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The potential for human neuroimaging to read out the detailed contents of a person’s mental state has yet to be fully explored. We

investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity

measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that

ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the

subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention

strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early

visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective

perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their

subjective contents.

Much remains to be learned about how the human brain represents
basic attributes of visual experience. It is commonly assumed that
human visual perception is based on the neural coding of fundamental
features, such as orientation, color, motion and so forth. Edge orienta-
tion is arguably the most fundamental feature analyzed by the visual
system, providing the basis for defining the contours and shapes of
visual objects that allow for object segmentation and recognition. There
is considerable neurophysiological evidence of orientation tuning in
cortical columns and single neurons in both monkey and cat visual
cortex1–4. However, non-invasive neuroimaging methods have been
thought to lack the resolution to probe into these feature representations
in the human brain. As a consequence, little is known about the neural
basis of orientation selectivity in the human visual system or how these
fundamental features are represented during conscious perception.

Here we investigated whether it is possible to read out detailed
information about the visual and subjective contents of the human
brain using fMRI. Specifically, can activity patterns in the human visual
cortex reveal what stimulus orientation a person is viewing or attending
to on a given trial? We present a new approach to measure feature
selectivity from an ensemble of neuroimaging signals, which we call
‘ensemble feature selectivity’. Our approach draws on ideas of popula-
tion coding5,6 and multi-voxel pattern analysis of fMRI data7–9 to
demonstrate neural decoding of perceived orientations and a method
of ‘mind-reading’ that is capable of classifying mental states on the basis
of measured brain states. Early versions of this work have been
presented at scientific conferences (Y.K. and F.T., J. Vis. 4, 186a, 2004;
Y.K. and F.T., Soc. Neurosci. Abstr. 370.7, 2004).

A challenge in examining orientation selectivity in the human visual
cortex is that putative orientation columns may be too finely spaced to

resolve using current fMRI techniques. Orientation-selective columns
in the monkey are only about 300–500 mm in width10, whereas the
spatial resolution of human fMRI is limited by many factors. These
include technical limitations of human fMRI, reductions in signal-to-
noise proportional to the volume of each voxel, spatial blurring of the
positive blood oxygenation level-dependent (BOLD) hemodynamic
response extending several millimeters beyond the site of neural
activity11–13, and additional blurring induced by residual head motion.

To bypass these spatial limitations, we developed an alternative
approach of measuring the ensemble orientation information con-
tained in the activity pattern of many voxels. We hypothesized that each
voxel, sampled from a 3 � 3 � 3 mm region of human visual cortex,
may have a weak but true bias in its neural or hemodynamic response to
different orientations. Such biases could arise from random variations
in the distribution or response gain of orientation columns within each
voxel. Orientation columns in the monkey typically reveal such spatial
variability, and these variations seem to be stable over time14. Even if
one were to assume that the spatial distribution of orientation columns
is perfectly uniform, variability in the distribution of vasculature would
lead to uneven hemodynamic sampling across orientation columns,
resulting in local biases in orientation preference. We predicted that by
pooling together the information from many weakly tuned voxels, the
ensemble activity pattern of many voxels may show sharp and stable
selectivity for orientation (‘ensemble orientation selectivity’). Our
experiments showed that different stimulus orientations give rise to
distinct patterns of fMRI activity in early human visual areas, which can
be accurately decoded by linear pattern analysis techniques. Further-
more, these orientation-selective activity patterns allow for reliable
neural decoding of the subjective contents of perception.
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RESULTS

Subjects viewed one of eight possible stimulus orientations while
activity was monitored in early visual areas (V1–V4 and MT+) using
standard fMRI procedures (3T MRI scanner, spatial resolution 3 � 3 �
3 mm; Methods). For each 16-s ‘trial’ or stimulus block, a square-wave
annular grating (Fig. 1a) was presented at the specified orientation (0,
22.5, y, 157.51), and flashed on and off every 250 ms with a
randomized spatial phase to ensure that there was no mutual informa-
tion between orientation and local pixel intensity. Subjects maintained
steady fixation throughout each fMRI run, during which each of the
eight stimulus orientations was presented in randomized order. Sub-
jects viewed a total of 20–24 trials for each orientation.

Orientation decoder and ensemble feature selectivity

We constructed an ‘orientation decoder’ to classify ensemble fMRI
activity on individual trials according to stimulus orientation, based on
the orientation-selective activity pattern in visual cortex that was
obtained from a training data set (Fig. 1a). The input consisted of
the average response amplitude of each fMRI voxel in the visual area(s)
of interest, for each 16-s stimulus trial. In the next layer, ‘linear en-
semble orientation detectors’ for each of the eight orientations received

weighted inputs from each voxel and calculated the linearly weighted
sum as output. Individual voxel weights for each orientation detector
were determined by using a statistical learning algorithm applied to an
independent training data set15. Voxel weights were optimized so that
each detector’s output became larger for its preferred orientation than
for other orientations (Methods). The final output prediction was
made by selecting the most active linear ensemble orientation detector
as representing the orientation most likely to be present.

We first trained the orientation decoder using 400 voxels from areas
V1/V2 for individual subjects (Fig. 1b). Individual voxels showed poor
response selectivity for different orientations (Supplementary Figs. 1
and 2 online). Nonetheless, the output of the linear ensemble orienta-
tion detectors, which reflect the weighted sum of many individual voxel
responses, had well-tuned responses centered around the preferred
orientation of each detector. Furthermore, the detectors showed a
graded response that increased according to the similarity of stimulus
orientation to their preferred orientation. Because the similarity among
orientations was not explicitly specified in the learning procedure, this
graded response indicates that similar orientations give rise to more
similar patterns of fMRI activity. These results suggest that the
ensemble pattern of fMRI activity contains orientation information
that greatly exceeds the selectivity of individual voxels.

Orientation decoding accuracy across visual areas

We evaluated if fMRI activity patterns in the human visual cortex are
sufficiently reliable to predict what stimulus orientation the subject is
viewing on individual trials. We used a cross-validation analysis in
which the orientation of each fMRI sample was predicted after the
orientation decoder was trained with the remaining samples. There-
fore, independent samples were used for training and test. Ensemble
fMRI activity in areas V1/V2 led to precise decoding of which of the
eight orientations the subject saw on individual stimulus trials
(Fig. 2a). Decoded orientation responses peaked sharply at the true
orientation, with errors, which were infrequent, occurring primarily at
neighboring orientations and rarely at orthogonal orientations. The
accuracy of these decoded orientation responses was quantified for all
four subjects, by calculating the root mean squared error (RMSE)
between the true and the predicted orientations, which were 17.91,
21.01, 22.21 and 31.21 for subjects S1–S4, respectively (Fig. 2b).

In general, orientation decoding performance progressively
improved with increasing numbers of voxels, as long as voxels were
selected from the retinotopic region corresponding to the stimulated
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Figure 1 Orientation decoder and ensemble orientation selectivity. (a) The

orientation decoder predicts stimulus orientation on the basis of fMRI activity

patterns. The cubes depict an input fMRI activity pattern obtained while the

subject viewed gratings of a given orientation (left). The circles are ‘linear

ensemble orientation detectors,’ each of which linearly combines the fMRI

voxel inputs (weighted sum plus bias; bias component not shown). The

weights (W) are determined by a statistical learning algorithm (linear support

vector machine) applied to a training data set, such that the output of each

detector becomes largest for its ‘preferred orientation’ (yi). The final unit

(rectangle with Max) decides the prediction to be the preferred orientation of

the detector with the highest value. (b) Orientation selectivity of individual

voxels and linear ensemble orientation detectors. The decoder was trained

using actual fMRI responses to eight orientations (S1, 400 voxels from

V1/V2). Average responses are plotted as a function of orientation for two

representative voxels, and for 451 and 1351 detectors (error bar, s.d.).
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Figure 2 Decoding stimulus orientation from ensemble fMRI activity in the

visual cortex. (a) Decoded orientation responses for eight orientations. Polar

plots indicate the distribution of predicted orientations for each of eight

orientations (S2, 400 voxels from V1/V2, 22 samples per orientation). The

same values are plotted at symmetrical directions as stimulus orientation

repeats every 1801. Solid black lines show the true stimulus orientations.

(b) Decoded orientation responses for all four subjects (400 voxels from

V1/V2, total 160–192 samples for each subject). Results for individual

orientations are pooled relative to the correct orientations, and aligned to the

vertical line. (c) Across-session generalization. Decoded orientation responses

were obtained by training a decoder with day 1’s data and testing with day 2’s

data (31 d and 40 d apart for S1 and S2, respectively).
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visual field. Voxels that showed stronger orientation preference were
confined well within retinotopic boundaries of the annular stimulus
(Supplementary Fig. 3), suggesting the retinotopic specificity of these
orientation-selective signals. Consistent with this notion, fMRI activity
patterns from unstimulated regions around the foveal representation in
V1 and V2 led to chance levels of orientation decoding performance.
Although our subjects were well trained at maintaining stable fixation,
it is conceivable that different orientations might elicit small but
systematic eye movements that could alter the global pattern of cortical
visual activity. However, additional control experiments showed that
when independent gratings (451 or 1351) were presented simulta-
neously to each hemifield, visual activity in each hemisphere could
accurately decode the orientation of the contralateral stimulus but
not the ipsilateral stimulus (96.1% versus 54.9% correct using 200
voxels from V1/V2 for each hemisphere; chance, 50%; Supplementary
Fig. 4). The independence of orientation information in the two
hemispheres cannot be explained in terms of eye movements or any
other factors that would lead to global effects on cortical activity.

We further investigated the physiological reliability of these orienta-
tion signals in the human visual cortex by testing generalization across
separate sessions in two subjects. This was done by training the
orientation decoder with fMRI activity patterns from one day and
using it to predict perceived orientation with the fMRI data from
another day (Fig. 2c). The RMSEs for the across-session generalization
were 18.91 (31 d apart) and 21.71 (40 d apart) for subjects S1 and S2,
respectively, almost as small as those for within-session generalization
(17.91 and 21.01, respectively). The results indicate that these orienta-
tion-selective activity patterns reflect physiologically stable response
properties across the visual cortex.

The ability to extract robust orientation information from ensemble
fMRI activity allowed us to compare orientation selectivity across
different human visual areas. Orientation selectivity was most pro-
nounced in early areas V1 and V2, and declined in progressively higher
visual areas (Fig. 3). All four subjects showed this same trend of dimi-
nishing orientation selectivity across retinotopic visual areas (RMSEs,
mean 7 s.d., for ventral V1, V2, V3 and V4 were 31 7 41, 29 7 41,
40 7 81 and 46 7 41, respectively). This pattern of orientation
selectivity is consistent with monkey data showing poorer orientation
selectivity and weaker columnar organization in higher visual areas10,

but has never been shown in the human visual cortex. Unlike areas V1
through V4, human area MT+ showed no evidence of orientation
selectivity (53.2 7 3.71; chance level, 52.81), consistent with the idea
that this region is more sensitive to motion than to stimulus form.

Source of orientation information

Additional analyses confirmed that this orientation information
obtained from the human visual cortex reflects actual orientation-
dependent responses. Our linear ensemble orientation detectors were
unable to discriminate the orientation of the phase-randomized
stimulus gratings on the basis of pixel intensity values alone because
orientation is a higher-order property that cannot be expressed by a
linearly weighted sum of inputs16. However, the decoder composed of
linear detectors could classify these images when they received input
from intervening orientation filters with nonlinearity, analogous to V1
neurons (Fig. 4). The results indicate that ensemble orientation
selectivity does not arise from the retinotopic projection of bitmap
grating images on the cortex but rather from the orientation informa-
tion inherent in individual voxels, which can then be pooled together.

What is the pattern of orientation preferences among these voxels
that is responsible for such precise ensemble selectivity? We plotted the
orientation preference of individual voxels on flattened cortical repre-
sentations, coloring voxels according to the orientation detector for
which each voxel provided the largest weight (Fig. 5). Voxel orientation
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Figure 4 Pairwise decoding performance as a function of orientation

difference (all pairs from eight orientations), for grating images (pixel

intensities), fMRI images (voxel intensities) and transformed grating images.

The gratings (I) were 20 � 20 pixel black-white images with 2–3 stripes.

The fMRI images (II) were those obtained in the present study (responses

to gratings of eight orientations; 400 voxels from V1/V2). The transformed

images (III) were created by linear orientation filtering (Gabor-like filters for

four orientations) of the grating images followed by thresholding (nonlinearity)

and addition of noise. The orientations of these images were decoded for

each pair of orientations (chance level, 50%). For (I) and (III), the average
performance with five sets of phase-randomized images is plotted (error bar,

s.d.). For (II), the average performance of four subjects is shown. The grating

images (I) resulted in poor performance regardless of orientation difference.

In contrast, the fMRI images (II) and the transformed grating images (III)

both showed performance that improved with orientation difference, reaching

near perfect levels at 901.

Figure 3 Orientation selectivity across the human visual pathway. Decoded

orientation responses are shown for individual visual areas from V1 through

V4 and MT+ (S3, 100 voxels per area). The color map indicates t-values

associated with the responses to the visual field localizer for V1 through V4,

and to the MT+ localizer for MT+ (see Methods). The voxels from both

hemispheres were combined to obtain the results, though only the right

hemisphere is shown. All other subjects showed similar results of

progressively diminishing orientation selectivity in higher areas.
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preferences revealed a scattered pattern that was variable and idiosyn-
cratic across subjects. Although some local clustering of the same orien-
tation preference was observed, much of this may reflect spatial blurring
resulting from subtle head motion, data reinterpolation required for the
Talaraich transformation and the blurred nature of BOLD hemody-
namic responses12,13. There were no significant differences in the pro-
portion of preferred orientations across different visual areas or different
visual field quadrants. Overall, orientation preference maps revealed
considerable local variability, indicating that global bias effects due to
eye movements or other factors cannot account for the high degree of
orientation-selective information that resides in these activity patterns.

Additional analyses showed that orientation selectivity remained
equally robust even when the fMRI data underwent normalization
to remove differences in mean activity levels across individual
activity patterns. Also, differences in mean activity level were small
(Supplementary Fig. 1), even between canonical and oblique orienta-
tions (the oblique effect17). Therefore, gross differences in response

amplitudes were not a critical source of orientation information for our
decoding analysis. We also tested if a global bias for radial orientations
might account for our results, as some studies have reported evidence of
a bias for orientations radiating outward from the fovea in retinal
ganglion cells and V1 neurons of the monkey18,19. We removed the
global response modulation along the radial dimension from each
activity pattern, by dividing voxels into the 16 polar-angle sections
obtained from retinotopic mapping, and then normalizing the mean
response within each set of iso-polar voxels to the same value for every
stimulus trial. After this normalization procedure, orientation selectiv-
ity diminished only slightly. The mean RMSEs of four subjects for
original and normalized data were 22.7 7 6.21 and 26.7 7 7.11,
respectively (200 voxels from V1/V2). Although global factors, such as
radial bias, might account for a small degree of the extracted orientation
information, local variations in orientation preference seem to provide
the majority of the orientation content in these fMRI activity patterns.

The scattered distribution and local variability of orientation pre-
ferences across cortex (Fig. 5) are consistent with the idea that random
variations in the distribution or response strength of individual
orientation columns can lead to small local orientation biases that
remain detectable at voxel-scale resolutions. To evaluate the viability of
this hypothesis, we performed simulations using one-dimensional
arrays of orientation columns, which were sampled by coarse-scale
voxels and analyzed by our orientation decoder. The array of voxels was
allowed to jitter randomly from trial to trial to mimic the effects of
small amounts of brain motion. We compared two types of column
arrays, one with regularly shifting preferred orientations (Fig. 6a) and
the other with small random variations in the shifted orientation
(Fig. 6b), as can be observed in columnar structures in animals.
Whereas the regular array showed poor orientation decoding perfor-
mance, the array with random variation resulted in very similar
performance to what was found from actual fMRI activity patterns in
the human visual cortex (Fig. 2). These results support the hypothesis
that a small amount of random variability in the spatial distribution of
orientation columns could lead to small local biases in individual voxels
that allow for robust decoding of ensemble orientation selectivity.

Mind-reading of attended orientation

Finally, we asked if the ability to characterize brain states correspond-
ing to different stimulus orientations can be extended to the problem
of mind-reading, that is, determining a subject’s mental state given

V1vV2vV2v V1v

V2 V1

S2 S3

Figure 5 Orientation preference map on flattened cortical surface. The color

maps depict the orientation preference of individual voxels on the flattened

surface of left ventral V1 and V2 for subjects S2 and S3 (scale bar, 1 cm).

Each cell delineated by thick lines is the cross-section of a single voxel

(3 � 3 � 3 mm) at the gray-white matter boundary. Voxel colors depict the
orientation detector for which each voxel provides the largest weight. The

overall color map indicates a template pattern that activates each detector

most effectively. The weights were calculated using 400 voxels from V1/V2,

including all the quadrants. Other subjects also showed scattered but

different patterns of orientation preference. Note that the color map indicates

only weak preference for one orientation over others. Simple averaging of the

voxels with the same orientation preference led to weak orientation tuning

(Supplementary Fig. 2), unlike the well-tuned responses of the optimally

weighted linear orientation detectors (Fig. 1b).

180°

90°

0°

a

b

Figure 6 Simulation of one-dimensional array of columns and voxels. (a,b)

Each column was assumed to respond to orientation input according to a

Gaussian-tuning function peaking at its preferred orientation (s.d., 451; noise

was added to the output). The preferred orientation shifted by a constant

degree (a) or by a constant degree plus noise (b). In each trial, a single

orientation was given as input, and the outputs of 100,000 columns (color

band) were sampled by 100 voxels (gray boxes). The actual location of voxel

sampling was randomly jittered on each trial (Gaussian distribution with s.d.
of a quarter voxel size) to take into account residual head motion. The

number of stimulation trials was chosen to match the fMRI experiment. The

sampled voxel data were analyzed using the same decoding procedure. As

can be seen in the polar plots on the right, orientation can be readily decoded

from the irregular array of columns (b), but not from the regular array (a).

Similar results were obtained with a wide range of simulation parameters.

Note that if voxel sampling is no longer jittered to mimic minor brain motion,

orientation can be decoded even from the regular column array. This is

because the high spatial frequency component can still persist after the

sampling by large voxels. However, given that pulsatile brain motion and

minor head motion cannot be fully eliminated or corrected with 3D alignment

procedures, it seems unlikely that such high-frequency information

contributes much to the orientation content in our fMRI data.
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knowledge of his or her brain state. Specifically, we tested if the
activity patterns evoked by unambiguous single orientations can be
used to decode which of two competing orientations is dominant in a
person’s mind under conditions of perceptual ambiguity. We hypothe-
sized that activity in early human visual areas, which was found here to
represent unambiguous stimulus orientations, may subserve a com-
mon role in representing the subjective experience of orientation when
two competing orientations are viewed. If so, then when subjects are
instructed to attend to one of two overlapping gratings (that is, plaid),
activity patterns in early visual areas should be biased toward the
attended grating.

First, subjects viewed single gratings of 451 or 1351 orientation
(Fig. 7a, top; black and white counterbalanced), and the resulting fMRI
activity patterns were used to train the orientation decoder. Then in
separate test runs, subjects viewed a plaid stimulus consisting of both
overlapping gratings (Fig. 7a, bottom). In each 16-s trial, subjects were
required to attend to one oriented grating or the other by monitoring
for small changes in the width of the bars in the attended grating while
ignoring changes in the unattended grating. The fMRI data obtained
while subjects viewed the two competing orientations were analyzed
using the decoder trained on fMRI activity patterns evoked by the
single gratings.

Orientation signals in early human visual areas were strongly biased
toward the attended orientation during viewing of the ambiguous
stimulus (Fig. 7b,c). Even though the same overlapping gratings were
presented in the two attentional conditions, fMRI activity patterns in
the visual cortex reliably predicted to which of the two orientations the
subject was attending on a trial-by-trial basis at overall accuracy levels
approaching 80% (P o 0.0005 for 4/4 subjects using 800 voxels from
V1–V4, chi square test). Analyses of individual visual areas showed that
ensemble activity was significantly biased toward the attended orienta-
tion in all four subjects for area V1 and also V2 (P o 0.05), and in
3/4 subjects for area V3 and areas V3a/V4v combined.

We did an additional control experiment to address whether eye
movements, orthogonal to the attended orientation, might account for
the enhanced responses to the attended grating by inducing retinal
motion. The visual display was split into left and right halves, and
activity from corresponding regions of the contralateral visual cortex
was used to decode the attended orientation in each visual field
(Supplementary Fig. 4). Even when the subject was instructed to pay
attention to different orientations in the plaids of the left and right
visual fields simultaneously, cortical activity led to accurate decoding of
both attended orientations. Because eye movements would bias only
one orientation in the whole visual field, these results indicate that the

attentional bias effects in early visual areas are not due to retinal motion
induced by eye movements.

The robust effects found in V1 and V2 suggest that top-down
voluntary attention acts very early in the processing stream to bias
orientation-selective signals. Although previous studies have re-
ported evidence of feature-based attentional modulation in the
visual cortex20–25, our results provide novel evidence that top-down
attention can bias orientation signals at the earliest stage of cortical
processing when two competing stimuli are entirely overlapping. These
results suggest that feedback signals to V1 and V2 may have an
important role in voluntary feature-based attentional selection of
orientation signals.

DISCUSSION

We have shown that fMRI activity patterns in the human visual cortex
contain reliable orientation information that allows for detailed pre-
diction of perceptual and mental states. By combining an ensemble of
weakly orientation-selective fMRI voxels, we could accurately differ-
entiate subtle variations in perceived stimulus orientation on a trial-by-
trial basis. Moreover, activity patterns evoked by unambiguous stimuli
could reliably predict which of two competing orientations was the
focus of a subject’s attention. These results demonstrate a tight
coupling between brain states and subjective mental states.

Models of human visual perception commonly assume orienta-
tion-selective units, similar to those found in animals, to account for a
variety of psychophysical data26. However, neurophysiological evidence
to support the existence of such mechanisms in the human brain
has been indirect27–29. Here, we found that early human visual
areas were indeed highly orientation selective, and that ensemble
orientation selectivity was most pronounced in areas V1 and V2
and progressively weaker in higher areas, consistent with neurophy-
siological data in monkeys10. Our results suggest that orientation
selectivity in the human visual system may closely resemble that of
nonhuman primates.

Previous neuroimaging studies have used multi-voxel pattern ana-
lysis to reveal broadly distributed object representations extending over
1–5 cm regions of the ventral temporal cortex7. Our approach for
measuring ensemble feature selectivity suggests that multi-voxel ana-
lyses may also be effective at extracting feature-tuned information at
much finer scales of cortical representation, by pooling together weak
feature-selective signals in each voxel, which may arise from variability
in the distribution of cortical feature columns or their vascular supply.
If this is indeed the case, then the approach proposed here could be
used to investigate a variety of feature domains, such as color selectivity,
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Figure 7 Mind-reading of attended orientation. (a) Procedure. First, a

decoder was trained using fMRI activity evoked by single gratings to

discriminate 451 versus 1351. Black and white gratings (equal contrast) were

counterbalanced across trials. In the attention experiment, a plaid pattern

composed of two gratings (black-white orientation assignment counter-

balanced) was presented. The color of the central fixation spot was changed

to indicate to which orientation (451 or 1351) the subject should attend in

each trial. The fMRI activity patterns obtained in the attention experiment
were classified by the decoder trained with single gratings. (b) Performance.

Gray lines plot decoded orientation responses for the ‘attend to 451’ and

‘attend to 1351’ conditions (S3, 800 voxels from V1–V4). Solid black lines

indicate attended orientations. (c) Performance across the human visual

pathway. The percentage of correct decoding is plotted by visual area (chance

level, 50%; 800 voxels for V1–V4 combined, 200 voxels for V1, V2, V3 and

V3a/V4v, and 100 voxels for MT+). Colored lines show the performance of

four individual subjects. Black points and lines depict the mean cross-

validation performance obtained with single gratings (training session).
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motion selectivity or feature tuning in other sensory and motor
modalities, and thus may provide a useful bridge between animal
studies and human neuroimaging studies.

We emphasize the importance of using linear approaches to study
ensemble feature selectivity. Our analysis relied on a linear weighting
procedure to measure the orientation-selective information inherent in
each voxel and to pool together the ensemble information from many
voxels. In contrast, nonlinear pattern analysis techniques could extract
orientation information even if every individual voxel lacked any
orientation selectivity. Flexible nonlinear approaches would allow for
nonlinear interactions between input voxels; these could be used to
construct nonlinear oriented filters to decode orientation on the basis
of pixel intensity information alone. Therefore, nonlinear methods may
spuriously reflect the feature-tuning properties of the pattern analysis
algorithm rather than the tuning properties of individual units within
the brain. For these reasons, it is important to restrict the flexibility of
pattern analysis methods when measuring ensemble feature selectivity.

Finally, our method of measuring ensemble feature selectivity proved
highly effective at decoding mental states from measured brain states.
Our results on the mind-reading of attended orientation address an
ongoing debate regarding the role of early visual areas and primary
visual cortex in visual awareness30,31. Voluntary top-down attention
strongly biased the pattern of orientation responses at the earliest stages
of cortical processing in V1 and V2. These results suggest that feedback
projections to these early visual areas may be important in feature-
based attentional selection and in maintaining a particular orientation
in awareness. More generally, the mind-reading approach presented
here provides a potential framework for extending the study of the
neural correlates of subjective experience32. True understanding of the
neural basis of subjective experience should allow for reliable prediction
of a person’s mental state based solely on measurements of his or her
brain state. By analyzing ensemble activity from human cortex, we were
able to extract information about the person’s subjective mental state
under conditions of ambiguity. Our approach may be extended to
studying the neural basis of many types of mental content, including a
person’s awareness, attentional focus, memory, motor intention and
volitional choice. Further development of such mind-reading
approaches may eventually lead to potential applications for non-
invasive brain-machine interface33,34 by providing effective procedures
to translate brain activity into mental contents.

METHODS
Subjects. Four healthy adults with normal or corrected-to-normal visual

acuity participated in this study. All subjects gave written informed consent.

The study was approved by the Institutional Review Panel for Human Subjects

at Princeton University.

Experimental design and stimuli. Visual stimuli were rear-projected onto a

screen in the scanner bore using a luminance-calibrated LCD projector driven

by a Macintosh G3 computer.

Each experimental run to measure fMRI responses to gratings consisted of a

series of 16-s stimulus trials (with no intervening rest periods), plus 16-s

fixation-rest periods at the beginning and at the end of each series.

In the eight-orientation experiment, each run had eight trials for eight

different orientations (01, 22.51y157.51). In each trial, a square-wave annular

grating of a given orientation (B100% contrast, 1.5 cycles per degree; 1.51–101

of eccentricity) was flashed at 2 Hz (on/off for 250 ms). The spatial phase of the

grating was randomized in each frame so that the pixel intensity did not carry

information about orientation. Because of the long temporal interval between

flashed gratings, apparent motion among the gratings was hardly visible35. The

subject passively viewed the stimulus while maintaining fixation on a central

fixation spot. The order of orientation conditions was randomized in each run.

Each subject performed 20–24 runs for a total of 20–24 trials per orientation.

In the attention experiment, we interleaved two types of runs, training and

test runs. In each trial of the training runs, either a 451 or 1351 grating (black

or white stripes; 0.75 cycles per degree) was flashed on a gray background at

0.5 Hz (on for 1,750 ms, off for 250 ms) with a randomized spatial phase. The

subject monitored the thickness of the stripes, and reported whether they were

thick or thin (one- or two-pixel difference) by pressing a key within each 2-s

stimulus frame. A single run had 16 trials, and 6 runs were repeated in each

subject. The order of orientation (451 or 1351) and stripe color (black or white)

was randomized.

In the test runs of the attention experiment, two overlapping gratings of 451

and 1351 (white and black, or black and white; counterbalanced across trials)

were flashed with the same time course as in the training runs. The intersec-

tions of the white and black stripes were gray to enhance the perceptual

segregation of the two gratings. During each 16-s trial, the color of the fixation

spot was either red or green (randomized), indicating which grating (451 or

1351) the subject should monitor for changes in thickness. (The color-

orientation rule was reversed in the middle of the experiment.) A single run

had 16 trials, and 6 runs were repeated in each subject. The overall performance

of the task was 79 7 5% correct with a 50% chance level. Thus, the task was

difficult enough to restrict attention to one of the gratings.

In the same session, subjects viewed a reference stimulus to localize the

retinotopic regions corresponding to the stimulated visual field. The ‘visual

field localizer’ composed of high-contrast dynamic random dots was presented

in an annular region for 12-s periods, interleaved with 12-s rest/fixation

periods, while the subject maintained fixation. We used a smaller annular

region for the visual field localizer (21–91 of eccentricity) than for the gratings

(1.51–101) to avoid selecting voxels corresponding to the stimulus edges, which

may contain information irrelevant to grating orientation. In separate sessions,

standard retinotopic mapping12,36 and MT+ localization procedures37–39 were

done to delineate visual areas on flattened cortical representations.

MRI acquisition. Scanning was performed on a 3.0-Tesla Siemens MAGNE-

TOM Allegra scanner using a standard head coil at the Center for the Study of

Brain, Mind and Behavior, Princeton University. A high-resolution T1-

weighted anatomical scan was acquired for each participant (FOV 256 �
256, 1 mm3 resolution). To measure BOLD contrast, standard gradient-echo

echoplanar imaging parameters were used to acquire 25 slices perpendicular to

the calcarine sulcus to cover the entire occipital lobe (TR, 2,000 ms; TE, 30 ms;

flip angle, 901; slice thickness, 3 mm; in-plane resolution, 3 � 3 mm). A

custom-made bite bar was used to minimize head motion.

Functional MRI data preprocessing. All fMRI data underwent three-dimen-

sional (3D) motion correction using automated image registration software40,

followed by linear trend removal. No spatial or temporal smoothing was

applied. The fMRI data were aligned to retinotopic mapping data collected in a

separate session, using Brain Voyager software (Brain Innovation). Automated

alignment procedures were followed by careful visual inspection and manual

fine-tuning at each stage of alignment to correct for misalignment error. Rigid-

body transformations were done to align fMRI data to the within-session 3D

anatomical scan, and next to align these data to retinotopy data. After our

alignment procedure, any residual misalignment between fMRI scans collected

across the two sessions appeared very small (less than 1 mm) and were likely of

comparable order of magnitude to brain motion resulting from respiration,

heart rate and residual head movement while subjects were stabilized with a

bite bar. After across-session alignment, fMRI data underwent Talairach

transformation and reinterpolation using 3 � 3 � 3 mm voxels. This

transformation allowed us to restrict voxels around the gray-white matter

boundary and to delineate individual visual areas on flattened cortical

representations. However, these procedures involving motion correction and

interpolation of the raw fMRI data may have resulted in the reduction of

orientation information that may be contained in fine-scale activity patterns.

Voxels used for orientation decoding analysis were selected on the cortical

surface of V1 through V4 and MT+. First, voxels near the gray-white matter

boundary were identified within each visual area using retinotopic maps

delineated on a flattened cortical surface representation. Then, the voxels were

sorted according to the responses to the visual field localizer (V1–V4) or to the

MT+ localizer. We used 200 voxels for each of areas V1–V4 (100 voxels when
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dorsal and ventral parts were separately analyzed) and 100 voxels for MT+ by

selecting the most activated voxels.

The data samples used for orientation decoding analysis were created by

shifting the fMRI time series by 4 s to account for the hemodynamic delay, and

then averaging the MRI signal intensity of each voxel for each 16-s stimulus

trial. Response amplitudes of individual voxels were normalized relative to the

average of the entire time course within each run (excluding the rest periods at

the beginning and the end) to minimize baseline differences across runs. The

resulting activity patterns were labeled according to their corresponding

stimulus orientation and served as input to the orientation decoder analysis.

Decoding analysis. The calculation performed by each linear ensemble

orientation detector with preferred orientation yk can be expressed by a linear

function of voxel inputs x ¼ (x1, x2,y, xd) (‘linear detector function’)

gy
k
ðxÞ ¼

Xd

i¼ 1

wixi + w0

where wi is the weight of voxel i and w0 is the bias. To achieve this function for

each orientation, we first calculated linear discriminant functions for pairs of

orientations using machine learning–pattern recognition algorithms. Linear

support vector machines15 (SVM) were used to obtain the results presented

here, although other algorithms, such as Fisher’s linear discriminant method

(combined with principal component analysis) and Perceptrons, could be used

to yield similar results. The discriminant function, gy
k
y

l
(x) for the discrimina-

tion of orientations yk and yl , is expressed by a weighted sum of voxel inputs

plus bias, and satisfies

gy
k
y

l
ðxÞ4 0 ðx is fMRI activity induced by orientation ykÞ

gy
k
y

l
ðxÞo 0 ðx is fMRI activity induced by orientation ylÞ:

Using a training data set, a linear SVM finds optimal weights and bias for the

discriminant function. After the normalization of the weight vectors, the

pairwise discriminant functions comparing yk and the other orientations were

simply added to yield the linear detector function

gy
k
ðxÞ ¼

X

m 6¼ k

gykym ðxÞ:

This linear detector function becomes larger than zero when the input x (in the

training data set) is an fMRI activity pattern induced by orientation yk. In our

method, orientation is treated as a categorical variable, and no similarity

among orientations is assumed.

To evaluate orientation decoding performance, we performed a version of

cross-validation by testing the fMRI samples in one run using a decoder trained

with the samples from all other runs. This training-test set was repeated for all

runs (‘leave one run out’ cross-validation). We used this procedure to avoid

using the samples in the same run both for training and test, as they are not

independent because of the normalization of voxel intensity within each run.

Note: Supplementary information is available on the Nature Neuroscience website.
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