same operation as above, where we translate to the
origin, rotate, and then translate back out again, we have:

p1′x p2′x p3′x p4′x etc.

p1′y p2′y p3′y p4′y etc.

1 1 1 1 etc.

 = [T1]−1[R][T1]

p1x p2x p3x p4x etc.

p1y p2y p3y p4y etc.

1 1 1 1 etc.

 (4)

1.2 Using coupler curves to create polygon trajectories

Now we are ready to read the (x, y, θ) values for each location on a coupler curve and use those
values to sweep a polygon through a path in the plane, adjusting its orientation at each point. Note
that until now, we have not cared about the orientation of a link which is attached to a coupler
point. A point doesn’t have orientation, but a foot does!

Let θ give the orientation of a link to which the coupler is attached. For example, with a 4-bar
rocker-crank linkage, it is usually θ = θ3 + γc (see previous class notes for terminology). The code
fragment below reads a series of (x, y, θ) points, line by line, from a file and creates translations
(xi, yi) and rotations, θi, for each point. It then applies these transformations to a polygon.

#Get coupler curve data, including orientations: x_i, y_i, theta_i in each row

couplerdata = loadtxt(’HalfAngleOutput.txt’)

#Get a polygon (perhaps a foot?) in terms of its vertices: x_j, y_j in each row

polygon = loadtxt(’PointsData.txt’)

2

ME112 Mechanical Systems Design, Winter 2016

#Add ones so each polygon point is now (x,y,1) in homogeneous coords

#Put them all in a matrix, transposed to columns as in equation (4).

rcol = np.ones(len(polygon))

homogeneous = column_stack((polygon,rcol)) #use horzcat() in Matlab

oldpoints = np.matrix(transpose(homogeneous))

#If you want a constant "offset" orientation applied to the polygon for

every location around the coupler curve, you can do it here

#Optional local (constant) reorientation

RotPoly = rotq(1.1*pi/2.)

#Optional global rotation about origin

RotGlobal = rotq(pi)

#Finally, for each coupler point (including angle), transform

#the foot to the desired position and orientation to create a

#sequence of foot positions and orientations.

for i in range(0,len(couplerdata)):

x = couplerdata[i,0] #x of i’th coupler point

y = couplerdata[i,1] #y of i’th coupler point

theta = couplerdata[i,2] #theta of i’th coupler point

Rot = rotq(theta)

Tran = tranxy(x,y)

points = RotGlobal*Tran*RotPoly*Rot*oldpoints #Just multiply them all together!

plotlines(points,’b’,’r’) #Plot the transposed shape

Figure 3: Example of transforming a polygon around a coupler curve

3

ME112 Mechanical Systems Design, Winter 2016

2 Revisiting Power and Virtual Work – for mechanisms

We saw earlier that following power from a motor, through a transmission, etc. could be useful for
analysis. For example, for the crawlers: τLωL−PLoss = fxvx where τL is the motor output torque,
Ploss represents various losses, and fx and vx are the force and velocity for going up a track.

The same principles apply for mechanisms, but we take the dot product of ~F and velocity ~V at
points around the coupler curve. Working from a motor, through a transmission and linkage:

τLωL(ηtrans · ηlink) = ~F (t) · ~V (t) (5)

where ηtrans and ηlink are the efficiencies of the transmission and linkage. Although the motor may
run at constant velocity, its torque τL varies for each angle, θ2, of the mechanism due to variations
in ~F and ~V . If we can estimate ~F and ~V , and if we have estimates of our transmission and linkage
efficiencies (probably similar to those in the crawlers), we can predict the required motor torque.

2.1 Obtaining the Velocity

We can use graphical, algebraic or numerical methods to get the velocity.

Figure 4: (left) A paddling boat linkage showing instantaneous C.O.R. of coupler point, leading to
estimate of ~Vi at the i’th location of the crank input, θ2i. (right) detail of a paddle rotating about
a C.O.R. and showing the radius of gyration rc.

4

ME112 Mechanical Systems Design, Winter 2016

2.1.1 Graphical velocity estimates

The graphical method is good for a quick estimate of velocity at a few points. Recall that any
body translating and rotating in a plane is virtually rotating about some instantaneous center of
rotation, C.O.R. If we pick two points for which we know the velocity, we can find the C.O.R. and,
using it, the velocity of any other points. For example, Fig. 4 shows a “duck-bot” from 2014. We
can use the C.O.R. to get the velocity of any part of the leg in the water:

• Draw lines L2c and L4c perpendicular to the known motions of the joints between links 2-3 and
3-4.
• The intersection of the two lines is the instantaneous C.O.R.The magnitude of the velocity at

the tip of r2 is also known: vp2 = ω2r2, so ωc = vp2/|L2c| where |L2c| is the distance from the
joint at the tip of r2 to the C.O.R.

• Draw a line Lcp from the C.O.R. to the point of interest.
• The point’s velocity will be perpendicular to Lcp and its magnitude will be V = ωc|Lcp|.

2.1.2 Algebraic velocity calculation

We can return to the linkage analysis notes from last week and calculate the velocities ω3 and
vp2 directly, knowing ω2 and the configuration of the linkage for each θ2. Differentiating the (x,y)
vector loop equations gives two (linear) equations in ω3 and ω4:

−r2 sin θ2ω2 − r3 sin θ3ω3 + r4sinθ4ω4 − r1 = 0 (6)

r2cosθ2ω2 + r3 cos θ3ω3 − r4 cos θ4ω4 = 0 (7)

Because we have solved the mechanism previously, the only unknowns are ω3 and ω4 for each given
configuration (θ2, θ3, θ4).

2.1.3 Numerical velocity calculation

If we have plotted a coupler curve with a sufficient number of points, (xi, yi), we can also estimate
the velocity vector at each point as

~Vi = (1/δt)[(xi+1 − xi), (yi+1 − yi)]. (8)

2.1.4 Adding the overall machine velocity

Note that in each case above, we have obtained the velocity of a point with respect to the boat,

i.e., ~bVi. Meanwhile, the boat is moving with some velocity, ~wVb with respect to the world. So the

absolute velocity of our point with respect to the world at each instant is: ~wVi = ~wVb + ~bVi. The
same vector addition applies to walking machines.

2.2 Obtaining the Force

The other part of the power equation is the force, ~F (t). Estimating the ground reaction force
requires some judgement and, ideally, a multi-axis force plate to measure normal and tangential
forces, as used in the Royal Society article on pentapedal Kangaroos. With luck, we may have such
a device for the first time in ME112 thanks to some adapted tactile sensor technology from Alice
Wu and Isabel Gueble. Without a force plate, one can still make some useful estimates.

5

ME112 Mechanical Systems Design, Winter 2016

2.2.1 Static force balance

Because the machine is not steadily accelerating upward or downward, we know the average vertical
force has to be mg. Knowing the weight of your machine, the approximate center of mass location,
and how many feet are on the ground, you can get an idea of the static load on each foot at each
time. We also know that the horizontal force at each foot is limited by friction: fti ≤ µfni where
fti and fni are the tangential and normal forces at the i ’th contact point.

2.2.2 Dynamic force balance

As feet impact the ground and impart some upward and forward thrust to the body, the dynamic
forces will be higher than the average forces.

You can get a rough idea of the dynamics by looking at some slow-motion video of your machine.
Often we find that the center of mass follows a roughly sinusoidal motion path. For example,
suppose the center of mass rises and lowers by 0.01m per stride with a stride frequency of 2.0Hz.
Then the vertical COM motion is approximated by y = Y sin(ωt) where Y = 0.01m and ω =
2 · 2π radians/second. The vertical acceleration is ÿ = −ω2Y sin(ωt) = 1.6m/s2. This is small
compared to gravity.

However, it’s likely that the motion is less smooth than a perfect sinusoid. For example, suppose
there are some “higher order” terms and the vertical motion is best approximated by a short Fourier
series:

y = Y1 sin(ωt) + Y2 sin(2ωt) (9)

The acceleration is now
ÿ = −ω2Y1 sin(ωt)− 4ω2Y2 sin(2ωt). (10)

If Y1 = Y2 = 0.01m, and we have a stride period of 2Hz, the peak acceleration is now

ÿmax = 5 · (4π)2 · 0.01 (11)

which comes to about 7.9m/s2. In fact, a conservative rule of thumb for dynamic loading is to
assume that the total acceleration could be as much as 2g, effectively doubling the static weight.
Again, the horizontal force will be limited by fti ≤ µfni. In practice, it will usually be considerably
smaller unless the feet are actually slipping.

3 Virtual Work

Recall that the companion to power (~F · ~V) is virtual work : δW = ~F · ~δX. Conveniently, if we have
a trajectory of points (pxi, pyi), we can easily compute (δxi, δyi) so that

δwi =
[
fxi fyi

] [δxi
δyi

]
. (12)

Finally, suppose we have two feet driven by a single motor that rotates with a torque, τ2, and
an angle, θ2. Then for each time step, δt, we have:

δw = τ2 · δθ2 =
[
f1x f1y

] [δx1
δy1

]
+
[
f2x f2y

] [δx2
δy2

]
(13)

where the (1,2) subscripts now correspond to the first and second foot, respectively.

6

	Affine Transformations
	Transforming polygons or point clouds
	Using coupler curves to create polygon trajectories

	Revisiting Power and Virtual Work – for mechanisms
	Obtaining the Velocity
	Graphical velocity estimates
	Algebraic velocity calculation
	Numerical velocity calculation
	Adding the overall machine velocity

	Obtaining the Force
	Static force balance
	Dynamic force balance

	Virtual Work

