
5
The GNU Operating System and the Free

Software Movement

Richard Stallman

5.1 The First Software-Sharing
Community

When I started working at the MIT Artificial Intelligence Lab in
1971, I became part of a software-sharing community that had
existed for many years. Sharing of software was not limited to
our particular community; it is as old as computers, just as shar-
ing of recipes is as old as cooking. But we did it more than most.

The AI Lab used a time-sharing operating system called ITS
(the Incompatible Timesharing System) that the Lab’s staff hack-
ers had designed and written in assembler language for the Digi-
tal PDP-10, one of the large computers of the era. As a member
of this community, an AI Lab staff system hacker, my job was to
improve this system.

We did not call our software “free software,” because that term
did not yet exist, but that is what it was. Whenever people from
another university or a company wanted to port and use a pro-
gram, we gladly let them. If you saw someone using an unfa-
miliar and interesting program, you could always ask to see the
source code, so that you could read it, change it, or cannibalize
parts of it to make a new program.

5.2 The Collapse of the Community
The situation changed drastically in the early 1980s when Digi-
tal discontinued the PDP-10 series. Its architecture, elegant and
powerful in the 60s, could not extend naturally to the larger ad-
dress spaces that were becoming feasible in the 80s. This meant
that nearly all of the programs composing ITS were obsolete.

The AI Lab hacker community had already collapsed, not long
before. In 1981, the spin-off company Symbolics had hired away
nearly all of the hackers from the AI Lab, and the depopulated
community was unable to maintain itself. (The book Hackers,
by Steve Levy, describes these events, and gives a clear picture
of this community in its prime.) When the AI Lab bought a new
PDP-10 in 1982, its administrators decided to use Digital’s non-
free timesharing system instead of ITS.

The modern computers of the era, such as the VAX or the
68020, had their own operating systems, but none of them were

free software: you had to sign a nondisclosure agreement even to
get an executable copy.

This meant that the first step in using a computer was to
promise not to help your neighbor. A cooperating community
was forbidden. The rule made by the owners of proprietary soft-
ware was, “If you share with your neighbor, you are a pirate. If
you want any changes, beg us to make them.”

The idea that the proprietary software social system — the sys-
tem that says you are not allowed to share or change software —
is antisocial, that it is unethical, that it is simply wrong, may
come as a surprise to some readers. But what else could we say
about a system based on dividing the public and keeping users
helpless? Readers who find the idea surprising may have taken
the proprietary social system as given, or judged it on the terms
suggested by proprietary software businesses. Software publish-
ers have worked long and hard to convince people that there is
only one way to look at the issue.

When software publishers talk about “enforcing” their “rights”
or “stopping piracy,” what they actually say is secondary. The
real message of these statements is in the unstated assumptions
they take for granted; the public is supposed to accept them un-
critically. So let’s examine them.

One assumption is that software companies have an unques-
tionable natural right to own software and thus have power over
all its users. (If this were a natural right, then no matter how much
harm it does to the public, we could not object.) Interestingly,
the U.S. Constitution and legal tradition reject this view; copy-
right is not a natural right, but an artificial government-imposed
monopoly that limits the users’ natural right to copy.

Another unstated assumption is that the only important thing
about software is what jobs it allows you to do — that we com-
puter users should not care what kind of society we are allowed
to have.

A third assumption is that we would have no usable software
(or would never have a program to do this or that particular job)
if we did not offer a company power over the users of the pro-
gram. This assumption may have seemed plausible, before the

31

32 OPEN SOURCES

free software movement demonstrated that we can make plenty
of useful software without putting chains on it.

If we decline to accept these assumptions, and judge these is-
sues based on ordinary common-sense morality while placing the
users first, we arrive at very different conclusions. Computer
users should be free to modify programs to fit their needs, and
free to share software, because helping other people is the basis
of society.

There is no room here for an extensive statement of the rea-
soning behind this conclusion, so I refer you to the web page,
http://www.gnu.org/philosophy/why-free.html.

5.3 A Stark Moral Choice
With my community gone, not continuing as before was impos-
sible. Instead, I faced a moral choice.

The easy choice was to join the proprietary software world,
signing nondisclosure agreements and promising not to help my
fellow hacker. Most likely I would also be developing software
that was released under nondisclosure agreements, thus adding to
the pressure on other people to betray their fellows too.

I could have made money this way, and perhaps amused myself
writing code. But I knew that at the end of my career, I would
look back on years of building walls to divide people, and feel I
had spent my life making the world a worse place.

I had already experienced being on the receiving end of a
nondisclosure agreement, when someone refused to give me and
the MIT AI Lab the source code for the control program for our
printer. (The lack of certain features in this program made use of
the printer extremely frustrating.) So I could not tell myself that
nondisclosure agreements were innocent. I was very angry when
he refused to share with us; I could not turn around and do the
same thing to everyone else.

Another choice, straightforward but unpleasant, was to leave
the computer field. That way my skills would not be misused, but
they would still be wasted. I would not be culpable for dividing
and restricting computer users, but it would happen nonetheless.

So I looked for a way that a programmer could do something
for the good. I asked myself, was there a program or programs
that I could write, so as to make a community possible once
again?

The answer was clear: what was needed first was an operating
system. That is the crucial software for starting to use a computer.
With an operating system, you can do many things; without one,
you cannot run the computer at all. With a free operating sys-
tem, we could again have a community of cooperating hackers
— and invite anyone to join. And anyone would be able to use a
computer without starting out by conspiring to deprive his or her
friends.

As an operating system developer, I had the right skills for
this job. So even though I could not take success for granted,
I realized that I was elected to do the job. I chose to make the
system compatible with Unix so that it would be portable, and
so that Unix users could easily switch to it. The name GNU was
chosen following a hacker tradition, as a recursive acronym for
“GNU’s Not Unix.”

An operating system does not mean just a kernel, barely
enough to run other programs. In the 1970s, every operating
system worthy of the name included command processors, as-
semblers, compilers, interpreters, debuggers, text editors, mail-
ers, and much more. ITS had them, Multics had them, VMS had

them, and Unix had them. The GNU operating system would
include them too. Later I heard these words, attributed to Hillel:

If I am not for myself, who will be for me?
If I am only for myself, what am I?
If not now, when?

The decision to start the GNU project was based on the same
spirit.

5.4 Free as in Freedom
The term “free software” is sometimes misunderstood — it has
nothing to do with price. It is about freedom. Here, therefore, is
the definition of free software. A program is free software, for
you, a particular user, if:

� You have the freedom to run the program, for any purpose.
� You have the freedom to modify the program to suit your

needs. (To make this freedom effective in practice, you must
have access to the source code, since making changes in
a program without having the source code is exceedingly
difficult.)

� You have the freedom to redistribute copies, either gratis or
for a fee.

� You have the freedom to distribute modified versions of the
program, so that the community can benefit from your im-
provements.

Since “free” refers to freedom, not to price, there is no con-
tradiction between selling copies and free software. In fact, the
freedom to sell copies is crucial: collections of free software sold
on CD-ROMs are important for the community, and selling them
is an important way to raise funds for free software development.
Therefore, a program that people are not free to include on these
collections is not free software.

Because of the ambiguity of “free,” people have long looked
for alternatives, but no one has found a suitable alternative. The
English language has more words and nuances than any other,
but it lacks a simple, unambiguous word that means “free,” as
in freedom — “unfettered” being the word that comes closest in
meaning. Such alternatives as “liberated,” “freedom,” and “open”
have either the wrong meaning or some other disadvantage.

5.5 GNU Software and the GNU System
Developing a whole system is a very large project. To bring it into
reach, I decided to adapt and use existing pieces of free software
wherever that was possible. For example, I decided at the very
beginning to use TeX as the principal text formatter; a few years
later, I decided to use the X Window System rather than writing
another window system for GNU.

Because of this decision, the GNU system is not the same as
the collection of all GNU software. The GNU system includes
programs that are not GNU software, programs that were devel-
oped by other people and projects for their own purposes, but
which we can use because they are free software.

5.6 Commencing the Project
In January 1984 I quit my job at MIT and began writing GNU
software. Leaving MIT was necessary so that MIT would not be
able to interfere with distributing GNU as free software. If I had
remained on the staff, MIT could have claimed to own the work,
and could have imposed their own distribution terms, or even

Chapter 5 The GNU Operating System and the Free Software Movement 33

turned the work into a proprietary software package. I had no
intention of doing a large amount of work only to see it become
useless for its intended purpose: creating a new software-sharing
community.

However, Professor Winston, then the head of the MIT AI Lab,
kindly invited me to keep using the Lab’s facilities.

5.7 The First Steps
Shortly before beginning the GNU project, I heard about the Free
University Compiler Kit, also known as VUCK. (The Dutch word
for “free” is written with a V.) This was a compiler designed to
handle multiple languages, including C and Pascal, and to sup-
port multiple target machines. I wrote to its author asking if GNU
could use it.

He responded derisively, stating that the university was free but
the compiler was not. I therefore decided that my first program
for the GNU project would be a multi-language, multi-platform
compiler.

Hoping to avoid the need to write the whole compiler myself,
I obtained the source code for the Pastel compiler, which was a
multi-platform compiler developed at Lawrence Livermore Lab.
It supported, and was written in, an extended version of Pascal,
designed to be a system-programming language. I added a C
frontend, and began porting it to the Motorola 68000 computer.
But I had to give that up when I discovered that the compiler
needed many megabytes of stack space, and the available 68000
Unix system would only allow 64K.

I then determined that the Pastel compiler was designed to
parse the entire input file into a syntax tree, convert the whole
syntax tree into a chain of “instructions,” and then generate the
whole output file, without ever freeing any storage. At this point,
I concluded I would have to write a new compiler from scratch.
That new compiler is now known as GCC; none of the Pastel
compiler is used in it, but I managed to adapt and use the C fron-
tend that I had written. But that was some years later; first, I
worked on GNU Emacs.

5.8 GNU Emacs
I began work on GNU Emacs in September 1984, and in early
1985 it was beginning to be usable. This enabled me to begin
using Unix systems to do editing; having no interest in learning
to use vi or ed, I had done my editing on other kinds of machines
until then.

At this point, people began wanting to use GNU Emacs, which
raised the question of how to distribute it. Of course, I put it on
the anonymous ftp server on the MIT computer that I used. (This
computer, prep.ai.mit.edu, thus became the principal GNU ftp
distribution site; when it was decommissioned a few years later,
we transferred the name to our new ftp server.) But at that time,
many of the interested people were not on the Internet and could
not get a copy by ftp. So the question was, what would I say to
them?

I could have said, “Find a friend who is on the Net and who
will make a copy for you.” Or I could have done what I did
with the original PDP-10 Emacs: tell them, “Mail me a tape and
a SASE, and I will mail it back with Emacs on it.” But I had
no job, and I was looking for ways to make money from free
software. So I announced that I would mail a tape to whoever
wanted one, for a fee of $150. In this way, I started a free software
distribution business, the precursor of the companies that today
distribute entire Linux-based GNU systems.

5.9 Is a Program Free for Every User?
If a program is free software when it leaves the hands of its au-
thor, this does not necessarily mean it will be free software for
everyone who has a copy of it. For example, public domain soft-
ware (software that is not copyrighted) is free software; but any-
one can make a proprietary modified version of it. Likewise,
many free programs are copyrighted but distributed under simple
permissive licenses that allow proprietary modified versions.

The paradigmatic example of this problem is the X Window
System. Developed at MIT, and released as free software with
a permissive license, it was soon adopted by various computer
companies. They added X to their proprietary Unix systems, in
binary form only, and covered by the same nondisclosure agree-
ment. These copies of X were no more free software than Unix
was.

The developers of the X Window System did not consider this
a problem — they expected and intended this to happen. Their
goal was not freedom, just “success,” defined as “having many
users.” They did not care whether these users had freedom, only
that they should be numerous.

This lead to a paradoxical situation where two different ways
of counting the amount of freedom gave different answers to the
question, “Is this program free?” If you judged based on the
freedom provided by the distribution terms of the MIT release,
you would say that X was free software. But if you measured the
freedom of the average user of X, you would have to say it was
proprietary software. Most X users were running the proprietary
versions that came with Unix systems, not the free version.

5.10 Copyleft and the GNU GPL
The goal of GNU was to give users freedom, not just to be pop-
ular. So we needed to use distribution terms that would prevent
GNU software from being turned into proprietary software. The
method we use is called “copyleft.”

Copyleft uses copyright law, but flips it over to serve the oppo-
site of its usual purpose: instead of a means of privatizing soft-
ware, it becomes a means of keeping software free.

The central idea of copyleft is that we give everyone permis-
sion to run the program, copy the program, modify the program,
and distribute modified versions — but not permission to add re-
strictions of their own. Thus, the crucial freedoms that define
“free software” are guaranteed to everyone who has a copy; they
become inalienable rights.

For an effective copyleft, modified versions must also be free.
This ensures that work based on ours becomes available to our
community if it is published. When programmers who have jobs
as programmers volunteer to improve GNU software, it is copy-
left that prevents their employers from saying, “You can’t share
those changes, because we are going to use them to make our
proprietary version of the program.”

The requirement that changes must be free is essential if we
want to ensure freedom for every user of the program. The com-
panies that privatized the X Window System usually made some
changes to port it to their systems and hardware. These changes
were small compared with the great extent of X, but they were
not trivial. If making changes was an excuse to deny the users
freedom, it would be easy for anyone to take advantage of the
excuse.

A related issue concerns combining a free program with non-
free code. Such a combination would inevitably be non-free;
whichever freedoms are lacking for the non-free part would be

34 OPEN SOURCES

lacking for the whole as well. To permit such combinations
would open a hole big enough to sink a ship. Therefore, a crucial
requirement for copyleft is to plug this hole: anything added to or
combined with a copylefted program must be such that the larger
combined version is also free and copylefted.

The specific implementation of copyleft that we use for most
GNU software is the GNU General Public License, or GNU GPL
for short. We have other kinds of copyleft that are used in specific
circumstances. GNU manuals are copylefted also, but use a much
simpler kind of copyleft, because the complexity of the GNU
GPL is not necessary for manuals.

5.11 The Free Software Foundation
As interest in using Emacs was growing, other people became
involved in the GNU project, and we decided that it was time to
seek funding once again. So in 1985 we created the Free Soft-
ware Foundation, a tax-exempt charity for free software develop-
ment. The FSF also took over the Emacs tape distribution busi-
ness; later it extended this by adding other free software (both
GNU and non-GNU) to the tape, and by selling free manuals as
well.

The FSF accepts donations, but most of its income has always
come from sales — of copies of free software, and of other re-
lated services. Today it sells CD-ROMs of source code, CD-
ROMs with binaries, nicely printed manuals (all with freedom
to redistribute and modify), and Deluxe Distributions (where we
build the whole collection of software for your choice of plat-
form).

Free Software Foundation employees have written and main-
tained a number of GNU software packages. Two notable ones
are the C library and the shell. The GNU C library is what every
program running on a GNU/Linux system uses to communicate
with Linux. It was developed by a member of the Free Soft-
ware Foundation staff, Roland McGrath. The shell used on most
GNU/Linux systems is BASH, the Bourne Again Shell, which
was developed by FSF employee Brian Fox.

We funded development of these programs because the GNU
project was not just about tools or a development environment.
Our goal was a complete operating system, and these programs
were needed for that goal.

5.12 Free Software Support
The free software philosophy rejects a specific widespread busi-
ness practice, but it is not against business. When businesses
respect the users’ freedom, we wish them success.

Selling copies of Emacs demonstrates one kind of free soft-
ware business. When the FSF took over that business, I needed
another way to make a living. I found it in selling services relat-
ing to the free software I had developed. This included teaching,
for subjects such as how to program GNU Emacs and how to cus-
tomize GCC, and software development, mostly porting GCC to
new platforms.

Today each of these kinds of free software business is practiced
by a number of corporations. Some distribute free software col-
lections on CD-ROM; others sell support at levels ranging from
answering user questions to fixing bugs to adding major new fea-
tures. We are even beginning to see free software companies
based on launching new free software products.

Watch out, though — a number of companies that associate
themselves with the term “Open Source” actually base their
business on non-free software that works with free software.

These are not free software companies, they are proprietary soft-
ware companies whose products tempt users away from free-
dom. They call these “value added,” which reflects the values
they would like us to adopt: convenience above freedom. If we
value freedom more, we should call them “freedom subtracted”
products.

5.13 Technical Goals
The principal goal of GNU was to be free software. Even if GNU
had no technical advantage over Unix, it would have a social ad-
vantage, allowing users to cooperate, and an ethical advantage,
respecting the user’s freedom.

But it was natural to apply the known standards of good prac-
tice to the work — for example, dynamically allocating data
structures to avoid arbitrary fixed size limits, and handling all
the possible 8-bit codes wherever that made sense.

In addition, we rejected the Unix focus on small memory size,
by deciding not to support 16-bit machines (it was clear that 32-
bit machines would be the norm by the time the GNU system was
finished), and to make no effort to reduce memory usage unless
it exceeded a megabyte. In programs for which handling very
large files was not crucial, we encouraged programmers to read
an entire input file into core, then scan its contents without having
to worry about I/O.

These decisions enabled many GNU programs to surpass their
Unix counterparts in reliability and speed.

5.14 Donated Computers
As the GNU project’s reputation grew, people began offering to
donate machines running Unix to the project. These were very
useful, because the easiest way to develop components of GNU
was to do it on a Unix system, and replace the components of that
system one by one. But they raised an ethical issue: whether it
was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU project’s
philosophy said that we should not use proprietary software. But,
applying the same reasoning that leads to the conclusion that vio-
lence in self-defense is justified, I concluded that it was legitimate
to use a proprietary package when that was crucial for developing
free replacement that would help others stop using the proprietary
package.

But, even if this was a justifiable evil, it was still an evil. To-
day we no longer have any copies of Unix, because we have re-
placed them with free operating systems. If we could not replace
a machine’s operating system with a free one, we replaced the
machine instead.

5.15 The GNU Task List
As the GNU project proceeded, and increasing numbers of sys-
tem components were found or developed, eventually it became
useful to make a list of the remaining gaps. We used it to recruit
developers to write the missing pieces. This list became known
as the GNU task list. In addition to missing Unix components, we
listed various other useful software and documentation projects
that, we thought, a truly complete system ought to have.

Today, hardly any Unix components are left in the GNU task
list — those jobs have been done, aside from a few inessential
ones. But the list is full of projects that some might call “appli-
cations.” Any program that appeals to more than a narrow class
of users would be a useful thing to add to an operating system.

Chapter 5 The GNU Operating System and the Free Software Movement 35

Even games are included in the task list — and have been since
the beginning. Unix included games, so naturally GNU should
too. But compatibility was not an issue for games, so we did
not follow the list of games that Unix had. Instead, we listed a
spectrum of different kinds of games that users might like.

5.16 The GNU Library GPL
The GNU C library uses a special kind of copyleft called the
GNU Library General Public License (LPGL), which gives per-
mission to link proprietary software with the library. Why make
this exception?

It is not a matter of principle; there is no principle that says
proprietary software products are entitled to include our code.
(Why contribute to a project predicated on refusing to share with
us?) Using the LGPL for the C library, or for any library, is a
matter of strategy.

The C library does a generic job; every proprietary system or
compiler comes with a C library. Therefore, to make our C li-
brary available only to free software would not have given free
software any advantage — it would only have discouraged use of
our library.

One system is an exception to this: on the GNU system (and
this includes GNU/Linux), the GNU C library is the only C li-
brary. So the distribution terms of the GNU C library determine
whether it is possible to compile a proprietary program for the
GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that
disallowing them would do more to discourage use of the GNU
system than to encourage development of free applications.

That is why using the Library GPL is a good strategy for the
C library. For other libraries, the strategic decision needs to be
considered on a case-by-case basis. When a library does a special
job that can help write certain kinds of programs, then releasing
it under the GPL, limiting it to free programs only, is a way of
helping other free software developers, giving them an advantage
against proprietary software.

Consider GNU Readline, a library that was developed to pro-
vide command-line editing for BASH. Readline is released under
the ordinary GNU GPL, not the Library GPL. This probably does
reduce the amount Readline is used, but that is no loss for us.
Meanwhile, at least one useful application has been made free
software specifically so it could use Readline, and that is a real
gain for the community.

Proprietary software developers have the advantages money
provides; free software developers need to make advantages for
each other. I hope some day we will have a large collection
of GPL-covered libraries that have no parallel available to pro-
prietary software, providing useful modules to serve as building
blocks in new free software, and adding up to a major advantage
for further free software development.

5.17 Scratching an Itch?
Eric Raymond says that “Every good work of software starts
by scratching a developer’s personal itch.” Maybe that happens
sometimes, but many essential pieces of GNU software were de-
veloped in order to have a complete free operating system. They
come from a vision and a plan, not from impulse.

For example, we developed the GNU C library because a Unix-
like system needs a C library, the Bourne-Again Shell (BASH)
because a Unix-like system needs a shell, and the GNU tar be-
cause a Unix-like system needs a tar program. The same is true

for my programs, the GNU C compiler, GNU Emacs, GDB, and
GNU Make.

Some GNU programs were developed to cope with specific
threats to our freedom. Thus, we developed gzip to replace the
Compress program, which had been lost to the community be-
cause of the LZW patents. We found people to develop LessTif,
and more recently started GNOME and Harmony, to address the
problems caused by certain proprietary libraries (see below). We
are developing the GNU Privacy Guard to replace popular non-
free encryption software, because users should not have to choose
between privacy and freedom.

Of course, the people writing these programs became inter-
ested in the work, and many features were added to them by var-
ious people for the sake of their own needs or interests. But that
is not why the programs exist.

5.18 Unexpected Developments
At the beginning of the GNU project, I imagined that we would
develop the whole GNU system, then release it as a whole. That
is not how it happened.

Since each component of the GNU system was implemented
on a Unix system, each component could run on Unix systems,
long before a complete GNU system existed. Some of these pro-
grams became popular, and users began extending them and port-
ing them — to the various incompatible versions of Unix, and
sometimes to other systems as well.

The process made these programs much more powerful, and
attracted both funds and contributors to the GNU project. But it
probably also delayed completion of a minimal working system
by several years, as GNU developers’ time was put into maintain-
ing these ports and adding features to the existing components,
rather than moving on to write one missing component after an-
other.

5.19 The GNU HURD
By 1990, the GNU system was almost complete; the only major
missing component was the kernel. We had decided to implement
our kernel as a collection of server processes running on top of
Mach. Mach is a microkernel developed at Carnegie Mellon Uni-
versity and then at the University of Utah; the GNU HURD is a
collection of servers (or “herd of gnus”) that run on top of Mach,
and do the various jobs of the Unix kernel. The start of develop-
ment was delayed as we waited for Mach to be released as free
software, as had been promised.

One reason for choosing this design was to avoid what seemed
to be the hardest part of the job: debugging a kernel program
without a source-level debugger to do it with. This part of the job
had been done already, in Mach, and we expected to debug the
HURD servers as user programs, with the GNU debugger (GDB).
But it took a long time to make that possible, and the multi-
threaded servers that send messages to each other have turned
out to be very hard to debug. Making the HURD work solidly
has stretched on for many years.

5.20 Alix
The GNU kernel was not originally supposed to be called the
HURD. Its original name was Alix — named after the woman
who was my sweetheart at the time. She, a Unix system adminis-
trator, had pointed out how her name would fit a common naming
pattern for Unix system versions; as a joke, she told her friends,

36 OPEN SOURCES

“Someone should name a kernel after me.” I said nothing, but
decided to surprise her with a kernel named Alix.

It did not stay that way. Michael Bushnell (now Thomas), the
main developer of the kernel, preferred the name HURD, and re-
defined Alix to refer to a certain part of the kernel — the part that
would trap system calls and handle them by sending messages to
HURD servers.

Ultimately, Alix and I broke up, and she changed her name;
independently, the HURD design was changed so that the C li-
brary would send messages directly to servers, and this made the
Alix component disappear from the design.

But before these things happened, a friend of hers came across
the name Alix in the HURD source code, and mentioned the
name to her. So the name did its job.

5.21 Linux and GNU/Linux
The GNU HURD is not ready for production use. Fortunately,
another kernel is available. In 1991, Linus Torvalds developed a
Unix-compatible kernel and called it Linux. Around 1992, com-
bining Linux with the not-quite-complete GNU system resulted
in a complete free operating system. (Combining them was a
substantial job in itself, of course.) It is due to Linux that we can
actually run a version of the GNU system today.

We call this system version GNU/Linux, to express its com-
position as a combination of the GNU system with Linux as the
kernel.

5.22 Challenges in Our Future
We have proved our ability to develop a broad spectrum of free
software. This does not mean we are invincible and unstoppable.
Several challenges make the future of free software uncertain;
meeting them will require steadfast effort and endurance, some-
times lasting for years. It will require the kind of determination
that people display when they value their freedom and will not
let anyone take it away.

The following four sections discuss these challenges.

5.23 Secret Hardware
Hardware manufactures increasingly tend to keep hardware spec-
ifications secret. This makes it difficult to write free drivers so
that Linux and XFree86 can support new hardware. We have
complete free systems today, but we will not have them tomor-
row if we cannot support tomorrow’s computers.

There are two ways to cope with this problem. Programmers
can do reverse engineering to figure out how to support the hard-
ware. The rest of us can choose the hardware that is supported by
free software; as our numbers increase, secrecy of specifications
will become a self-defeating policy.

Reverse engineering is a big job; will we have programmers
with sufficient determination to undertake it? Yes — if we have
built up a strong feeling that free software is a matter of principle,
and non-free drivers are intolerable. And will large numbers of us
spend extra money, or even a little extra time, so we can use free
drivers? Yes, if the determination to have freedom is widespread.

5.24 Non-Free Libraries
A non-free library that runs on free operating systems acts as a
trap for free software developers. The library’s attractive features
are the bait; if you use the library, you fall into the trap, because
your program cannot usefully be part of a free operating system.

(Strictly speaking, we could include your program, but it won’t
run with the library missing.) Even worse, if a program that
uses the proprietary library becomes popular, it can lure other
unsuspecting programmers into the trap.

The first instance of this problem was the Motif toolkit, back in
the 80s. Although there were as yet no free operating systems, it
was clear what problem Motif would cause for them later on. The
GNU Project responded in two ways: by asking individual free
software projects to support the free X toolkit widgets as well
as Motif, and by asking for someone to write a free replacement
for Motif. The job took many years; LessTif, developed by the
Hungry Programmers, became powerful enough to support most
Motif applications only in 1997.

Around the same time, another non-free GUI toolkit library
began to gain in popularity. This was Qt, from Troll Technolo-
gies. Ultimately Qt was used in a substantial collection of free
software, the desktop KDE.

Free GNU/Linux systems were unable to use KDE, because
we could not use the library. However, some commercial distrib-
utors of GNU/Linux systems who were not strict about sticking
with free software added KDE to their systems — producing a
system with more capabilities, but less freedom. The KDE group
was actively encouraging more programmers to use Qt, and mil-
lions of new “Linux users” had never been exposed to the idea
that there was a problem in this. The situation appeared grim.

The free software community responded to the problem in two
ways: GNOME and Harmony.

GNOME, the GNU Network Object Model Environment, is
GNU’s desktop project. Started in 1997 by Miguel de Icaza, and
developed with the support of Red Hat Software, GNOME set
out to provide similar desktop facilities, but using free software
exclusively. It has technical advantages as well, such as support-
ing a variety of languages, not just C++. But its main purpose
was freedom: not to require the use of any non-free software.

Harmony is a compatible replacement library, designed to
make it possible to run KDE software without using Qt.

In November 1998, the developers of Qt announced a change
of license which, when carried out, should make Qt free software.
There is no way to be sure, but I think that this was partly due
to the community’s firm response to the problem that Qt posed
when it was non-free. (The new license is inconvenient and in-
equitable, so it remains desirable to avoid using Qt.)

How will we respond to the next tempting non-free library?
Will the whole community understand the need to stay out of the
trap? Or will many of us give up freedom for convenience, and
produce a major problem? Our future depends on our philosophy.

5.25 Software Patents
The worst threat we face comes from software patents, which
can put algorithms and features off-limits to free software for up
to twenty years. The LZW compression algorithm patents were
applied for in 1983, and we still cannot release free software to
produce proper compressed GIFs. In 1998, a free program to
produce MP3 compressed audio was removed from distribution
under threat of a patent suit.

There are ways to cope with patents: we can search for ev-
idence that a patent is invalid, and we can look for alternative
ways to do a job. But each of these methods works only some-
times; when both fail, a patent may force all free software to lack
some feature that users want. What will we do what this hap-
pens?

Chapter 5 The GNU Operating System and the Free Software Movement 37

Those of us who value free software for freedom’s sake will
stay with free software anyway. We will manage to get work done
without the patented features. But those who value free software
because they expect it to be technically superior are likely to call
it a failure when a patent holds it back. Thus, while it is useful
to talk about the practical effectiveness of the “cathedral” model
of development, and the reliability and power of some free soft-
ware, we must not stop there. We must talk about freedom and
principle.

5.26 Free Documentation
The biggest deficiency in our free operating systems is not in
the software — it is the lack of good free manuals that we can
include in our systems. Documentation is an essential part of any
software package; when an important free software package does
not come with a good free manual, that is a major gap. We have
many such gaps today.

Free documentation, like free software, is a matter of freedom,
not price. The criterion for a free manual is pretty much the same
as for free software: it is a matter of giving all users certain free-
doms. Redistribution (including commercial sale) must be per-
mitted, online and on paper, so that the manual can accompany
every copy of the program.

Permission for modification is crucial too. As a general rule, I
don’t believe that it is essential for people to have permission to
modify all sorts of articles and books. For example, I don’t think
you or I are obliged to give permission to modify articles like this
one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is
crucial for documentation for free software. When people ex-
ercise their right to modify the software, and add or change its
features, if they are conscientious they will change the manual
too — so they can provide accurate and usable documentation
with the modified program. A manual which does not allow pro-
grammers to be conscientious and finish the job does not fill our
community’s needs.

Some kinds of limits on how modifications are done pose no
problem. For example, requirements to preserve the original au-
thor’s copyright notice, the distribution terms, or the list of au-
thors, are OK. It is also no problem to require modified versions
to include notice that they were modified, even to have entire sec-
tions that may not be deleted or changed, as long as these sections
deal with non-technical topics. These kinds of restrictions are not
a problem because they don’t stop the conscientious programmer
from adapting the manual to fit the modified program. In other
words, they don’t block the free software community from mak-
ing full use of the manual.

However, it must be possible to modify all the technical con-
tent of the manual, and then distribute the result in all the usual
media, through all the usual channels; otherwise, the restrictions
do obstruct the community, the manual is not free, and we need
another manual.

Will free software developers have the awareness and determi-
nation to produce a full spectrum of free manuals? Once again,
our future depends on philosophy.

5.27 We Must Talk About Freedom
Estimates today are that there are ten million users of GNU/Linux
systems such as Debian GNU/Linux and Red Hat Linux. Free
software has developed such practical advantages that users are
flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in
developing free software, more customers for free software busi-
nesses, and more ability to encourage companies to develop com-
mercial free software instead of proprietary software products.

But interest in the software is growing faster than awareness of
the philosophy it is based on, and this leads to trouble. Our ability
to meet the challenges and threats described above depends on
the will to stand firm for freedom. To make sure our community
has this will, we need to spread the idea to the new users as they
come into the community.

But we are failing to do so: the efforts to attract new users into
our community are far outstripping the efforts to teach them the
civics of our community. We need to do both, and we need to
keep the two efforts in balance.

5.28 “Open Source”
Teaching new users about freedom became more difficult in
1998, when a part of the community decided to stop using the
term “free software” and say “open-source software” instead.

Some who favored this term aimed to avoid the confusion of
“free” with “gratis” — a valid goal. Others, however, aimed to
set aside the spirit of principle that had motivated the free soft-
ware movement and the GNU project, and to appeal instead to
executives and business users, many of whom hold an ideology
that places profit above freedom, above community, above princi-
ple. Thus, the rhetoric of “Open Source” focuses on the potential
to make high quality, powerful software, but shuns the ideas of
freedom, community, and principle.

The “Linux” magazines are a clear example of this — they
are filled with advertisements for proprietary software that works
with GNU/Linux. When the next Motif or Qt appears, will these
magazines warn programmers to stay away from it, or will they
run ads for it?

The support of business can contribute to the community in
many ways; all else being equal, it is useful. But winning their
support by speaking even less about freedom and principle can
be disastrous; it makes the previous imbalance between outreach
and civics education even worse.

“Free software” and “Open Source” describe the same cate-
gory of software, more or less, but say different things about the
software, and about values. The GNU Project continues to use
the term “free software,” to express the idea that freedom, not
just technology, is important.

5.29 Try!
Yoda’s philosophy (There is no “try”) sounds neat, but it doesn’t
work for me. I have done most of my work while anxious about
whether I could do the job, and unsure that it would be enough to
achieve the goal if I did. But I tried anyway, because there was no
one but me between the enemy and my city. Surprising myself, I
have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I
found another threatened city, and got ready for another battle.
Over time, I’ve learned to look for threats and put myself between
them and my city, calling on other hackers to come and join me.

Nowadays, I’m often not the only one. It is a relief and a joy
when I see a regiment of hackers digging in to hold the line, and
I realize this city may survive — for now. But the dangers are
greater each year, and now Microsoft has explicitly targeted our
community. We can’t take the future of freedom for granted.

38 OPEN SOURCES

Don’t take it for granted! If you want to keep your freedom, you
must be prepared to defend it.

1. The use of “hacker” to mean “security breaker” is a con-
fusion on the part of the mass media. We hackers refuse
to recognize that meaning, and continue using the word to
mean, “Someone who loves to program and enjoys being
clever about it.”

2. As an atheist, I don’t follow any religious leaders, but I
sometimes find I admire something one of them has said.

3. In 1984 or 1985, Don Hopkins (a very imaginative fellow)
mailed me a letter. On the envelope he had written sev-
eral amusing sayings, including this one: “Copyleft — all
rights reversed.” I used the word “copyleft” to name the
distribution concept I was developing at the time.

4. “Bourne Again Shell” is a joke on the name “Bourne
Shell,” which was the usual shell on Unix.

