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One of the most robust experience-related cortical

dynamics is reduced neural activity when stimuli are

repeated. This reduction has been linked to performance

improvements due to repetition and also used to probe

functional characteristics of neural populations. How-

ever, the underlying neural mechanisms are as yet

unknown. Here, we consider three models that have

been proposed to account for repetition-related

reductions in neural activity, and evaluate them in

terms of their ability to account for the main properties

of this phenomenon as measured with single-cell

recordings and neuroimaging techniques. We also

discuss future directions for distinguishing between

these models, which will be important for understand-

ing the neural consequences of repetition and for

interpreting repetition-related effects in neuroimaging

data.
Introduction

When stimuli are repeated, neural activity is usually
reduced. This neural repetition effect has been reported at
multiple spatial scales, from the level of individual cortical
neurons in monkeys [1–3] to the level of hemodynamic
changes (measuring the pooled activation of millions of
neurons) in humans using functional magnetic resonance
imaging (e.g. fMRI [4–10]). Repetition-related reductions
also occur at multiple temporal scales, both in their
longevity – from milliseconds [3] to minutes [9] and days
[11] – and in the latency of their expression [12,13]. The
phenomenon also occurs in multiple brain regions, and
across an impressively large number of
experimental conditions.

This stimulus-specific reduction in neural activity has
been referred to as adaptation [14–16], mnemonic
filtering [17], repetition suppression [18], decremental
responses [19] and neural priming [20]. We will use
‘repetition suppression’ (RS) to refer to decreased neural
responses following stimulus repetition. As will be
apparent below, it is important to distinguish the scale
at which RS arises, because the correspondence across
scales (e.g. neural firing and hemodynamic responses)
might not be simple.
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Interest in repetition effects has recently intensified,
for two main reasons. First, repetition effects have proved
useful for inferring the nature of representations across
different stages of a processing stream. This approach has
been used behaviorally (e.g. using visual aftereffects to
infer the nature of orientation tuning [21] or face
representation [22,23]), with single-cell recording [24],
and more recently has become popular with fMRI,
particularly given claims that it enables improved spatial
resolution [7] (Box 1). The second reason for heightened
interest is the possibility that RS might be the neural
correlate of priming [25–27]. Priming refers to improved
processing of a repeated stimulus according to some
behavioral measure (e.g. greater accuracy in identifying
the stimulus, or faster response times to make a decision
about it), and often occurs under the same experimental
conditions as RS. Nevertheless, it is important to note
that, under certain conditions, priming can be associated
with increased activity, rather than reduction (for
discussion of repetition enhancement effects and changes
in frontal cortices that might contribute to priming, see
[27,28]).

The purpose of this review is to consider several kinds
of neural models that have been proposed to account for
repetition suppression (RS). We focus primarily on studies
using visually presented objects and their effects on the
ventral object processing stream, to maximize overlap
between monkey and human studies. We evaluate the
neural models in terms of their ability to account for the
main properties of RS as measured with single-cell
recordings, fMRI and electroencephalogram/magnetoen-
cephalogram (EEG/MEG), discuss implications of these
models for interpreting experimental results, and propose
directions for distinguishing between the models.
Repetition suppression as measured with single-cell

recording

Stimulus-specific repetition-related reductions in firing
rates have been found in physiological recordings of
neurons in macaque inferior temporal (IT) cortex [14,15,
17–19] (Figure 1). These repetition effects have been
reported for awake behaving animals performing various
visual tasks (e.g. match to sample [17], recognition
memory [19,29]), as well as in anesthetized animals [30],
and occur for both behaviorally relevant and irrelevant
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Box 1. fMRI-adaptation: a method to characterize the nature of neural representations

The method of fMRI-adaptation is hypothesized to be able to

characterize the functional properties of neural populations at

subvoxel resolutions [16]. First, one measures the basic repetition

suppression (RS) effect induced by repetitions of identical stimuli.

This is done by adapting cortex with a repetitive presentation of

specific stimulus or by measuring RS on subsequent repetitions after

a single presentation of a stimulus. In general, repetition of an

identical stimulus produces an immediate decrease in the fMRI signal

(Figure 2). After repetition, subjects are presented with a stimulus that

is varied along one dimension. If the underlying neural representation

is insensitive to the change in the stimulus then the fMR signal will be

reduced similar to the reduction produced by repetitions of identical

stimuli. Alternatively, if the neurons are sensitive to the transform-

ation, the fMR signal will return to the original (non-adapted) level.

fMRI-adaptation has been widely used by researchers to examine

selectivity in object-selective cortex to object transformations [7,37,

46], object format [36], perceived shape [79], contour completion

[48] and face representation [7,80,81]. It has also been used to

probe higher-level conceptual representations using object pictures

[82] and words [83]. These studies have documented that fMRI-

adaptation in occipitotemporal cortex is not limited to the identical

image, but also occurs (albeit to a lesser extent) to transformed

versions of the same object, to different exemplars that share the

same name (e.g. two different umbrellas), and even to different

words that are conceptually related [83]. Finally, fMRI-adaptation

has also been used to examine sensitivity to specific types visual

information, such as orientation tuning [84,85], color [85,86] and

sensitivity to motion information [87–89].
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stimuli [2]. RS effects are stimulus specific in the sense
that they do not appear to reflect a global reduction in the
firing of a population of neurons to all subsequent stimuli
[17]. Nonetheless, the precise definition of a ‘stimulus’ is
important, because neural RS can exhibit invariance to
some changes in stimulus dimensions (such as the size or
position of an object [24]).

The degree of RS depends on several factors, although
the precise effect of each factor can vary with brain region.
RS persists despite many intervening stimuli, particularly
in more anterior regions of IT cortex [2,31]. RS increases
with more repetitions of the same stimulus, such that
firing rates resemble an exponentially decreasing function
of presentation number [1]. This reduction in firing rates
occurs primarily for visually excited neurons, [14] and the
greatest reduction tends to occur for neurons that were
most active on the first presentation [1]. Importantly,
several studies indicate that RS onsets rapidly, as fast as
70–80 ms in some perirhinal neurons [31] and with a
mean population latency of around 150 ms in IT [15].
Indeed, Xiang and Brown [31] suggested that these effects
are too fast for ‘top-down’ influences.

An important concern for the present discussion is the
proportion of neurons showing RS. The best available
estimates suggest that significant RS occurs for w50–67%
of visually responsive neurons in IT cortex [2,15]. There
are two possible interpretations of these data. One is that
they reflect two different neural populations: One showing
RS, and the other showing no reduction in response [19].
Alternatively, there might be a single population, in which
all neurons show some degree of RS (with the failure to
observe RS in some neurons simply the result of limited
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Figure 1. Object repetition effects in a neuron in macaque IT cortex. Averaged

responses to stimuli appearing as samples (first presentation), non-matches (first

presentation of a new stimulus after a sample) or matches (repeated presentation of

the sample stimulus). Responses are averaged across six stimuli, in 10-ms bins. The

bar beneath each graph shows stimulus presentation. Y-axis denotes firing rate in

spikes per second. (Reproduced with permission from [1].)
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power to detect a significant reduction). However,
the exact relationship between RS and the degree of
stimulus specificity has not been determined. This is a
crucial issue that we will return to later (see section below:
‘Distinguishing the neural models’).
Repetition suppression as measured with fMRI

The basic phenomenon of RS measured with fMRI, also
referred to as fMRI-adaptation, has been replicated many
times in ventral temporal cortex (see review [32]) as well
other areas such as medial temporal [6] and frontal cortex
[33–35]. Many adaptation paradigms have been used to
measure RS, including multiple repetitions of the same
stimulus without intervening items [7] (Figure 2a: block
design), or after a single presentation with either no [36]
or many [37] intervening items (Figure 2a: rapid event-
related). Thus, the properties of RS listed below might
vary not only across different brain regions, but also as a
function of the paradigm and task [38] (Box 2).

As with single-cell data, fMRI responses tend to
decrease monotonically with the number of repetitions
[9,16,39], often reaching a plateau after six to eight
repetitions [8,39]. RS is maximal when there are no
intervening stimuli between repeats [13,39], but has also
been observed with tens of intervening stimuli [9] and
even after multiple days between presentations [11,35,40].
Other factors that affect the level of RS are stimulus
contrast [41], attention [42–44] and the duration of the
initial stimulus presentation [45]. RS has also been
reported for subliminal stimuli [10]. Some studies have
argued that RS occurs across a wide expanse of object-
responsive cortex, and not only in regions within that
cortex that show maximal responses to particular stimuli
[40,41]. However, the relationship between RS and
stimulus selectivity has not been tested directly.

The first study to use fMRI-adaptation to probe the
sensitivity of object representations to object transform-
ations (size, position, viewpoint, and illumination) was
conducted by Grill-Spector and colleagues [7] (Box 1).
They found that the posterior section of lateral occipital
cortex (LO), which is known to be object selective, showed
sensitivity to many object transformations including size
and position; however, more anterior object-selective
regions were to some extent invariant to size and position,
but sensitive to object rotation or illumination. A later
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Figure 2. Object-repetition effects measured with fMRI: single subject data. (a) Time

course of fMRI activation in object-selective cortex. Object-selective cortical regions

were defined as regions that showed higher activation for animal stimuli than for

scrambled animals, with p!0.001 at the voxel level [94]. Black: first presentation of

the stimulus; Red: repeated versions of the same stimulus. Horizontal gray bar

indicates stimulus presentation. Error bars indicate the standard error of the mean

across trials for this subject. Block design (left graphs): images were presented in

blocks of 12 animals (either different animals or all the same). Blanks of 250 ms

appeared between consecutive images. 0–2 catch trials of scrambled images were

included in each block to control for attention. Rapid event-related design (right

graphs): images of animals were presented in rapid sequence, all images repeated

8 times, with the number of intervening stimuli between repeats varied from zero to

O16 [39]. (b) Activation maps. Colored regions showed significantly lower

activation for repeated than for non-repeated images, with p!0.005 at the voxel

level (block design experiment). (Adapted from [7,39].)
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study by Vuilleumier and colleagues [37] used an event-
related paradigm and reported similar results regarding
size invariance, but found differential sensitivity to object
rotation across hemispheres: the left hemisphere dis-
played invariance to object rotation, the right did not. A
related study by James et al. [46] found higher invariance
to object rotation in the ventral than the dorsal stream.
www.sciencedirect.com
The different levels of rotation invariance found across
studies could depend on the objects used, the degree of
rotation and the type of paradigm used.

More recently, researchers have used fMRI-adaptation
paradigms with monkeys [47–49]. This provides an
important link between methodology (single-cell vs.
fMRI) and species (monkeys vs. humans). For example,
Sawamura et al. [49] found comparable size invariance, as
inferred via fMRI-adaptation, for objects presented to both
monkeys and humans.

Repetition effects as measured with EEG/MEG

Repetition effects have also been studied by measuring
changes in the electrical (EEG) or magnetic (MEG) field,
usually recorded above the scalp. These effects reflect
changes in the amplitude and/or synchrony of local field
potentials (LFPs) caused by transmembrane currents in
large numbers of neurons. Most EEG studies examine
event-related potentials (ERPs), which reflect changes in
electrical potential during the few hundred milliseconds
following stimulus onset, averaged across trials. The
earliest object repetition effects are typically observed
w200 ms after stimulus onset [13,50–52]. Henson et al.
[13], found effects of repeating the same view of an object
as early as 160–190 ms when there were no intervening
objects; with one or more intervening objects, repetition
effects only emerged from w200 ms. Schendan and Kutas
[50] showed that repetition produced an ERP difference
between 140 and 250 ms that was greater for objects
repeated with the same view than with a different view,
whereas later time windows (400–700 ms) showed repe-
tition effects with greater generalization across views.
ERP studies using long-lag repetition of faces, including
studies that record directly from the cortical surface
(in patients undergoing surgery [53]), tend to find that
repetition effects emerge only after the first face-specific
ERP component, the ‘N170’ [54,55]. Together, these
studies suggest that when there are intervening stimuli
between object repetitions, repetition effects on ERPs tend
to occur soon after initial stimulus-specific components
(O200 ms; Figure 3a), unless there is a change in view,
in which case the effects emerge later (O400 ms).

Other EEG studies concentrate on changes in the
power of electrical or magnetic oscillations that are
induced by stimulus repetition (high-frequency oscilla-
tions are not observed in ERPs if they are not phase-locked
across trials). Some studies report decreased high
frequency (O40 Hz) power around 220–350 ms for repe-
tition of familiar objects across lags of one or two
intervening objects [52] (Figure 3b). Such changes in
power in certain frequency bands have been shown to
correlate with the blood oxygenation-level-dependent
(BOLD) changes measured by fMRI [56].

Recent methods for distributed source localization of
high-density EEG/MEG data provide estimates of spatio-
temporal patterns of activity over the cortex and suggest
that prefrontal activity might precede repetition effects in
ventral temporal cortex. For example, Dale and colleagues
[12] estimated that the onset for repetition effects (for
words) recorded by MEG was w250 ms in ventral cortex,
which was after activity had reached frontal cortex

http://www.sciencedirect.com


Box 2. Experimental assay of repetition suppression (RS) as measured by BOLD

Several procedural issues need to be kept in mind when comparing RS

effects across different studies: the number of repetitions; time

between repetitions; the paradigm used (prolonged repetition, i.e.

adaptation, versus brief presentations); whether repeated stimuli are

compared with initial presentations of the same stimuli or with initial

presentations of different stimuli; whether the repetitions are task

relevant or irrelevant [27]. RS is a relative measure, so it is important to

remember that even the baseline condition (e.g. a series of different,

non-repeated objects) might have some degree of RS owing to shared

stimulus properties.

It is also important to distinguish studies that examine RS during

intermixed initial and repeated presentations (event-related design)

from those that compare the mean activity during a block of stimuli

(repeat vs. non-repeat blocks). Block designs have the advantage of

prolonged repetition that increases the magnitude of RS. However,

additional factors, such as attention and expectation, might also

contribute to differences in the BOLD signal. Thus it is important to

control these factors across conditions. Subliminal priming paradigms

overcome many of these problems [10], although subliminal effects

tend to be smaller (and might be qualitatively different [60]).

Other designs compare the responses of two stimuli presented

sequentially, in which the pair consists of either two presentations

of the same or different stimuli [36]. This approach combines the

advantage that short-lag repetition effects tend to be larger with the

advantage of a reduced predictability of repetition (if the order of

‘same’ and ‘different’ pairs is randomized). However, it has a

potential disadvantage that the RS effect might be a small

proportion of the total BOLD response to both stimuli within a

pair. Further, depending on the interval between stimuli, one might

have to consider additional factors such as potential non-linearities

in the relationship between neural activity and BOLD response at

short interstimulus intervals.

Review TRENDS in Cognitive Sciences Vol.10 No.1 January 2006 17
(w185 ms). A recent study that localized broadband (4–
50 Hz) MEG power reported increased power for repeated
vs. first presentations of objects from 120–230 ms in
frontal cortex, followed by decreases from 350–440 ms in
TRENDS in Cognitive Sciences 
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Figure 3. Object-repetition effects measured with EEG. (a) ERPs from posterior left

and right electrodes, in response to line drawings of familiar objects, repeated with

1–2 intervening objects. Data averaged across 11 participants. Black: first

presentation of the stimulus; Red: repeated versions of the same stimulus. The

difference between repeated and non-repeated curves is only reliable by the third

time-window (230 ms onwards); the early deflections within the first two time-

windows did not show significant repetition effects in this study. (b) Amplitude of

EEG as a function of time and frequency for first (left plot) and repeated (right plot)

presentations, using same paradigm as in (a). Power spectrograms were calculated

on the basis of single trials, after subtracting the mean evoked response, and

therefore reflect components that are not phase-locked to stimulus onset (see [52]

for more details). Note the decrease in amplitude (color change towards green)

from 220–350 ms (black box) for repeated relative to first presentations. This

decrease occurs in the frequency band above 30 Hz (gamma band). (Data

reproduced with permission from [52].)
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fusiform cortex [57]. These studies indicate multiple
repetition effects across both space and time. They also
suggest that some (long-lag) repetition effects in ventral
temporal cortex might arise relatively late (contrary to the
single-cell data), perhaps after interactions with
frontal cortex.
Relating different types of data

Relating the data recorded from single cells by electrodes
(firing rates, multi-unit activity: MUA, or LFP) to the data
recorded by fMRI (BOLD) and by EEG/MEG (synchronous
changes in LFPs over many neurons) is non-trivial. In
general terms, increases in MUA correlate with increases
in LFP, and increases in LFP correlate with increases in
BOLD [58] and presumably EEG/MEG power. However,
the special constraints of each technique give rise to
situations where their measures might dissociate. For
example, single-cell recording is biased towards large
excitatory neurons and might not capture changes in
smaller cells. Moreover, changes in LFPs from presynaptic
activity might not always produce changes in postsynaptic
firing (e.g. if excitatory and inhibitory presynaptic activity
cancel out). Thus, in principle, presynaptic activity in
neurons could increase, causing increases in BOLD and
MEG/EEG power, even if the firing rates of neurons in
that region did not. Furthermore, changes in the
synchrony but not amplitude of LFPs could, in principle,
be reflected in EEG/MEG signals, but not BOLD.
Conversely, changes in LFPs in neurons that are not
aligned might have detectable BOLD signals without
detectable EEG/MEG signals. In addition, because the
BOLD signal integrates over several seconds, transient
effects or small shifts in the latency of neural activity
might be difficult to detect with fMRI. Finally, issues
concerning experimental design need to be taken into
account when comparing across methodologies or even
within a methodology (Box 2).

A related issue is that repetition effects in one region
might change the balance of inputs this region sends to a
second region, thus producing effects beyond the region
that showed RS. For example, Tolias and colleagues [59]
found that neurons in macaque visual area V4, which are
not selective for motion direction, become selective for
motion direction after adaptation to motion [47]. They

http://www.sciencedirect.com
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Fatigue model
Less overall activation

Sharpening model
Fewer neurons

Facilitation model
Less processing time

Figure 4. Models for RS. To distinguish between our models we will use a schematic neural network consisting of three putative cortical processing stages. (a) The visual

stimulus is assumed to cause activity in the input layer (corresponding to early visual cortex) before being processed in a hierarchical sequence of stages. The blue graphs

indicate spiking (as a function of time) of the neurons with highest response at each stage (indicated by black circles). (b) Because the BOLD signal integrates neuronal activity

over time, all three of these models predict reduced BOLD for repeated stimuli, but for different reasons: Fatigue model (left, lower firing rates); Sharpening model (centre,

fewer neurons responding); Facilitation model (right, shorter duration of neural processing).
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suggest that V4 neurons normally receive balanced inputs
from motion-selective neurons in the middle temporal
area, MT, but that after adaptation the input from MT
becomes unbalanced, resulting in motion-selective
responses in V4. This finding is relevant for the use of
RS to infer the nature of representations in different brain
regions (Box 1).

Models for repetition suppression

There are multiple potential neural causes of the RS
measured with single-cell recording, fMRI or EEG/MEG.
We now describe three models that have been sketched
previously in the literature (Figure 4): (i) the Fatigue
model, whereby the amplitude of firing of stimulus-
Box 3. Potential neural mechanisms underlying repetition supp

At least four mechanisms might play a role in RS (i.e. the reduction in

spiking rates following repetition) at the neural level:

(1) Firing-rate adaptation. This reflects reduced excitability of

neurons owing to an increase in potassium ion currents that

hyperpolarize the membrane potential and increase its conductance

[61]. This in turn reduces the impact of synaptic inputs and hence

lowers the probability of neural spiking. This effect tends to be short

lived, decaying over hundreds of milliseconds, although possibly

lasting tens of seconds (when potassium currents are activated by

sodium ions [90]).

(2) Synaptic depression. This is a temporary reduction in synaptic

efficacy that is believed to reflect reductions in presynaptic neuro-

transmitter release [91]. The effect depends on pre- (rather than post-)

synaptic activity and can last tens of seconds for excitatory synapses

(it tends to be shorter-lived for inhibitory synapses).

(3) Long-term depression (LTD). This longer-lasting mechanism

www.sciencedirect.com
responsive neurons decreases [2,16]; (ii) the Sharpening
model, whereby fewer neurons respond [1,18,26]; and (iii)
the Facilitation model, whereby the latency [60] and/or
duration of neural activity is shortened [3,27]. An
important consideration to keep in mind is how each of
these models increases processing efficiency.

Fatigue model

According to this model, all neurons initially responsive to
a stimulus show a proportionally equivalent reduction in
their response to repeated presentations of the same
stimulus. As a consequence the mean population firing
rate declines but there are no changes in the pattern of
relative responses across neurons, or in the temporal
ression (RS)

reflects plasticity changes owing to correlated pre- and postsynaptic

activity and normally entails multiple stages, including decreases in

calcium concentration, perhaps even gene expression and ultimately

protein synthesis. LTD reflects a reduction in synaptic efficacy [92],

normally follows low-frequency stimulation and can last at

least hours.

(4) Long-term potentiation (LTP). Like LTD, this long-lasting

mechanism entails multiple stages and might come in several forms

(depending on the precise receptor type). LTP reflects an increase in

synaptic efficacy. Both LTP and LTD have been best studied for

excitatory (glutamatergic) synapses, for which they tend to increase or

decrease, respectively, the probability of spiking following presyn-

aptic input. Although controversial, similar mechanisms might also

operate on inhibitory synapses (from interneurons [93]), in turn

causing either decreases or increases in spiking

probability respectively.
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Figure 5. Implications of models for neural tuning following repetition. Tuning curves before (black) and after (gray) repetition. The central stimulus in each case was

repeated. (a) Fatigue model suggests that repetition will reduce overall response in proportion to initial response, but the preferred stimulus and tuning width will not change.

(b) Sharpening model predicts that repetition will narrow the tuning bandwidth, that is, sharpen the response around the preferred stimulus. (c) Facilitation model does not

make strong predictions for any particular change in tuning curves (although in some kinds of attractor networks, the tuning curves might even widen).
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window in which neurons are responding. One mechanism
for fatigue could be firing-rate adaptation (Box 3), in which
the reduction in a neuron’s firing rate is proportional to its
initial response [1,41] (similar to a gain mechanism [61]).
However, this mechanism does not explain the specificity
of RS, that is, why the neuron’s response is reduced to
some stimuli, yet resumes high firing rates to other
stimuli. An alternative mechanism is reduced synaptic
efficacy of specific synapses from connected neurons
(synaptic depression; Box 3). In this manner, only specific
patterns of presynaptic input to the neuron (which are
stimulus dependent) reduce its firing rate. This type of
mechanism has been implicated in early visual cortex and
usually occurs with prolonged repetitive stimulation.

One prediction from this model is that the amount of RS
will be greater in neurons that respond optimally to a
stimulus than in other neurons (Figure 5a). As a result,
the sensitivity of the system to stimuli that are different
from the repeating stimulus is increased, thereby provid-
ing a mechanism for ‘novelty detection’. Reducing the
firing rate might also help prevent saturation of the
neural response function by increasing its dynamic range.
Another advantage hypothesized for such a mechanism is
that it reduces redundancies in the neural code, which
increases the efficiency of information encoding [62].

However, it is not immediately clear how reduced firing
rates can account for increased speed and accuracy of
processing repeated stimuli (in addition to increased
sensitivity to novel stimuli), as arises in priming. One
explanation is provided in a computational model by Gotts
(S. Gotts, PhD thesis, Carnegie Mellon University, USA,
2003), in which a reduction in the mean and variance of
firing rates allows for greater synchrony of neural
responses. Greater synchrony of presynaptic input is
believed to be more effective in triggering a postsynaptic
response [63], which would imply more rapid transmission
of information throughout the network, resulting in faster
responses (priming). A key prediction of this model is that
synchrony can increase while stimulus-specific firing
rates decrease. Although there is evidence in support of
this possibility [64], others have argued for the opposite
effect [65]. An increase in synchrony might also be difficult
www.sciencedirect.com
to reconcile with observations of reduced oscillatory power
following stimulus repetition [52], although it is possible
that decreased amplitude of local field potentials out-
weighs the increased synchrony of those potentials.
Sharpening model

Desimone and colleagues [18] and Wiggs and Martin [26]
have suggested that repetition results in sparser rep-
resentation of stimuli. According to this model, some – but
not all – neurons that initially responded to a stimulus will
show RS to subsequent presentation of that stimulus.
Importantly, it is the neurons that code features irrelevant
to identification of a stimulus that exhibit RS (Figures
4,5b). Thus, repetition-related changes are viewed
primarily as a learning process, in which representations
(e.g. tuning curves, Figure 5b) are ‘sharpened’ and, as a
consequence, the distributed representation becomes
sparser, resulting in fewer responsive neurons in total.
An important difference between the Sharpening and
Fatigue models is that, for Sharpening, many of the
neurons that are optimally tuned to the repeating
stimulus should show little or no response reductions,
rather than exhibit the greatest response reduction, as in
the Fatigue model.

Sparser representations clearly have adaptive value in
terms of a reduced metabolic cost. Also, because the
representation becomes sharper (tuning curves become
narrower, Figure 5b), the neurons become more sensitive
to change. Sparser representations might also allow for
more efficient or faster processing, although this depends
on the manner in which their information is read-out by
downstream neurons. Because the Sharpening model
suggests a changed and improved representation for
repeated stimuli, this model has been widely used to
explain priming [26,27,45]. However, a recent study
suggests that some RS in object-selective cortex might
reflect response learning and implies that object represen-
tations do not necessarily reorganize as a consequence of
repetition [66].

The mechanism underlying the formation of sparser
representations is unknown but could reflect inhibition
from lateral connections between neurons within
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a population. For example, Norman and O’Reilly [67] used
a competitive Hebbian learning rule to simulate the
sharpening of representations with repetition (within
medial temporal cortex). Initially, many neurons respond
weakly to a distributed input pattern representing the
stimulus. Through competitive interactions, the neurons
with the strongest initial response become ‘stronger’, and
inhibit the ‘weaker’ neurons. Thus some neurons show
increased firing rates following repetition, whereas others
show decreased firing rates. By assuming that the number
of ‘strong’ units is less than the number of ‘weak’ units, the
population response decreases with repetition because
there are more neurons showing reduced activity than
showing increased activity. If information from only those
neurons with high firing rates is ‘read out’ by downstream
neurons, their increased firing rate following repetition
(despite the global decrease) could explain the faster
processing of repeated stimuli.

Facilitation model

At its simplest, this model predicts that repetition causes
faster processing of stimuli, that is, shorter latencies or
shorter durations of neural firing. One example is the
‘accumulation’ model of James et al. [60], in which
stimulus information is accrued faster following rep-
etition. Given that the hemodynamic signal measured by
fMRI integrates over several seconds of neural activity, a
shorter duration of activity results in a decreased
amplitude of the fMRI signal. A shorter duration of neural
activity is also consistent with earlier peaking of the fMRI
response [68], and might explain why decreases in firing
rate can appear to arise after the initial visual response
[15]: the neurons initially fire robustly to both first and
repeated presentations, but this firing stops sooner for
repeated presentations.

An extension of the Facilitation model assumes that the
cause of this faster processing is synaptic potentiation
between neurons following an initial stimulus presen-
tation, and that this potentiation can occur at many levels
in the processing stream. As a consequence, information
flows through the stream more rapidly, and hence
identification of a repeated stimulus occurs faster. In
terms of attractor neural network models, synaptic
potentiation might be viewed as deepening the basin of
attraction, resulting in a shorter time for the network to
settle on a stable pattern corresponding to identification of
the stimulus. An example of such a dynamical, network
model is sketched by Friston [69]. The key idea behind this
model is that the firing rate of the long-range excitatory
(output) neurons in a population codes ‘prediction error’
[70], which is the difference between bottom-up input
(‘evidence’) and top-down input (‘prediction’). The
dynamics of the network are such that prediction error
decreases over time after stimulus onset, and synaptic
changes serve to accelerate this decrease when the
stimulus is repeated (i.e. repetition improves prediction).

This emphasis on recurrent activity between many
levels of the processing stream is consistent with the
spatiotemporal pattern of repetition effects emerging from
MEG/EEG data. Moreover, if interregional interactions
require an initial volley of activity through the network
www.sciencedirect.com
[71], this model could further explain the relatively late
onset of long-lag repetition effects recorded with EEG/
MEG. However, such a model would not explain why much
earlier repetition effects have been observed in some
neurons (e.g. 75–100 ms, which is thought to be too early
for feedback [31]); further, this model does not necessarily
predict decreases in the peak firing rate of
individual neurons.

Each of the above models would clearly benefit from
further elaboration, including instantiation as detailed
computational models. It is possible that different models
might apply in different brain regions and under different
experimental conditions (e.g. different paradigms/tasks).
We next consider some experiments that might
distinguish between the models.

Distinguishing the neural models

There are three main directions in which these models can
be distinguished: (i) examining the relationship between
RS and stimulus selectivity; (ii) examining the effect of
repetition on the tuning of cortical responses along a
stimulus dimension; and (iii) examining the temporal
window in which processing occurs for new and
repeated stimuli.

Examining the relationship between RS and stimulus

selectivity

The models differ in their predictions on whether RS is
strongest for the preferred stimulus, or for non-
preferred stimuli. The Sharpening model predicts that
neurons showing little or no RS to a repeated stimulus
are highly selective for that stimulus. By contrast, both
the Fatigue and Facilitation models predict that RS is
proportional to the initial response. Thus, neurons that
respond optimally for a stimulus should show the
largest suppression. These hypotheses can be tested
with single-cell recording.

Examining the effect of repetition on neural tuning

Another way to distinguish the models would be to find a
single dimension (e.g. motion, orientation), along which
stimuli differ, and examine the effect of repetition on the
tuning curves of different neurons along that dimension.
The models differ in their prediction of how repetition will
change the shape of neuronal tuning. According to the
Fatigue model, repetition reduces the response in
proportion to the initial response, but the tuning width
does not change (Figure 5a). Most probably, the reduction
will be maximal for tuning curves centered on the location
of the repeating stimulus along the stimulus dimension,
and lesser for tuning curves centered further away. This is
consistent with physiological data in V1 for orientation
[72], spatial frequency [73] and motion direction [74]. By
contrast, according to the Sharpening model, repetition
‘sharpens’ tuning curves (Figure 5b). This is consistent
with studies of learning-related changes in IT cortex and
V4 [75–77]. Finally, the Facilitation model does not
suggest any particular effect on tuning curves
(Figure 5c). Indeed, even a widening of the curves might
be possible if repetition enlarged the attractor basin in an
attractor network model.
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Box 4. Questions for future research

† What is the relationship between repetition suppression (RS) and

stimulus selectivity?

† How does repetition affect the tuning curves of neurons?

† How do the Fatigue and Sharpening models account for improved

behavioral performance (priming)?

† In what time scale does facilitation occur?

† Does facilitation require interactions between different brain

regions, in particular feedback?

† Does RS induced by prolonged adaptation and RS induced by one

(or several) presentations with intervening stimuli involve similar or

distinct neural mechanisms?

† How does RS in lower level regions (e.g. V1) differ from RS in high-

level regions (e.g. MT or LO)?
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An elegant study by Kohn and Movshon [74] demon-
strates how measuring tuning to a stimulus dimension
before and after repetition can be used to distinguish
between models. Kohn and Movshon examined the effect
of repetition (using prolonged adaptation) to the preferred,
non-preferred and null motion direction on tuning curves
of MT neurons. Their data reveal that the tuning of MT
neurons to motion direction narrows (sharpens) around
the repeating stimulus when adapting a cell with its
preferred motion direction and, further, that tuning
curves shift towards the repeating stimulus when
adapting the neurons with a non-preferred stimulus.
However, sharpening of tuning curves did not occur in
V1; rather V1 data were consistent with the Fatigue
model. These findings provide evidence that stimulus
repetition can have different neural consequences depend-
ing on brain region. Thus, different models of RS could
apply for different cortical sites.

Examining the temporal window of processing for new

and repeated stimuli

The models can also be distinguished in the temporal
domain. In particular, the Facilitation model suggests that
the latency and/or duration of the response to repeated
items will be shorter than to first presentations. The
Fatigue and Sharpening models do not suggest a
difference in the temporal processing window for repeated
stimuli. The latency and duration of processing might be
examined via single-cell recordings and/or
EEG/MEG techniques.

Another prediction from one version of the Facilitation
model is that facilitation will be more pronounced after
top-down information is processed. As a result, the largest
difference between repeated and non-repeated stimuli
should occur after initial sensory processing (e.g. after the
first 200 ms). This is consistent with the observation that
long-lag repetition effects typically emerge after initial
stimulus-specific ERP/ERF components. Unlike the
Facilitation model, the Fatigue model suggests that RS
occurs during the entire processing window. This predicts
that the earliest selective responses are modulated by
repetition. For the Sharpening model, the onset of
repetition effects might depend on whether sharpening
is implemented in terms of changes in feedforward (input)
synapses, or via changes from lateral connections within a
region. In the latter case, RS might be delayed until
selective neurons have inhibited non-selective neurons,
which would be consistent with RS occurring subsequent
to the initial stimulus-specific response.

We would like to emphasize that any empirical data
relevant to the above predictions are likely to depend on
other factors, such as the lag between repetitions. One of
the central outstanding questions is whether different
models apply at different time scales. One possibility is
that the mechanisms related to the Fatigue model operate
during immediate repetitions of a stimulus within a few
hundred milliseconds, and reflect transient stimulus-
specific effects that onset rapidly. By contrast, the effects
of repetition across many intervening stimuli might be
more consistent with the Sharpening or Facilitation
models, and reflect long-term learning that leads to
www.sciencedirect.com
changes in the spatial pattern of stimulus-selective
responses and/or dynamics of those responses.
Conclusions

Adaptation paradigms have become increasingly popular
for examining the processing characteristics of different
cortical regions of the brain. Clearly, progress has been
made using RS to infer the nature of representations in
different cortical regions, or as a marker for increased
processing efficiency, without a complete understanding of
its neural basis. Nonetheless, it is our belief that the
specific neural mechanisms matter, because interpret-
ation and design of experiments depend on the nature of
the underlying neural model. For example, models differ
as to whether RS reflects quantitative or qualitative
changes in representations. One important possibility we
raised is that of multiple models – which vary in their
relevance across space, time and task – that might parallel
the multiplicity of potential neural/synaptic mechanisms
(Box 3). Although it is possible that a single model could
apply under all conditions, we think it is likely that
different models are needed to explain RS in different
conditions: Some effects might be short-lived, others might
be permanent. Further, the magnitude of RS might vary
as a function of task and stimuli. Finally, it is not yet
known whether the same or different mechanisms operate
in different brain regions.

Clearly, many questions remain regarding the neural
basis of RS (Box 4). Progress will be aided primarily by a
better understanding of the effects of stimulus repetition
on single neurons. This will include concurrent recording
from multiple electrodes to measure firing rates and their
correlations between neurons. Progress can also be made
using more global measures in humans, such as fMRI and
EEG/MEG, provided important differences between these
measurements are kept in mind. Improvements in the
spatial resolution of fMRI [78] are likely to be important
for distinguishing between models. The use of similar
stimuli and paradigms in physiological experiments and
fMRI/EEG/MEG experiments will be key for comparisons
across different types of data. Most informative will be
concurrent recording of repetition effects using all these
methods. These future experiments will yield important
empirical data that will validate (or refute) the theoretical
predictions laid out in this review.
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