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object images produces stimulus-specific repetition suppression re-
ferred to as functional magnetic resonance imaging-adaptation
(fMRI-A) in ventral temporal cortex (VTC). However, the effects of
stimulus repetition on functional selectivity are largely unknown. We
investigated the effects of short-lagged (SL, immediate) and long-
lagged (LL, many intervening stimuli) repetitions on category selec-
tivity in VTC using high-resolution fMRI. We asked whether repeti-
tion produces scaling or sharpening of fMRI responses both within
category-selective regions as well as in the distributed response
pattern across VTC. Results illustrate that repetition effects across
time scales vary quantitatively along an anterior-posterior axis and
qualitatively along a lateral-medial axis. In lateral VTC, both SL and
LL repetitions produce proportional fMRI-A with no change in either
selectivity or distributed responses as predicted by a scaling model.
Further, there is larger fMRI-A in anterior subregions irrespective of
category selectivity. Medial VTC exhibits similar scaling effects
during SL repetitions. However, for LL repetitions, both the selectiv-
ity and distributed pattern of responses vary with category in medial
VTC as predicted by a sharpening model. Specifically, there is larger
fMRI-A for nonpreferred categories compared with the preferred
category, and category selectivity does not predict fMRI-A across the
pattern of distributed response. Finally, simulations indicate that
different neural mechanisms likely underlie fMRI-A in medial com-
pared to lateral VTC. These results have important implications for
future fMRI-A experiments because they suggest that fMRI-A does
not reflect a universal neural mechanism and that results of fMRI-A
experiments will likely be paradigm independent in lateral VTC but
paradigm dependent in medial VTC.

I N T R O D U C T I O N

When stimuli are repeated, cortical responses in high-level
visual cortex generally decrease. This reduction has been
observed in many spatial scales from repetition effects in single
neurons (De Baene and Vogels 2009; Li et al. 1993; McMahon
and Olson 2007; Ringo 1996; Sawamura et al. 2006; Verhoef
et al. 2008; Woloszyn and Sheinberg 2009) to population
effects measured with functional magnetic resonance imaging
(fMRI-adaptation, fMRI-A) (Grill-Spector and Malach 2001;
Henson 2003; Sawamura et al. 2005; Schacter and Buckner
1998) and is thought to be a marker of experience-dependent
changes in high-level visual cortex. fMRI-A occurs in several
time scales, from immediate repetitions of sequentially pre-
sented images (Grill-Spector et al. 1999; Kourtzi and Kan-
wisher 2001; Sawamura et al. 2005) to repetition of the same

images with many intervening stimuli occurring tens of sec-
onds apart (Henson et al. 2003; Sayres and Grill-Spector 2006;
Simons et al. 2003; Vuilleumier et al. 2002) or even days
apart (van Turennout et al. 2000). Although fMRI-A occurs in
multiple brain regions and across an impressively large number
of experimental conditions, the relation between stimulus se-
lectivity and fMRI-A is unknown. Further, it is unknown
whether this relationship is consistent across brain regions and
time scales (for review, see Grill-Spector et al. 2006). Under-
standing this relationship is important for interpreting results of
fMRI-A experiments that are used to characterize functional
properties of neural populations and for understanding the role
of implicit experience in modifying neural representations.
Consequently, the current study seeks to examine: 1) how
stimulus repetition affects selectivity across the ventral stream,
2) whether repetition effects vary across time scales, 3) whether
the fMRI-A profile varies across ventral stream subregions, and
4) whether repetition changes the distributed response patterns
across the human ventral stream.

To address these questions, we examined the effects of
repetition on category selectivity as it is a well-characterized
form of stimulus selectivity in ventral occipito-temporal cor-
tex. Category selectivity is manifested by both a regional
preference to particular object categories, such as faces (Kan-
wisher et al. 1997), places (Epstein and Kanwisher 1998), and
body parts (Peelen and Downing 2005; Pinsk et al. 2009;
Schwarzlose et al. 2005), as well as in specific distributed
response patterns across the ventral stream for different object
categories (Cox and Savoy 2003; Haxby et al. 2001). Further,
these ventral stream regions display fMRI-A. Although previ-
ous studies have examined whether category-selective regions
illustrate fMRI-A to nonpreferred categories with variable
findings (Avidan et al. 2002; Epstein et al. 2008; Ewbank et al.
2005; Fang et al. 2007; Grill-Spector et al. 1999; Mahon et al.
2007; Pourtois et al. 2009), the effects of fMRI-A on category
selectivity have not been quantitatively examined according to
the predictions of theoretical models that have been proposed
to explain the reduction of fMRI responses.

Specifically, repetition may reduce fMRI responses in the
following ways: by a proportional scaling factor that maintains
a similar profile of selectivity across categories (De Baene and
Vogels 2009; Grill-Spector et al. 2006; McMahon and Olson
2007) or nonlinearly, thus sharpening the selectivity to the
preferred category (Desimone 1996; Wiggs and Martin 1998).
Each hypothesis makes separate predictions for the amount of
fMRI-A as a function of stimulus preference as well as the ratio
between nonrepeated and repeated responses. Scaling suggests
that fMRI responses to repeated stimuli are reduced by a
constant fraction relative to responses to nonrepeated stimuli.
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In other words, there is a linear relation between the amplitude
of response to repeated and nonrepeated stimuli in which the
slope is the scaling factor. Because this is a multiplicative
effect, the largest amount of fMRI-A will occur for stimuli that
elicit the strongest response. Sharpening suggests that repeti-
tion changes cortical selectivity in that responses become more
selective (more highly tuned around the preferred stimulus)
after repetition. Consequently, there will be little or no fMRI-A
to the preferred stimulus and the largest amount of fMRI-A to
intermediate (nonpreferred) stimuli. It is currently unknown
whether different models are relevant in different ventral
stream regions and time scales (Grill-Spector et al. 2006).

To examine the relationship between fMRI-A and category
selectivity, we conducted two high-resolution fMRI experi-
ments varying in the time between image repeats during which
subjects viewed repeated and nonrepeated images of objects
from several categories (Fig. 1 and METHODS). To our knowl-
edge, this is the first study that quantitatively relates category
selectivity and fMRI-A, examines the effect of repetition on
distributed responses in ventral occipito-temporal cortex, and
uses simulations to relate fMRI-A effects to the underlying
neural responses as predicted by theoretical models.

M E T H O D S

Subjects

Nine subjects (3 female, ages 24–39) participated in experiment 1
(short-lagged block fMRI-A; SL), experiment 2 (long-lagged event-
related fMRI-A; LL), and a functional localizer experiment within
each session to identify category-selective regions. Experiments 1 and
2 were conducted on separate days (on average 5 mo apart). The same
functional localizer experiment was conducted within each of the
scanning sessions, in addition to an experiment intended to localize
human motion-selective cortex (hMT�). All subjects also participated
in separate sessions in which we acquired a whole brain anatomical
volume as well as retinotopic scans. Written consent was obtained for
each subject, and the procedures were approved by the Stanford
Internal Review Board on Human Subjects Research.

Experiment 1: short-lagged block adaptation

Subjects viewed blocks of gray level images of faces, limbs,
flowers, cars, guitars, and houses (intact blocks), which alternated

with blocks of scrambled images (scrambled blocks) of these catego-
ries (Fig. 1A). Stimuli extended 7.125° from the fovea and were
programmed in MATLAB (version 7.3, The Mathworks, Natick, MA)
using the Psychophysics Toolbox (Brainard 1997). There were eight
runs of 27 blocks with a 12-s blank period at the start and end of each
run. Half of the intact blocks contained six to eight different object
images (nonrepeated), and half of the intact blocks contained six to
eight repetitions of the same object image (repeated). In each intact
object block, zero to two stimuli were scrambled images functioning
as catch trials that occurred randomly in the block. Each image was
presented for 1,000-ms with a 500-ms blank between each image. We
refer to experiment 1 as “short-lagged” (SL) because in a repeated
block, there were only 500-ms separating each repeated image if no
catch trial occurred, and a maximum of 3 s if two catch trials occurred
in succession. Subjects were instructed to fixate and to categorize
images into: faces, limbs, flowers, cars, guitars, houses, or scrambled
by button press on a scanner compatible response box. The order of
repeated and nonrepeated conditions was counterbalanced for each
scan and images were not repeated across scans.

Experiment 2: long-lagged event-related adaptation

Subjects viewed gray level images of faces, limbs, cars, and houses
in eight runs of 156 trials (Fig. 1B). Each run started and ended with
a 12-s blank period. Each trial lasted 2 s, where each image was
presented for 1,000 ms followed by a 1,000-ms blank. For each
category and within a given run, 12 images were seen once (nonre-
peated) and 2 images were repeated six times (repeated). We refer to
experiment 2 as “long-lagged” (LL) because there were on average
20.44 trials between repeats of the same object image with a minimum
of one trial (1,000 ms) and a maximum of 87 trials (174 s). Nonre-
peated, repeated, and blank trials were counterbalanced for the n�1
trial within each run, and the categories were counterbalanced within
each of the repeated and nonrepeated trials. Images were not repeated
across scans. Subjects were instructed to categorize each image into
face, limb, house, car, or blank using a separate button press while
maintaining fixation.

Block-design localizer scans

At the end of each session, subjects participated in two to four
functional localizer runs to identify regions in the ventral stream
selective for faces, limbs, objects, and houses. Images of faces, limbs,
flowers, houses, cars, guitars, and scrambled objects appeared in
blocks. Each run consisted of 32 blocks (4 of each condition and 4
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FIG. 1. Experimental design. A: short-lagged (block) design. Each block lasted 12 s where each image was presented for 1,000 ms followed by a 500-ms blank.
There was a block of scrambled images (gray) in between each intact stimulus block. In nonrepeated blocks (red), subjects saw 6–8 different images of a
category. During the repeated blocks (blue), subjects saw 6–8 repeats of the same image. Nonrepeated and repeated blocks, as well as categories, were
counterbalanced within each run. In each block, 0–2 randomly presented scrambled images served as foil trials. Examples of stimuli are on the right.
B: long-lagged (event-related) design. Each trial lasted 2 s where each image was presented for 1,000 ms followed by a 1,000 ms blank. Nonrepeated images
were shown once during the experiment. Repeated images were shown six times within a run. On average, 20 intervening stimuli occurred between repetitions
of an image. Nonrepeated, repeated, and blank trials were counterbalanced within each run. Within each of the nonrepeated and repeated conditions, categories
were also counterbalanced. Example of stimuli on the right. F, faces; L, limbs; FL, flowers; C, cars; G, guitars; H, houses.
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blank blocks), as well as a 12-s blank period at the start and end of
each run. Blocks were 12-s long and consisted of a 750-ms image
presentation followed by a 250-ms blank period. Subjects performed
a one-back task (that is, they responded when two consecutive images
were identical) by button press while maintaining fixation.

Retinotopic mapping scans

We defined retinotopic visual areas (Fig. 2; Supplemental Fig. S11)
using separate retinotopic mapping scans with standard resolution
fMRI (3 mm voxels). All subjects participated in at least two polar
angle scans using a rotating checkerboard wedge and two eccentricity
scans using an expanding checkerboard ring (see Sayres and Grill-
Spector 2008 for details). The purpose of defining retinotopic visual
regions was threefold: to examine if fMRI-A occurs in V1 and human
ventral visual field map V4 (hV4), to assure that the category-selective
ROIs were beyond area hV4, and to use the anterior boundary of hV4
as the posterior boundary of the anatomical ROI used in the mul-
tivoxel pattern analysis.

hMT� localizer

All subjects also participated in a scan aimed to define hMT� in
each scanning session. We defined hMT� as a region in the posterior
inferior temporal sulcus (ITS) that responded more strongly to low
contrast expanding and contracting concentric gratings versus identi-
cal stationary gratings (Dumoulin et al. 2000).

fMRI data collection

SCANNING. Subjects were scanned on a research-only GE 3-Tesla
Signa scanner at the Lucas Imaging Center at Stanford University
using a custom-built phased-array, eight-channel surface coil (Nova
Medical, Wilmington, MA).

SL (EXPERIMENT 1). We acquired 26 1.5-mm-thick oblique slices,
using a two-shot T2*-sensitive spiral acquisition sequence (Glover
1999) (FOV � 192 mm, TE � 30 ms, TR � 2,000 ms, flip angle �
77°, and bandwidth � 125 kHz; effective resolution of 1.5 � 1.5 �
1.5 mm). We also acquired in-plane anatomical images using the same
prescription as the functional scans and a standard two-dimensional
RF-spoiled GRASS (SPGR, TE � 1.9 ms, flip angle � 15°, band-
width � 15.63 kHz). The anatomical inplanes were used to co-register
each subject’s data to the subject’s whole brain anatomy collected in
a separate session.

LL (EXPERIMENT 2). We acquired 12 slices at a voxel resolution of
1.5 � 1.5 � 3 mm and TR � 1,000 ms using a two-shot T2*-sensitive
spiral acquisition sequence (FOV � 192 mm, TE � 30 ms, flip angle �

77°, and bandwidth � 125 kHz) and in-plane anatomical images using
the same prescription as the functional scans.

THREE-DIMENSIONAL VOLUME ANATOMICALS. A high-resolution
anatomical volume of the whole brain was acquired with a head-coil
using a T1-weighted SPGR pulse sequence (TR � 1,000 ms, flip
angle � 45°, 2 NEX, FOV � 200 mm, resolution of 0.78 � 0.78 �
1.2 mm).

Data analysis

Data were analyzed with MATLAB (version 7.3) using the mrVista
toolbox (http://white.stanford.edu/software).

ANATOMICAL DATA. Anatomical volumes were segmented into
gray and white volumes and from this segmentation we reconstructed
the cortical surface for each subject. Data were aligned to the high-
resolution anatomical volume, which enabled us to compare regions
of interest across scans and to visualize activations on the volume and
on the inflated cortical surface.

REGION OF INTEREST SELECTION. We defined each region of inter-
est (ROI) on a subject-by-subject basis and separately for each session
to minimize alignment issues between the localizer and experimental
data (Fig. 2 shows ROIs from a representative subject from the LL
scanning session, and Supplemental Fig. S1 depicts three additional
subjects). Due to the higher resolution of our scans, ROIs are typically
smaller and patchier than standard fMRI (see Weiner and Grill-Spector
2010 for further elaboration on this organization). Consequently, we will
not use the common acronyms (e.g., FBA, FFA, PPA) labeling these
neighboring areas of cortex. Instead, we will refer to them with their
category preference and their anatomical landmarks. In particular, two
limb-selective clusters were defined with a contrast of limbs � faces,
flowers, cars, guitars, and houses, t �3, voxel level: 1) occipitotem-
poral sulcus, OTS (n � 8 in experiment 1 and n � 9 in experiment 2),
extending to the lateral fusiform gyrus, and 2) inferotemporal gyrus,
ITG (n � 9 in experiment 1 and n � 8 in experiment 2), located lateral
to hV4 and inferior to hMT�. These clusters are separate from the
extrastriate body area (EBA) (Downing et al. 2001) and most likely
correspond to the recently reported FBA-1/2 (Pinsk et al. 2009). Two
face-selective clusters were defined with a contrast of faces � limbs, flowers,
cars, guitars, and houses, t � 3, voxel level: 1) middle fusiform, mFus (n
� 8 in experiment 1 and n � 9 in experiment 2) located anterior and
medial to the limb-selective OTS, and 2) posterior fusiform, pFus (n � 7
in both experiments 1 and 2) located posterior and medial to the
limb-selective OTS and anterior and lateral to hV4. The face-selective
pFus does not overlap with the occipital face area (OFA), which is more
posterior and lateral on the inferior occipital gyrus. Prior studies typically
combined the mFus and pFus together to form the traditional fusiform
face area (FFA) or have attempted to divide them into separate FFA
clusters (e.g., FFA-1/2) (Pinsk et al. 2009). We also localized a house-1 The online version of this article contains supplemental data.
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FIG. 2. High-resolution category-selective regions of inter-
est (ROIs). Inflated brain of a representative subject zoomed on
the ventral aspect (see inset indicating the zoomed region)
showing regions of interest from 3 different statistical compar-
isons: face-selective (red: faces � limbs, flowers, cars, guitars,
and houses), limb-selective (green: limbs � faces, flowers, cars,
guitars, and houses), and house-selective (blue: houses � faces,
limbs, flowers, cars, and guitars). All ROIs were defined using
a threshold of t � 3, voxel level. The outline of retinotopic areas
V1-hV4, VO-1/2, as well as hMT� are illustrated in black and
defined from retinotopy scans and a separate hMT� localizer
scan, respectively. CoS, collateral sulcus; OTS, occipito-tem-
poral sulcus; pFus, posterior fusiform; mFus, mid fusiform;
ITG, inferotemporal gyrus.
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selective cluster (houses � faces, limbs, flowers, cars, guitars, t �3, voxel
level) in all subjects in both experiments along the collateral sulcus (CoS)
and parahippocampal gyrus. The house-selective CoS is likely to be
similar to the parahippocampal place area, PPA (Aguirre et al. 1998;
Epstein and Kanwisher 1998).

ANATOMICAL ROIs. We defined for each subject three anatomical
ROIs on their gray matter to provide an independent and unbiased
way to select voxels for our multivoxel pattern (MVP) analyses. The
first ROI covered the OTS, fusiform gyrus (FG), and CoS. The posterior
edge of this ROI was the anterior boundary of hV4 and the anterior edge
of this ROI was the middle of the FG (along the anterior-posterior axis)
and is referred to as whole VTC (Fig. 8). The second and third ROIs were
created by dividing the whole VTC ROI down the anterior-posterior axis
along the mid-fusiform sulcus to generate lateral (lateral VTC) and
medial (medial VTC) partitions (Fig. 9).

TIME COURSE PROCESSING. Functional data were motion corrected
using an affine transformation (Nestares and Heeger 2000). Seven of
99 scans from experiment 1 and 6 of 104 scans from experiment 2
were excluded because of motion �1.5 voxels or scanner artifacts.
Data were then detrended using a temporal high-pass filter with a 1/20
Hz cutoff. The times series of each voxel was converted to percent
signal change by dividing the time course of each voxel by its mean
intensity.

For all experiments (SL and LL experiments and localizers from
both sessions), standard general linear model (GLM) analyses were
applied to spatially unsmoothed data using mrVista software. We used
the hemodynamic impulse response function (HRF) used in SPM2
(//www.fil.ion.ucl.ac.uk/spm/) to estimate BOLD response amplitudes
for each stimulus category by computing the beta coefficients from a
GLM applied to the preprocessed time courses. For the LL paradigm,
we excluded the first presentation of the image that was later repeated
resulting in 12 trials per category for nonrepeated trials and 10 trials
per category for repeated trials per run.

Comparison of fMRI-A in early visual areas compared with
category-selective regions

For V1, hV4, and each of the category-selective regions, we
calculated the mean fMRI-A. fMRI-A was measured as the difference
in response between nonrepeated and repeated responses for each
voxel and category and then averaged across the ROI to generate one
fMRI-A value for each subject. We used a t-test across subjects to
determine whether there was significant fMRI-A (compared to 0) for
each ROI and paradigm (Fig. 3).

DISTRIBUTION OF fMRI-A LEVELS WITHIN ROIs. We examined the
distribution of fMRI-A levels for each category across voxels (Figs. 4
and 6). fMRI-A was measured as the difference in response amplitude
between the nonrepeated and repeated response for each voxel and
category. Distributions in Figs. 4 and 6 reflect the aggregated distri-
bution across voxels and subjects. We used a Kolmogorov-Smirnov
(K-S) nonparametric test to determine whether the distribution of
fMRI-A to the preferred category in an ROI was shifted more
positively than nonpreferred categories. We also conducted this anal-
ysis within each subject (Supplemental Table S1), as well as illustrate
the average of the individual subject distributions in Supplemental
Fig. S2.

REGRESSION ANALYSES. To quantify the relation between response
amplitudes of repeated versus nonrepeated stimuli, we performed
regression analyses. These analyses were conducted for each subject
across voxels in an ROI (Figs. 5 and 7 and Supplemental Figs. S3 and
S4) and separately for each category to examine whether the slopes of
the regressions (fMRI-A ratio) and the variance explained differ
across preferred and nonpreferred categories. We also conducted a
polynomial regression to test whether a nonlinear model provides a

better fit than a linear model but found no advantage of a nonlinear fit
(Supplemental Fig. S4).

Comparison of mean fMRI-A and split-half ratios in each
category-selective ROI

In the regression analyses, a slope equal to one indicates no
fMRI-A, a slope less than one indicates fMRI-A, and a slope more
than one indicates response enhancement. However, noise can pro-
duce a bias in the slope estimation, making it lower (Frost and
Thompson 2000). Therefore we conducted a second measurement of
the fMRI-A ratio at the ROI level that is more robust to noise as
averaging across voxels reduces independent noise. To test if one is an
appropriate number to use as a comparison for the fMRI-A ratios, we
conducted a split-half analysis on nonrepeated responses within each
category-selective ROI. Response amplitudes were estimated for each
voxel, and then averaged across the ROI. We calculated two ratios for
each category, separately for each subject and experiment: 1) fMRI-A
ratio � repeated/nonrepeated based on data from all runs; 2) split-half
ratio � nonrepeated even runs/nonrepeated odd runs calculated sep-
arately for odd/even runs.

Ratios were then averaged across subjects and categories to calcu-
late one fMRI-A ratio and one split-half ratio for each ROI in each
experiment. We used a t-test across subjects to determine if the
split-half and fMRI-A ratios were significantly less than one.

Time series signal-to-noise analyses

To examine whether differences among ROIs and time scales were
due to signal-to-noise differences according to anatomical location or
experiment, we examined the time series signal-to-noise ratio (tSNR)
(Kruger and Glover 2001) in each of the SL and LL paradigms. For
each subject, we created three disk ROIs with a 5-mm radius on a
lateral-medial axis along the OTS, FG, and CoS bilaterally (see
Supplemental Fig. S5 for the disk locations in an example subject).
Within these disks, we extracted the mean raw time series across voxels
for the nonrepeated trials and computed the tSNR for each experimental
run as: tSNR � 20log[mean(time series)]/[SD(time series)]. We found no
significant differences in tSNR across disk locations [F(2,48) � 0.71,
P � 0.50], no effect of experiment [F(1,48) � 0.49, P � 0.49], and no
interaction between these factors [F(2,48) � 0.40, P � 0.67].

PATTERN ANALYSES OF REPETITION EFFECTS ACROSS THE VENTRAL
STREAM. To complement our ROI-based analyses, we conducted
MVP analyses to examine whether the distributed patterns of activity
across ventral cortex changed following repetition. These analyses
were done for the whole anatomical ROI (described in REGION OF

INTEREST SELECTION), which provides an independent and unbiased
way to select voxels for this analysis. MVP for each category was
represented as a vector of length n (where n is the number of voxels
in the ROI). For each voxel, we calculated the amplitude (GLM beta)
for each condition relative to the mean beta across categories and
divided this by the square root of the residual variance of the voxel
GLM to convert data into z-scores and remove between-voxel effects.
We visualized activations by projecting MVPs onto the first layer of
gray matter (Fig. 8).

We measured the correlation between the MVP to each category
from the independent localizer scans to that of the nonrepeated and
repeated trials separately for each experiment. We computed the
cross-correlation matrix of these coefficients across all stimulus pair-
ings separately for each subject across both hemispheres and then
computed the mean matrix across subjects (Fig. 8B). We repeated this
analysis separately for the anatomical ROI excluding the category-
selective regions (Fig. 8C) and for odd and even subsets of our
nonrepeated and repeated data (split-half analysis; see supplemental
materials and Supplemental Fig. S6).
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We assessed the stability of MVPs by applying a winner-take-all
(WTA) classifier. For each subject, the training data were the localizer
dataset, and we separately tested classification performance on the
nonrepeated and repeated conditions from each of the adaptation
experiments, respectively. The WTA determines the category based
on the highest correlation between the training and testing set. Clas-
sifier performance was measured for each subject and then averaged
across subjects using the full anatomical ROIs, as well as the full
anatomical ROIs excluding category-selective ROIs (Fig. 8C).

RELATIONSHIP BETWEEN CATEGORY MVP AND ADAPTATION MVP. To
link MVP analyses to the previous voxel-based ROI analyses, we
calculated the correlation between the adaptation MVP (that is, for
each voxel, we calculated the difference in response between nonre-
peated and repeated trials for a specific category and measured the
distributed response across voxels) to the category MVP as deter-
mined from the within session localizer data (that is, for each voxel,
we calculated the difference in response to one category compared
with the other five categories and examined the distributed pattern
across voxels). We compared the correlation between the two MVPs
across the entire lateral ROI (unthresholded condition for faces and
limbs) or the entire medial ROI (unthresholded condition for houses)
as well as for a subset of voxels in each of these respective ROIs that
showed significant selectivity to either faces, limbs, or houses (t � 3,
Fig. 9B) as well as those voxels outside of these category-selective
voxels (t �3, Fig. 9B). The selectivity of voxels was determined from
an independent dataset using the other session’s localizer scans as
activation for a category � other categories, using a threshold of t �
3, voxel level.

R E S U L T S

Definition of category-selective regions

We focused on ventral occipitotemporal regions because
these regions are thought to be in a similar level of the visual
processing hierarchy and differential category preference oc-
curs in anatomically adjacent regions (Grill-Spector and Mal-
ach 2004; Haxby et al. 2001; Levy et al. 2001; Schwarzlose et
al. 2008). Category-selective regions for faces, places, and
limbs are also found in the lateral and dorsal occipitotemporal
cortex, but analysis of these regions is beyond the scope of the
present study.

We defined category-selective ROIs in each subject using
independent block-design localizer scans (see METHODS). Figure
2 illustrates the location and extent of each category-selective
ROI (defined as the activation of the category of interest vs. all
other categories thresholded at t � 3, voxel level) relative to
retinotopic areas V1-hV4 and VO-1/2 in one representative
subject (see Supplemental Fig. S1 for three additional sub-
jects). In each subject, we localized five ventral stream regions:
a face-selective region on the mid-FG (face-selective mFus), a
limb-selective region on the OTS extending to the lateral
aspect of the FG (limb-selective OTS), a face-selective region
on the posterior FG (face-selective pFus), a limb-selective
region on the ITG (limb-selective ITG), and a house-selective
region overlapping the collateral sulcus and sometimes extend-
ing into the parahippocampal gyrus (house-selective CoS) (see
Weiner and Grill-Spector 2010 for reproducibility of the face-
and limb-selective activations). As there were no significant
interactions of repetition or category effects across hemi-
spheres, our results are collapsed across the two hemispheres.

More fMRI-A in SL compared with LL paradigm in
category-selective regions but not hV4 and V1

We first tested whether category-selective ROIs, hV4, and
V1 illustrate significant fMRI-A. In both paradigms, each of
the category-selective ROIs showed significant fMRI-A [non-
repeated–repeated (% signal) as compared with 0] averaged
across voxels and categories (Fig. 3, SL: all ts � 3.57, Ps �
0.005; LL: ts �4.62, Ps � 0.002) as did hV4 [SL: t(7) � 3.66,
P � 0.004; LL: t(7) � 7.87, P � 10�5]. In contrast, we did not
find significant fMRI-A in V1 [SL: t(8) � 0.92, P � 0.19; LL;
t(8) � 1.23, P � 0.13, Fig. 3], which is consistent with prior
results (Ewbank et al. 2005; Grill-Spector et al. 1999; Sayres
and Grill-Spector 2006). The magnitude of fMRI-A was larger
in the SL than LL paradigm for the category-selective ROIs
[2-way ANOVA using as factors region and paradigm for the
4 overlapping categories between experiments: main effect of
paradigm: F(1,73) � 22.02, P � 10�5; no effect of region:
F(4,73) � 2.25, P � 0.07, and no interaction: F(4,73) � 0.88,
P � 0.48]. Conversely, there were no paradigm differences
across V1 and hV4 [F(1,30) � 0.01, P � 0.92]. Therefore,
differential fMRI-A effects in the category-selective ROIs are
not merely a reflection of fMRI-A within hV4 or driven by a
specific pattern of hV4 inputs into VTC.

Distribution of fMRI-adaptation values: larger fMRI-A
magnitude for the preferred category in face- and
limb-selective ROIs

Within each face- and limb-selective ROI, we quantified the
amount of fMRI-A for each category to examine: 1) if a
category-selective ROI exhibits significant fMRI-A to both
preferred and nonpreferred categories, 2) if there is a difference
in the amount of fMRI-A across categories, and 3) if these
effects are similar or dissimilar across repetition paradigms (SL
vs. LL).

We measured the magnitude of fMRI-A in each voxel and
generated the distribution of fMRI-A values [nonrepeated –
repeated (% signal)] for each category across voxels and
subjects (Fig. 4). We found significant fMRI-A for most
categories in face- and limb-selective regions in both para-
digms (SL: all categories, P � 10�6, mean greater than 0,
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1-sided t-test, except for cars in the limb-selective OTS and
guitars in the limb-selective ITG; LL: all categories, P � 10�4,
1-sided t-test). This indicates that category-selective regions
show significant fMRI-A for both the preferred category and
nonpreferred categories. In the SL experiment, there was sig-
nificantly larger fMRI-A (that is, the distribution of fMRI-A
magnitudes was shifted to the right, see Fig. 4) for the preferred
category relative to each of the other categories in face- and
limb-selective ROIs (pairwise comparisons using a K-S test,
Bonferroni corrected for multiple comparisons, 2-tailed, P �
10�11). Individual subject fMRI-A distributions in each ROI
were similar to the aggregate distribution (see Supplemental
Fig. S2 for the average distribution across subjects), and a
majority of subjects showed these same effects within each of

these ROIs (Supplemental Table S1 for a summary of within
subjects effects). Similar results were observed in the LL
paradigm (Fig. 4) where the distribution of voxel fMRI-A
magnitudes was shifted more positively for the preferred cat-
egory relative to each of the nonpreferred categories (K-S test,
Bonferroni corrected for multiple comparisons, 2-tailed, P �
10�3). Thus face- and limb-selective regions illustrate signif-
icant fMRI-A for both preferred and nonpreferred categories in
both paradigms and the largest fMRI-A magnitude occurs for
the preferred category.

Constant fMRI-adaptation ratio between responses to
repeated and nonrepeated stimuli within face- and
limb-selective regions

To quantify the relationship between responses to repeated
versus nonrepeated stimuli, we examined whether responses to
repeated images are proportional to the responses to nonre-
peated images and whether this relation is similar across
categories (resulting in similar slopes). Note that a proportional
fMRI-A effect would result in the largest fMRI-A magnitude
for stimuli that generate the strongest responses in nonrepeated
trials (that is, the preferred stimulus in each ROI) as illustrated
in our distribution analyses. Consequently, we conducted linear
regressions between responses to repeated and nonrepeated
stimuli (Fig. 5A and Supplemental Fig. S3). Each point in the
regression is one voxel’s data for one stimulus category. We
conducted these regressions across voxels within a given ROI
separately for each subject and category. We refer to the slope
resulting from these regressions as the fMRI-A ratio because it
describes the relationship between repeated and nonrepeated
responses, where a slope less than one illustrates fMRI-A
(smaller slopes indicate stronger adaptation) and a slope
greater than one illustrates enhancement of responses. For each
ROI and category, the average fMRI-A ratio across subjects
was significantly less than one in both experiments (all Ps �
0.006, t-test, 1-sided; Fig. 5 and Supplemental Fig. S3). While
a split-half analysis comparing the ratio of the mean responses
of nonrepeated odd trials to the mean of nonrepeated even trials
verified that one is an appropriate number to use as a compar-
ison for the fMRI-A ratios (Supplemental Table S2), the
regression slopes may underestimate the fMRI-A ratio due to
regression dilution (Frost and Thompson 2000). Nevertheless,
a nonlinear fit (polynomial regression) does not explain signif-
icantly more variance than the linear fit in any of the ROIs and
paradigms [2-way ANOVA using as factors fit type (linear/
nonlinear) and category (no main effect of fit type: SL: Fs �
0.29, Ps �.59, LL: Fs � 0.14, Ps � 0.71; Supplemental Fig.
S4)].

We tested whether fMRI-A ratios differed across categories
and paradigms by conducting a two-way ANOVA separately
for each ROI examining the effects of category (face/limb/car/
house) and paradigm (SL and LL). We found no differences in
fMRI-A ratios across categories in all face- and limb-selective
ROIs (Fig. 5, B and C, no main effect of category, Fs � 1.44,
Ps � 0.24), or category by paradigm interactions (all Fs �
0.94, all Ps � 0.43). Furthermore, in both face- and limb-
selective ROIs, fMRI-A ratios did not vary by paradigm (all Fs
�2.94, all Ps � 0.09). Thus within face- and limb-selective
ROIs, there is a linear relationship between repeated and
nonrepeated responses where repeated responses are a propor-
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tional decrease compared with nonrepeated responses and the
fMRI-A ratio is largely consistent across categories and exper-
iments within a region.

Stronger adaptation in anterior relative to posterior
face- and limb-selective regions in the LL paradigm

Next we examined whether there is a difference in fMRI-A
effects across posterior and anterior regions with the same
category preference. Our category-selective activations show a
distinct organization of face- and limb-selective regions with a
posterior cluster containing two adjacent and minimally over-
lapping face-selective and limb-selective regions (face-selec-
tive pFus and limb-selective ITG; Fig. 2 and Supplemental Fig.
S1) and a more anterior cluster with a complementary organi-
zation (face-selective mFus and limb-selective OTS).

An ANOVA of fMRI-A ratios across face-selective clusters,
examining the effects of region (mFus/ pFus), paradigm (SL/
LL), and overlapping categories across paradigms (face/limb/

car/house) revealed differential adaptation across these regions
[main effect of region F(1,108) � 18.44, P � 10�5], which
also varied by paradigm [region � paradigm interaction
F(1,108) � 4.33, P � 0.04]. Likewise, the two limb-selective
regions exhibited differential adaptation effects [main effect of
region F(1,120) � 14.69, P � 10�4] but did not differ by
paradigm [no region by paradigm interaction F(1,120) � 0.59,
P � 0.44 and no main effect of paradigm F(1,120) � 2.68, P
� 0.10].

These regional differences are more pronounced in the LL
time scales (blue in Fig. 5, B and C) and occur due to lesser
fMRI-A in the more posterior regions. Specifically, in the LL
experiment, the mean fMRI-A ratio across categories in the
pFus was 0.69 � 0.04 compared with 0.49 � 0.05 in the mFus
[t(14) � 3.31, P � 0.005; LL: main effect of region, F(1,56) �
22.89, P � 10�5; SL: main effect of region, F(1,78) � 7.08,
P � 0.01; Fig. 5C]. Likewise, in the limb-selective regions, the
fMRI-A ratio in the LL experiment was significantly larger in
the posterior ITG region (0.53 � 0.06) compared with the more
anterior OTS region, which was 0.38 � 0.03 [t(15) � 2.41,
P � 0.03; LL: main effect of region, F(1,60) � 9.85, P �
0.003; SL: marginally significant main effect of region, F(1,90) �
3.63, P � 0.06; Fig. 5B]. Differences between posterior and
anterior regions are also evident in the goodness of fit of the
linear model (variance explained, R2, of the regression analy-
sis, Supplemental Fig. S4, right, black conditions for faces and
limbs). Specifically, in the LL experiment, the variance ex-
plained by the linear relationship between repeated and non-
repeated responses in the posterior regions is greater than the
anterior regions (pFus vs. mFus and ITG vs. OTS, main effect
of region, F’s �12.65, P’s �10�4).

Taken together, we find a linear relationship between re-
peated and nonrepeated responses in face- and limb-selective
regions, and there are regional differences across timescales
where the fMRI-A ratio varies across the posterior and anterior
regions with a greater difference between regions during LL
repetitions. This suggests the possibility that the fMRI-A ratio
is a characteristic of these face- and limb-selective regions, and
this value increases from anterior to posterior regions.

Qualitative differences in fMRI-A characteristics across time
scales in the house-selective CoS

We repeated our voxel-based analyses in the house-selective
CoS and observed two key findings indicative of a functional
difference in this region compared with the face- and limb-
selective regions. First, similar to the face- and limb-selective
ROIs, there was significant fMRI-A for most categories in the
house-selective CoS in both paradigms (Fig. 6, all categories
SL: P � 10�6, mean �0, 1-sided t-test, except for cars; all
categories LL: P � 10�5, 1-sided t-test, except for limbs).
Unlike the face- and limb-selective regions, we found differ-
ences in the distribution of fMRI-A magnitudes across para-
digms in the house-selective CoS (Fig. 6 and Supplemental
Fig. S2). In the SL experiment, the preferred stimulus produced
the strongest adaptation, where the house fMRI-A magnitude
was significantly greater than the other categories (K-S test,
Bonferroni corrected for multiple comparisons, P � 10�6). In
contrast, in the LL experiment, the preferred category did not
produce the strongest adaptation. In fact, in 5/9 subjects, cars
produced the most fMRI-A, and in 2/9 subjects, faces produced
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the largest fMRI-A in the house-selective CoS (Supplemental
Table S1). Across subjects, the largest fMRI-A magnitude was
for a nonpreferred stimulus, cars (K-S test, Bonferroni cor-
rected for multiple comparisons, P � 10�10; Fig. 6 and
Supplemental Fig. S2), thus illustrating increased selectivity
for houses during LL repetitions.

Second, in the SL experiment, linear regressions between
responses to repeated and nonrepeated stimuli in the CoS show
a similar pattern as the limb- and face-selective ROIs, whereby
a linear model produces similar slopes across categories (Fig. 7A,
top). In contrast, in the LL experiment, linear regressions
between responses to repeated and nonrepeated stimuli in the
CoS illustrate that the linear fit produces consistently shallower
slopes for the nonpreferred stimuli than for houses (Fig. 7A,
bottom). That is, the fMRI-A ratio for houses was larger than
the fMRI-A ratio to nonpreferred categories in the LL para-
digm while the reverse pattern is illustrated in the SL paradigm
(Fig. 7B). A two-way ANOVA on the fMRI-A ratios, exam-
ining the effects of category (face/limb/car/house) and para-
digm (SL/LL), showed a significant category effect [F(1,64) �
38.29, P � 10�5] and a significant category by paradigm
interaction [F(3,64) � 6.54, P � 10�4], indicative of differ-
ential fMRI-A across the LL and SL paradigms. Furthermore,
the goodness of fit of the linear model relating repeated versus
nonrepeated responses was similar across categories for the SL
experiment and was not different from a nonlinear model
(Supplemental Fig. S4, bottom left). However, the linear model
explained significantly less of the variance in the CoS re-
sponses in the LL paradigm [2-way ANOVA, main effect of
paradigm: F(1,64) � 34.15, P � 10�5] and the goodness of fit

varied by category [paradigm � category interaction: F(3,64) �
3.34, P � 0.02]. Thus for the LL data, the linear model only
provided a reasonable fit for the CoS response to houses and
explained significantly more variance for houses compared
with nonpreferred categories [1-way ANOVA, main effect of
category, F(3,32) � 6.19, P � 0.002; Supplemental Fig. S4,
bottom right]. Finally, tSNR analyses indicate that qualitative
differences in fMRI-A in the CoS compared with the face- and
limb-selective regions are not due to the presence of more
noise within the CoS during the LL experiment as compared
with either the lateral VTC category-selective regions or to the
SL experiment (Supplemental Fig. S5).

These findings support a qualitative difference in the rela-
tionship between category selectivity and fMRI-A in the
house-selective CoS across paradigms, suggesting differential
repetition effects across time scales in this region. In the SL
paradigm, a linear model largely explains the relationship
between nonrepeated and repeated responses across all cate-
gories, whereas in the LL paradigm, the fMRI-A ratios for
nonpreferred categories are substantially smaller, and a linear
model is only adequate for explaining repetition effects for the
preferred category.

Distributed activation patterns across the ventral stream for
object categories remain consistent following repetition

ROI-based analyses inform us about repetition effects within
a cortical region. However, they do not examine in what way
repetition affects the distributed response across the ventral
stream. Because different categories also generate distinct
distributed responses across VTC, we asked: do distributed
responses to object categories across the VTC change with
repetition? There are three possible outcomes. First, repetition
may not change the distributed neural response to object
categories; thus, responses to both nonrepeated and repeated
images of a category may be the same. This would be predicted
by a linear model of fMRI-A where responses to repeated
stimuli reflect a proportional decrease relative to responses to
nonrepeated stimuli. Accordingly, both nonrepeated and re-
peated response patterns would correlate well to localizer
responses, but there may be a slight decrease in within-
category correlation for repeated images due to decreased
signal-to-noise resulting from adaptation. Second, distributed
responses may become more distinctive with repetition as
predicted by a nonlinear model of fMRI-A due to sharpening of
neural responses on repetition. This would result in high
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within-category correlations and decreased between-category
correlations among repeated responses. Finally, we may ob-
serve an extensive change in distributed response patterns
with repetition (as has been observed after prolonged visual
exposure to novel categories) (see Op de Beeck et al. 2006).
In this case, the distributed response patterns from our
localizer experiment should correlate well with responses to
nonrepeated images but not with repeated image presenta-
tions.

Figure 8 presents the distributed response patterns to each of
the six object categories within the anatomical VTC ROI in a
representative subject from the SL experiment (similar patterns
were observed for the 4 overlapping categories used in the LL
experiment). The first row represents the localizer data, the
second row represents the nonrepeated data, and the third row
represents the repeated data. As evident in Fig. 8A, MVPs of
response to different categories within an experiment are dis-
similar. However, the pattern of response for a given category
is similar across conditions.

Correlations between distributed response patterns during
the localizer experiment and each of the nonrepeated and
repeated conditions from the SL and LL experiments revealed

consistent category information (see METHODS). In both SL and
LL experiments, there was significant positive within-category
correlation between localizer MVP and nonrepeated MVP
(diagonal in Fig. 8B, left, all ts � 11.60, all Ps � 10�6,
1-sided), which was also significantly higher than the mean
between-category correlation (off-diagonal in Fig. 8B, left, all
ts � 12.99, all Ps � 10�6, paired, 2-tailed). Further, for both
experiments, we found significant positive within-category corre-
lation between localizer MVP and repeated MVP (all ts � 10.20,
all Ps �10�6, 1-sided), and the mean within-category cor-
relation was significantly higher than the mean between-
category correlation (all ts � 10.77, all Ps � 10�6, paired,
2-tailed). Comparing within-category correlations across
localizer and repeated MVP versus localizer and nonre-
peated MVP showed that the former correlations were
lower. However, a split-half analysis of repeated and non-
repeated MVP indicates that this is because of lower repro-
ducibility of repeated MVP rather than a change in the
distributed activations following repetition (supplemental
results and Supplemental Fig. S6).

We used a WTA classifier to determine whether training on
localizer data predicts the category subjects viewed for nonre-
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temporal cortex (VTC). A: distributed responses to six
object categories in the localizer scan, nonrepeated
conditions in the short-lagged (SL) experiment, and
repeated conditions in the SL experiment. Each
panel shows the right hemisphere ventral inflated
surface of a representative subject (S5) zoomed on
the fusiform gyrus. (A, anterior; P, posterior; L,
lateral; M, medial). The projected activation is an
unthresholded z-score map across an anatomically
defined VTC ROI (see METHODS). B: mean cross-
correlation matrices between responses in the local-
izer scans and nonrepeated (left) or repeated (right)
conditions in the short-lagged (top) and long-lagged
experiment (bottom). Data are concatenated across
hemispheres and averaged across subjects. Left:
each element in the matrix represents the correlation
coefficient between the distributed response to cat-
egories in the localizer and the nonrepeated condi-
tions. Right: each element in the matrix represents
the correlation coefficient between the distributed
response to categories in the localizer and the re-
peated data. High on-diagonal values (orange and
red) show reproducibility of the pattern of response
for that category across the localizer and nonre-
peated or repeated conditions. Low (or negative)
off-diagonal values (blue and black) indicate that the
distributed pattern of response differs across catego-
ries. F, faces; l, limbs; fl, flowers; c, cars; g, guitars;
h, houses. C: winner-take-all classifier performance
averaged across subjects and categories. The dotted
line indicates chance level performance. Error bars:
between subjects SEs. White: training with localizer
data, testing with nonrepeated conditions. Gray:
training with localizer data, testing with repeated
conditions. Left: full anatomical VTC ROI. Right:
anatomical VTC ROI excluding category-selective
ROIs. Asterisks indicate classifier performance is
significantly different for repeated compared with
nonrepeated trials (P � 0.05).
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peated or repeated stimuli in each of the experiments (see
METHODS, Fig. 8C). In the SL experiment, the classifier suc-
cessfully determined the category that subjects viewed for both
repeated and nonrepeated conditions (mean correct nonre-
peated � 83% � 0.04, repeated � 74% � 0.04, all ts � 14.22,
all Ps � 10�7, one-sided, performance �17% chance level)
and the performance for nonrepeated conditions was not sig-
nificantly higher than repeated conditions [Fig. 8C; t(8) �
1.34, P � 0.21, paired, 2-tailed]. In the LL experiment, the
classifier showed robust performance when training on local-
izer data and testing on either repeated or nonrepeated trials
(mean correct nonrepeated � 78% � 0.02, repeated � 92% �
0.04, all ts � 19.00, Ps � 10�8, 1-sided, performance �25%
chance level). Here there was improved classification perfor-
mance for repeated compared with nonrepeated images [Fig.
8C; t(8) � 2.29, P � 0.05, paired, 2-tailed], which was largely
driven by decreased between-category correlation of cars and
houses for repeated trials (Fig. 8B, bottom left).

We repeated the MVP analysis excluding the category-
selective ROIs from the anatomical ROI (Haxby et al. 2001).
Notably, classification performance for either nonrepeated or
repeated conditions in each experiment largely did not change
(Fig. 8C, right). A two-way ANOVA using as factors ROI (full
anatomical ROI/anatomical ROI excluding category-selective
ROIs) and repetition (nonrepeated/repeated), showed a main
effect of repetition [all Fs (1, 32) �5.88; all Ps � 0.02] and no
main effect of ROI and no ROI by repetition interaction (all Fs
(1, 32) � 0.11; all Ps � 0.75) in either experiment. This
suggests that the distributed patterns across the ventral stream
largely remain the same for repeated objects even outside the
category-selective ROIs.

Linking ROI and MVP analyses: category MVP predicts
adaptation MVP for faces and limbs in lateral VTC but not
for houses in medial VTC in the LL paradigm

Our previous analyses show that category MVP for repeated
stimuli from the adaptation experiments correlates well with
category MVP from the localizer experiments. However, an
open question remains: does category selectivity predict the
level of adaptation for that category? Thus we compared the
adaptation MVP (the difference between distributed responses
to nonrepeated and repeated trials) for a specific category to the
category MVP (the difference between distributed responses to
a category and other categories) as determined from the within
session localizer data.

We divided the whole VTC ROIs along the mid-fusiform
sulcus to create lateral and medial anatomical partitions (Fig. 9A).
The lateral VTC contains voxels with a range of preference to
faces and limbs (from strong preference in functional ROIs to
weak preference in voxels outside these ROIs), whereas the
medial ROI contains voxels with a range of preferences to
houses. This analysis was performed in three ways: using all
voxels within these anatomical ROIs (unthresholded, Fig. 9B),
using only voxels that showed significant selectivity to
particular categories (thresholded at t � 3, Fig. 9B), or using
only those voxels outside of the selective voxels (thresh-
olded at t � 3, Fig. 9B). Importantly, thresholding was done
on the other session’s localizer data to prevent circularity in
the analysis (see METHODS).

Results reveal three separate effects for each of the preferred
categories: faces and limbs in lateral VTC and houses in medial
VTC. First, all correlations between face MVP and face adap-
tation MVP in lateral VTC are significantly positive across the
three threshold conditions and paradigms [ts(8) � 3.87,
Ps � 0.002]. That is, voxels with higher face preference show
a larger magnitude of face adaptation (Fig. 9B, left). Effects did
not differ across threshold [F(2,48) � 0.54, P � 0.58, 2-way
ANOVA] or paradigm [F(1,48) � 1.5, P � 0.23], and there
was no significant interaction [F(2,48) � 0.02, P � 0.98]. Thus
the positive correlation between face MVP and face adaptation
MVP is stable across paradigms and independent of threshold.
Consequently, face preference predicts face fMRI-A magni-
tude across lateral VTC more generally rather than just in the

Co
rr

el
a�

on
 b

et
w

ee
n 

ca
te

go
ry

M
V

P 
an

d  
ad

ap
ta

�
on

  M
V

P

Lateral VTC
Faces

Lateral VTC
Limbs

Medial VTC
Houses

unthresholded
t < 3

B

A Lateral VTC
Faces

Lateral VTC
Limbs

Medial VTC
Houses

A
da

pt
a�

on
 M

V
P

Ca
te

go
ry

  M
V

P

-0.1

0

0.1

0.2

0.3

0.4

0.5

*

**

-1

0

1

%
 s

ig
na

l c
ha

ng
e

short-lagged
long-lagged

t > 3

L M

A

P

FIG. 9. MVP analysis of category preference and category adaptation.
A: MVPs showing the magnitude of responses to each of three object catego-
ries minus other categories in the localizer scans (top), and adaptation MVP
(nonrepeated – repeated responses for a category) from the long-lagged
experiment (bottom). Each panel illustrates the right hemisphere ventral
inflated surface of a representative subject (S6) zoomed on the fusiform gyrus.
(A, anterior; P, posterior; L, lateral; M, medial). The projected activation is an
unthresholded map of percentage signal change across an anatomically defined
lateral VTC ROI (white outline) for faces (left) and limbs (middle) and a
medial VTC ROI (white outline) for houses (right; see METHODS for details).
B: Correlation between category MVP and adaptation MVP for faces (left),
limbs (middle), and houses (right). Light gray: entire anatomical region
(unthresholded maps). Dark gray: Category-selective voxels determined from
out of session localizer scans as voxels that show significant (t � 3) preference
for a category vs. others. White: All voxels excluding category-selective
voxels. Black: short-lagged paradigm. Blue: long-lagged paradigm. Asterisks
indicate that the correlation for the short-lagged paradigm is significantly
higher than the long-lagged paradigm (t-test, asterisk, P � 0.05; double
asterisk P � 0.01).
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face-selective mFus and pFus clusters. Put simply, stronger
preference to faces predicts stronger fMRI-A to faces.

Second, correlations between limb MVP and limb adapta-
tion MVP are also significantly positive across both threshold
and paradigm [ts(8) � 2.67, Ps � 0.01]. There are no differ-
ences across paradigms [F(1,48) � 2.20, P � 0.14], but this
correlation is higher for the thresholded voxels with stronger
limb preference [F(2,48) � 5.48, P � 0.007; Fig. 9B, middle],
and there is no interaction [F(2,48) � 0.03, P � 0.97]. Thus,
these effects indicate that limb preference predicts adaptation
magnitude better within the limb-selective clusters than across
the lateral VTC more generally.

Third, while the correlations in medial VTC between house
MVP and house adaptation MVP are higher for thresholded
than unthresholded data [main effect of threshold: F(2,48) �
6.56, P � 0.003], they are consistently lower in the LL than SL
paradigm [main effect of paradigm, F(1,48) � 10.23, P �
0.002, 2-way ANOVA, Fig. 9B, right]. Notably, for the LL
paradigm, the correlation between the unthresholded house
adaptation MVP and house MVP across the medial VTC is not
significant for the unthresholded data or those voxels outside of
the house-selective voxels [unthresholded: r � 0.03 � 0.04,
t(8) � 0.72, P � 0.25; t �3: r � 0.01 � 0.04, t(8) � 0.37,
P � 0.36], but this relationship is significantly positive during
the SL experiment [unthresholded, r � 0.13 � 0.06, t(8) �
2.44, P � 0.02; t �3: r � 0.12 � 0.06, t(8) � 2.15, P � 0.03].
These results extend our findings of a different profile of
fMRI-A across paradigms within the functional house-selec-
tive CoS (Fig. 7B), and indicate that this difference across
paradigms extends to the anatomical medial VTC more gen-
erally. House preference predicts the magnitude of house
fMRI-A in the medial VTC in the SL experiment, but not in the
LL experiment, and changing the amount of time between
image repeats significantly affects the response profile in
house-selective functional ROIs as well as across the greater
anatomical extent of the medial VTC.

Linking fMRI measurements to neural mechanisms: what
inferences can we make from fMRI responses about neural
mechanisms of repetition?

Neural sharpening is a common interpretation of the de-
creased responses that characterize fMRI-A (Desimone 1996;
Wiggs and Martin 1998). This interpretation assumes that each
neuron narrows its tuning width on repetition of a stimulus
(Fig. 11A) and as a consequence of the narrower tuning curves,
the neural representation within a voxel (and across voxels)
decreases in size as the nonselective neurons are pruned out
(due to the fact that they do not respond to repeated stimuli)
and only the selective neurons remain. Although this interpre-
tation is widely cited, there is no empirical evidence to support
such a mechanism in high-level visual cortex. Rather than a
change in neural tuning, an alternative neural scaling hypoth-
esis argues that repeating stimuli induces a scaled version of
neural responses to nonrepeated stimuli (Fig. 10A) (De Baene
and Vogels 2009; Grill-Spector et al. 2006; McMahon and
Olson 2007). Note that either neural repetition effect could also
be determined by the inputs, where sharpening may result from
neural inhibition (Norman and O’Reilly 2003), and scaling
may result from the degree of overlapping neuronal inputs (De
Baene and Vogels 2009; Sawamura et al. 2006). The neural

scaling model is consistent with the fMRI-A profile in lateral
VTC across time scales. Of course, this interpretation is valid
only if scaling at the neural level produces proportional
fMRI-A. Thus we simulated the predicted fMRI responses
according to both the neural sharpening and neural scaling
hypotheses to link potential neural mechanisms of repetition
effects to the fMRI-A observed here (see appendix, Figs. 10
and 11). We modeled fMRI voxels to contain a range of neural
populations tuned to different stimuli along a stimulus axis.
This tuning can be thought of as selectivity to specific stimuli
in which different neurons are tuned to particular exemplars
spanning a range of selectivities within and across categories.
Category selectivity was generated in one of two ways: creat-
ing voxels with a majority neural population tuned to the same
stimulus as suggested by recent reports (Freiwald et al. 2009;
Tsao et al. 2006) (Figs. 10B and 11B) or generating voxels
containing neural populations that are more narrowly tuned to
some stimuli compared with other stimuli (Figs. 10D and 11D).
Specifically, we asked do proportional fMRI-A effects imply
scaling of neural responses or can neural sharpening produce
these effects?

Simulations show that scaling effects at the neural level
produce proportional fMRI-A (that is, a constant fMRI-A ratio
across stimuli) even when voxels contain heterogeneous neural
populations with different stimulus preferences (Fig. 10). Spe-
cifically, neural scaling due to repetition manifests as a linear
relationship between the fMRI response amplitudes to repeated
versus nonrepeated stimuli in which the slope is the fMRI-A
ratio. Results remain similar for different amounts of neural
scaling in voxels containing a close to uniform distribution of
neuronal populations (Fig. 10C) and in voxels with populations
of neurons with varying tuning widths (D).

We next simulated the effects of neural sharpening in fMRI
voxels (Fig. 11). All sharpening scenarios predict fMRI-A for
the preferred voxel stimulus even when the preferred neural
population does not adapt because of the reduced responses of
neurons in the voxel tuned to nonpreferred stimuli. When there
is a majority (�50%) of neurons in a voxel that are similarly
tuned along the stimulus axis (Fig. 11B), our simulations show
that neural sharpening effects produce a nonlinear relationship
between fMRI responses to repeated and nonrepeated stimuli in
which there is lesser fMRI-A (manifested as a larger fMRI-A
ratio) to the best stimulus as compared with a range of
intermediate nonoptimal stimuli (Fig. 11B). Thus sharpening is
consistent with our house-selective CoS and medial VTC data
in the LL paradigm: there is significant fMRI-A for the pre-
ferred category (houses), but the predicted fMRI-A ratio is
larger (indicative of less fMRI-A) than fMRI-A ratios for the
nonpreferred categories which show stronger fMRI-A.

For voxels that do not have a majority neural population
(Fig. 11, C and D), simulation results illustrate deviations
between neural sharpening effects and fMRI-A effects. Nota-
bly, the predicted fMRI-A varies considerably depending on
specific model parameters, including the distribution of neural
populations in a voxel, their tuning and overlap (Fig. 11, C and
D). In voxels of low-stimulus selectivity modeled with a
close-to-uniform distribution of neural selectivities with simi-
lar tuning widths (Fig. 11C), sharpening at the neural level can
manifest as a proportional fMRI-A effect with constant
fMRI-A ratios across stimuli (C). However, if selectivity in a
voxel is produced by narrower neuronal tuning to the preferred
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as compared with the nonpreferred stimuli, fMRI-A effects
depend on the degree of neural sharpening as well as the
overlap of neural tuning functions. While in most cases neural
sharpening will produce fMRI-A sharpening effects, the pre-
dicted fMRI-A to different stimuli depends on the degree of
neural sharpening: larger neural sharpening produces less
fMRI-A for preferred stimuli (Fig. 11D, blue) and lesser neural
sharpening produces more fMRI-A for preferred stimuli (D,
black). These predicted fMRI-A effects resemble our house-
selective CoS data (Fig. 7b).

Overall, our simulations illustrate that when interpreting
fMRI-A effects in regions that show strong selectivity for a
particular stimulus, fMRI-A scaling effects are likely driven by
respective neural scaling effects and neural scaling cannot pro-
duce the differential effects across time scales observed in the
house-selective CoS. However, if category-selective regions do
not contain a majority of neurons preferring a particular category,
fMRI-A scaling results cannot differentiate between neural sharp-
ening and neural scaling. Finally, our findings of differential
fMRI-A effects across time scales in the CoS can be explained by
one of two alternatives: 1) if house-selective CoS voxels contain
a majority neural population tuned to houses, differential fMRI-A
effects across SL and LL paradigms likely result from two
separate mechanisms across timing parameters, specifically, neu-

ral scaling effects in SL repetitions (Fig. 10B) and neural sharp-
ening effects in LL repetitions (Fig. 11B); or 2) if house-selective
CoS voxels contain a minority neural population broadly tuned to
houses, albeit with narrower tuning for houses than other catego-
ries, differential fMRI-A effects across timing parameters can be
explained by a neural sharpening mechanism with different
amounts of neural sharpening across time scales (Figs. 6, 7 and
11D).

D I S C U S S I O N

Our data show for the first time that repetition effects in
lateral ventral temporal cortex (VTC) consistently produce
proportional fMRI-A across categories with similar results
across repetition timing parameters, and a quantitative differ-
ence in fMRI-A ratios along a posterior-anterior axis. Posterior
face- and limb-selective regions (pFus and ITG, respectively)
have larger fMRI-A ratios compared with their anterior coun-
terparts (mFus and OTS, respectively) especially during LL
repetitions, suggesting differential fMRI-A scaling factors in
posterior relative to anterior regions depending on timing
parameters. In contrast, repetition effects in medial VTC vary
qualitatively across time scales. For SL repetitions, there are
similar fMRI-A effects in medial VTC as in lateral VTC.
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FIG. 10. Linking fMRI-A to neural mechanisms: Neural scal-
ing effects generate fMRI-A scaling effects. Results of simulating
a neural scaling model of repetition suppression. A: illustration of
neural scaling in a single neuron, where repetition decreases neural
firing by a constant factor. B–D: predicted fMRI-A results of the
neural scaling model. In each row, the left panel illustrates neural
tuning, while the middle illustrates distribution of neural popula-
tions in a voxel color coded by their preferred stimulus, and the
right panel illustrates the predicted fMRI-A ratio. We show results
for two neural scaling factors: 0.6 (black) and 0.15 (gray). In all
simulations, neural scaling produces fMRI-A scaling effects,
which manifest as a constant fMRI-adaptation ratio across cate-
gories. The rows vary in the neural tunings and distribution of
neural populations in a voxel. B: 66% of the neurons prefer the
same stimulus, � � 1, and spacing between neural tuning is one �
apart. C: same neural tunings as B but close to uniform distribution
of neural populations, where the percentage of the preferred neural
population in a voxel is 14% of the total number of neurons.
D: same distribution of neural populations as C, but differential
neural tuning varying from � � 1 for the preferred stimulus up to
� � 8 for the least preferred stimulus, and centers of neural tuning
functions are spaced 1.3� apart.
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However, for LL repetitions, there is a different fMRI-A profile
in medial VTC, where selectivity for the preferred stimulus
increases with repetition as indicated by greater fMRI-A to a
nonpreferred stimulus in our ROI analyses as well as indicated
by a potential change in the distributed response patterns
during repeated trials in our MVP analyses. In particular,
during LL repetitions, we found larger fMRI-A magnitudes for
nonpreferred categories than the preferred category (Fig. 6),
different fMRI-A ratios across categories, where the preferred
category has a larger fMRI-A ratio than nonpreferred catego-
ries (Fig. 7), and a weak correlation between category MVP
and adaptation MVP for houses (Fig. 9B). These results sug-
gest that different mechanisms may underlie repetition effects
in medial VTC as compared with lateral VTC, especially
during LL repetitions.

fMRI-A scaling effects in lateral VTC

Our evidence for proportional fMRI-A effects is consistent
with previous neuroimaging and neurophysiology studies.
fMRI-A studies of ventral stream regions have reported larger
fMRI-A magnitudes for stimuli that elicit stronger responses

than others such as high versus low contrast stimuli (Avidan et
al. 2002) or upright versus inverted faces (Mazard et al. 2006).
A proportional relationship between repeated and nonrepeated
responses can explain decreasing fMRI-A magnitudes as a
function of dissimilarity from the adapting stimulus found in
several regions: the intraparietal sulcus (Piazza et al. 2004),
fusiform gyrus (Drucker and Aguirre 2009; Fang et al. 2007),
LO (Andresen et al. 2009), and V1 (Fang et al. 2005). Single-
cell recordings also illustrate that firing of monkey inferotem-
poral (IT) neurons is suppressed by a constant scaling factor for
repetitions of shapes (McMahon and Olson 2007) without
general habituation (Li et al. 1993; Lueschow et al. 1994) and
that neuronal selectivity does not change with repetition (De
Baene and Vogels 2009; Woloszyn and Sheinberg 2009).
Furthermore, a recent study examining how image repetition
affects single-cell responses and local field potentials (LFPs) in
monkey IT cortex illustrates that both spiking activity and
gamma power reduce by a scaled factor upon repetition where
the similarity between two images is a better predictor for the
resulting adaptation than the neural response itself (De Baene
and Vogels 2009). Therefore, scaling does not seem to be a
specific mechanism applicable only to the relationship between
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FIG. 11. Linking fMRI-A to neural mechanisms:
Neural sharpening effects can generate differential
fMRI-A effects. A: illustration of the neural sharpening
model in a single neuron. Upon repetition, there is no
effect at the peak response of the neuron. B–D: predicted
fMRI-A ratio according to the sharpening model. In
each row, the left panel illustrates neural tuning, the
middle illustrates distribution of neural populations in a
voxel color coded by their preferred stimulus, and the
right panel illustrates the predicted fMRI-A ratio. We
show results for two neural sharpening factors, 0.6
(black) and 0.15 (gray). A smaller number indicates
more neural sharpening. B: all populations have a � �
1 and are spaced 1 � apart with 66% of the neurons
preferring the same stimulus. As the neural responses
sharpen on repetition, the predicted fMRI responses also
sharpen in this voxel resulting in a higher fMRI-A ratio
for the preferred category (right). C: results of the
sharpening model for an example (nonselective) voxel
in which the tuning is the same as B, but the distribution
of neural populations is close to uniform, where the
percentage of the “preferred” neural population in a
voxel is 14%. Although the neural responses sharpen
upon repetition, predicted fMRI-A in this voxel now
resembles proportional fMRI-A effects where the
fMRI-A ratio is similar across categories (right). D:
same distribution of neural populations as C, but differ-
ential neural tuning varying from � � 1 for the preferred
stimulus up to � � 8 for the least preferred stimulus;
centers of neural tuning functions are spaced 1.3� apart.
Upon repetition, the predicted fMRI responses resemble
our house-selective CoS data (Fig. 7B), where the pre-
ferred category has a smaller fMRI-A ratio compared
with the nonpreferred categories when the neural sharp-
ening is large (0.15) and an opposite pattern for less
neural sharpening (0.6).
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category selectivity and fMRI-A in the ventral stream but is
also relevant for other forms of selectivity, other regions of the
brain, and varying spatial resolutions (both single units and
population level responses measured with LFPs and fMRI).

fMRI-A to nonpreferred categories

One prediction of the scaling model is larger fMRI-A for the
preferred stimulus compared with nonpreferred stimuli. Previ-
ous studies consistently find fMRI-A for the preferred category
in category-selective regions (Andresen et al. 2009; Avidan et
al. 2002; Ewbank et al. 2005; Pourtois et al. 2009) but not
always for nonpreferred categories (Ewbank et al. 2005; Pour-
tois et al. 2009). As previously shown, the magnitude of
fMRI-A is also sensitive to repetition parameters such as the
number of stimulus repetitions as well as the amount of time
and number of stimuli between repetitions (Henson et al. 2003;
Sayres and Grill-Spector 2006). Because nonpreferred stimuli
induce lower responses than preferred stimuli, the magnitude
of fMRI-A to nonpreferred stimuli is lower and the detectabil-
ity of fMRI-A to nonpreferred stimuli becomes more sensitive
to these parameters as well as analysis methods. For example,
high-resolution data increase the detection of these fMRI-A
effects for nonpreferred categories by isolating the signals to a
fine spatial scale, while spatial smoothing and group analyses
may dilute these effects (Mahon et al. 2007; Pourtois et al.
2009). Finally, repetition suppression effects for nonpreferred
stimuli have been found in electrophysiological recordings (De
Baene and Vogels 2009; McMahon and Olson 2007) and
follow a similar scaling pattern, suggesting that repetition
scaling effects are occurring at the neuronal level. These
findings underscore the utility of the fMRI-A method for
probing the sensitivities of neural populations to both optimal
and nonoptimal stimuli contrary to recent claims (Mur et al.
2010).

Larger fMRI-adaptation ratios for posterior compared with
anterior face- and limb-selective regions for long-lagged
repetitions

Our present results indicate a new general principle—that
fMRI-A is anatomically-specific and time scale dependent.
Such a concept is in agreement with results from fMRI-A
studies in early visual cortex concluding that fMRI-A is sen-
sitive to timing parameters in the stimulus presentation, as
fMRI-A in V1 is highly contingent on timing parameters and
prolonged adaptation compared with extrastriate regions (Boy-
nton and Finney 2003; Fang et al. 2005). Further, recent
neurophysiology evidence indicates different neural adaptation
effects in IT cortex compared with prefrontal cortex (Verhoef
et al. 2008). Our results show that even VTC regions with the
same category preference illustrate differences in the amount
of adaptation during LL repetitions, where fMRI-A ratios in
the posterior regions—face-selective pFus and limb-selective
ITG—are �1.5 times larger than more anterior face-selective
mFus and limb-selective OTS. Notably, our findings suggest
that the fMRI-A ratio is a characteristic of these ventral regions
and indicates a hierarchy among VTC regions whereby higher
levels of this hierarchy exhibit stronger fMRI-A. Overall, our
finding suggests that anatomical location rather than stimulus
preference is a better indicator of the resulting amount of

fMRI-A. As fMRI studies in monkeys have also located
several face-selective patches along a posterior to anterior axis
in monkey STS (Moeller et al. 2008), this posterior-anterior
differentiation can be tested in future monkey fMRI measure-
ments paired with neurophysiological recordings.

Differential fMRI-A across ventral stream regions: regional
differences across time scales

The difference in the profile of fMRI-A across paradigms in
the house-selective CoS is consistent with a recent report
suggesting differential fMRI-A effects across paradigms ex-
amining scene view sensitivity in the CoS/parahippocampal
gyrus (Epstein et al. 2008). However, because paradigm dif-
ferences were not evident in any of our lateral VTC regions,
our results indicate regional differences in fMRI-A effects
rather than paradigm differences. These findings concur with
evidence showing different fMRI-A dynamics in the CoS
compared with the fusiform gyrus (Gilaie-Dotan et al. 2008). It
is possible that SL repetition effects reflect perceptual mecha-
nisms and LL repetition effects reflect memory-related mech-
anisms as the CoS is at the intersection between visual cortex
and regions involved in both perception and memory such as
perirhinal cortex (see Baxter 2009; Suzuki 2009 for reviews).

Electrophysiological recordings provide additional clues for
a potential medial/lateral differentiation of repetition effects.
Although there is no direct empirical evidence for sharpening
effects in single IT neurons, this concept was proposed follow-
ing recordings in perirhinal cortex rationalizing two effects of
repetition: suppression of responses in �2/3 of visually respon-
sive neurons and enhancement in �1/3 of visually responsive
neurons (Desimone 1996; Li et al. 1993; Miller and Desimone
1994). However, recent converging evidence indicates signif-
icant neural repetition suppression consistent with neural scal-
ing effects in area TE (De Baene and Vogels 2009; McMahon
and Olson 2007; Sawamura et al. 2006; Verhoef et al. 2008),
which is lateral to the perirhinal recordings from which the
sharpening hypothesis was based. Thus, we speculate sharpen-
ing effects may be more appropriate for medial temporal
regions especially during long-lagged repetition. However,
neurophysiological evidence is needed to directly test this
prediction.

Stimulus repetition changes the pattern of response in
medial not lateral VTC

Pattern analyses have shown that category and object identity
information can be recovered from the distributed response across
the ventral stream (Cox and Savoy 2003; Edelman et al. 1998;
Eger et al. 2008; Haxby et al. 2001; Sayres and Grill-Spector
2008). Here we show that the patterns of responses for object
categories remain largely unchanged when stimuli are repeated
(Fig. 8). That is, experience-dependent changes from stimulus
repetition during the course of an fMRI scan largely do not create
a significant change in the distributed response to object catego-
ries across an anatomical ROI covering the OTS, Fus, and CoS.
Further, there is a correspondence between the distributed re-
sponse to a category (category MVP) and the distributed magni-
tude of adaptation to that category (adaptation MVP) for faces and
limbs across paradigms in the lateral VTC. This relationship was
found for houses in the medial VTC for SL repetitions but not for
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LL repetitions (Fig. 9). Our results have important implications
for plasticity in the ventral stream because they suggest that
fMRI-A does not produce robust changes in category representa-
tion in the lateral aspects of the ventral stream. However, LL
repetitions change the distributed responses in medial aspects of
the ventral stream along the CoS indicating that such a change in
the pattern of response can occur even without extensive training
(Op de Beeck et al. 2006).

Implications for fMRI-A experiments

Taken together, our results show that neural scaling best
explains repetition effects observed with fMRI in lateral re-
gions within ventral temporal cortex. In contrast, different
neural mechanisms likely underlie repetition effects within
medial VTC. Our simulations offer two neural explanations to
these differential repetition effects across time scales observed
with fMRI in the medial VTC: SL-repetitions produce neural
scaling and LL-repetitions produce neural sharpening or repe-
tition produces neural sharpening but at different levels across
time scales.

HOW DO THESE RESULTS AFFECT INTERPRETATION OF fMRI-A EX-

PERIMENTS? First, we present clear evidence that at the popula-
tion level as measured with fMRI, repetition largely does not
change the selectivity of voxels or the pattern of distributed
responses across the ventral stream for immediate repetitions.
While many studies that find fMRI-A interpret this as evidence for
a sparsening, or sharpening, of neural responses as proposed by
Wiggs and Martin (1998), our results suggest that at least at the
macroscopic level this interpretation is unlikely for regions within
the lateral portions of ventral temporal cortex irrespective of time
between repeats. Second, our simulations suggest that in voxels
with a majority neural population with similar tuning along a
stimulus dimension, proportional fMRI-A effects are likely due to
neural scaling. However, in voxels with a close to uniform
distribution of neural populations, the interpretation is more com-
plex as fMRI scaling may be an outcome of either neural scaling
or neural sharpening (Figs. 10C and 11C). Third, the robustness of
these effects across analyses (voxel-based and MVP analyses) and
across paradigms (SL and LL) especially within fusiform and
occipito temporal regions suggests that results of fMRI-A exper-
iments examining sensitivity to stimulus changes will be largely
independent of paradigm and analysis approach. However, in
regions along the CoS, fMRI-A characteristics are more sensitive
to paradigm and analysis approach, and consequently interpreta-
tion of fMRI-A effects is more complex as it may reflect different
mechanisms across time scales as indicated by our simulations.
Adding to this complexity, whether or not fMRI-A is an accurate
reflection of the underlying neural properties within a given region
or is actually a result of inputs to that region is also currently
debated (Bartels et al. 2008; De Baene and Vogels 2009; Liu et al.
2009; Sawamura et al. 2006).

While the present study focuses on stimulus driven fMRI-A,
top-down effects such as attention (Murray and Wojciulik 2004;
Yi and Chun 2005), emotion (Ishai et al. 2004), context (Sum-
merfield et al. 2008), and task (Henson et al. 2002; Race et al.
2009) can also modulate the level of fMRI-A. Future studies of
top-down effects on fMRI-A should examine whether top-down
and bottom-up effects are independent or interact and incorporate
the models and simulations introduced here for stimulus-driven

(bottom-up) effects with models such as prediction error (Friston
2005; Henson 2003; Henson and Rugg 2003; Summerfield et al.
2008) for explaining top-down effects.

Consequently, though the concept of neural sharpening is
appealing, fMRI researchers should take caution when inter-
preting that reduced responses to repeated stimuli in the ventral
stream are a result of “sharpening.” In fact, for the majority of
regions and paradigms, there is little to no evidence from
neurophysiology or fMRI (aside from the medial VTC data
presented here) to support such a claim without directly testing
the relationship between the selectivity of interest and the
resulting fMRI-A. Future experiments measuring repetition ef-
fects with fMRI and electrophysiology in the same animal could
simultaneously test if these anterior-posterior quantitative differ-
ences and lateral-medial qualitative differences extend to monkey
IT cortex as well as test the predictions of our simulations to
provide a critical link between repetition effects across levels:
from the single neuron to the population response.

A P P E N D I X

Simulations relating fMRI-A to neural mechanisms

We used simulations to examine how scaling and sharpening
effects at the neural level may manifest at the level of fMRI voxels.
The goal of the simulations is to provide a proof of concept because
we cannot noninvasively measure responses of single neurons in our
subjects.

Simulating neural responses

Neural responses were modeled with Gaussian receptive fields (RF)
as used in previous studies (Andresen et al. 2009; Logothetis et al.
1995; Poggio and Edelman 1990; Riesenhuber and Poggio 1999)

f i(x) � G(x, �i, �); ∀i :1 .. n (1)

Where G is a Gaussian with mean �i and tuning width �; and x is the
stimulus dimension. Different neural populations (fi) have different
means reflecting different preferred stimuli. n is the number of neural
populations in a voxel. All neurons in a voxel had the same tuning
width. Gaussian centers were spaced on regular intervals and neural
firings were normalized to have a maximum of 1.

Neural firing rates to repeated objects were simulated using one of
two models, 1) neural scaling: firing rates to repeated stimuli are a
scaled version of the firing to nonrepeated objects; c is the scaling
factor

f irepeated(x) � cG(x, �i, c); 0 � c � 1 (2)

2) neural sharpening: neural tuning width to repeated stimuli narrows
around the preferred stimulus, where � decreases by the sharpening
factor c

f irepeated(x) � G(x, �i, c�); 0 � c � 1 (3)

Simulating fMRI voxels

fMRI voxel responses were estimated as the weighted sum of
neural responses. The response of each neural population was
weighted by its percentage in the voxel. pi is the percentage neurons
in a voxel tuned around a particular stimulus, �i.

Voxel(x) � �
i�1

n

pi f i(x); �
i�1

n

pi � 1 (4)

In the simulations, we first modeled category-selective voxels that
respond more strongly for one category over other categories. There-
fore pi are not distributed uniformly, and we used a normal probability
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density function for the pi (Figs. 10B and 11B). At the limit, voxels
will contain one neural population in which all neurons prefer the
same stimulus (Tsao et al. 2006). A narrow normal distribution will
produce a majority of neurons in a voxel that prefer one stimulus,
while a wide normal distribution will produce a close to uniform
distribution of neural populations in a voxel (Figs. 10B and 11B). A
second way to simulate category selectivity is by varying the neural
tuning and the density of tuning functions. That is, category selectivity
can be generated by narrower and denser tuning around the preferred
category and broader and sparser tuning for nonpreferred categories
(Figs. 10D and 11D). For example, CoS house-selective voxels may
contain neurons with narrow tuning to houses, and neurons with broad
tuning to both nonhouses and houses.

Calculating the fMRI-adaptation ratio

For each of our stimuli along the stimulus axis, we calculated the ratio
between predicted fMRI responses to nonrepeated versus repeated stim-
uli, which is illustrated in the right column in Figs. 10 and 11.

Effects of model parameters

We estimated voxel (fMRI) responses according to each of the two
models and examined the effects of several parameters: the level of
neural adaptation, the neural tuning width and overlap, and the
distribution of neurons in a voxel. For the scaling model, neural
scaling always produces a constant fMRI-A ratio across all stimuli,
and changing these parameters only produces a quantitative change in
the predicted fMRI-A ratio. For the sharpening model, when there is
a majority neural population in the voxel, neural sharpening effects
manifest as fMRI-A sharpening effects with less fMRI-A for the
preferred category than the nonpreferred category. For voxels with a
close to uniform distribution of neural populations (e.g., Fig. 11, C
and D), neural sharpening effects produce variable fMRI-A effects
depending on model parameters of neural tuning width, overlap
between neural tunings, and the degree of neural sharpening.
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