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Spatial normalization, registration, and segmentation techniques for Magnetic Resonance Imaging (MRI)
often use a target or template volume to facilitate processing, take advantage of prior information, and define
a common coordinate system for analysis. In the neuroimaging literature, the MNI305 Talairach-like
coordinate system is often used as a standard template. However, when studying pediatric populations,
variation from the adult brain makes the MNI305 suboptimal for processing brain images of children.
Morphological changes occurring during development render the use of age-appropriate templates desirable
to reduce potential errors and minimize bias during processing of pediatric data. This paper presents the
methods used to create unbiased, age-appropriate MRI atlas templates for pediatric studies that represent
the average anatomy for the age range of 4.5–18.5 years, while maintaining a high level of anatomical detail
and contrast. The creation of anatomical T1-weighted, T2-weighted, and proton density-weighted templates
for specific developmentally important age-ranges, used data derived from the largest epidemiological,
representative (healthy and normal) sample of the U.S. population, where each subject was carefully
screened for medical and psychiatric factors and characterized using established neuropsychological and
behavioral assessments. Use of these age-specific templates was evaluated by computing average tissue
maps for gray matter, white matter, and cerebrospinal fluid for each specific age range, and by conducting an
exemplar voxel-wise deformation-based morphometry study using 66 young (4.5–6.9 years) participants to
demonstrate the benefits of using the age-appropriate templates. The public availability of these atlases/
templates will facilitate analysis of pediatric MRI data and enable comparison of results between studies in a
common standardized space specific to pediatric research.
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Introduction

Magnetic resonance imaging (MRI) has emerged as the premier
modality of noninvasive imaging of normal structural and metabolic
development of the brain in both infants and children. With the
advent of modern MRI methods in the last 20 years, multiple groups
have reported age-related changes in gray matter (GM) and white
matter (WM) volumes, extent of myelination, and subcortical
structures (Jernigan and Tallal, 1990; Jernigan et al., 1991; Filipek et
al., 1994; Pfefferbaum et al., 1994; Blatter et al., 1995; Caviness et al.,
1996, 1999; Giedd et al., 1996a,b, 1999; Reiss et al., 1996; Lange et al.,
1997; Kennedy et al., 1998, 2003; Paus et al., 1999; Sowell et al., 1999,
2002, 2003, 2004a,b; Courchesne et al., 2000; Bartzokis et al., 2001;
Blanton et al., 2001, 2004; De Bellis et al., 2001; Durston et al., 2001;
Mazziotta et al., 2001a,b; Gogtay et al., 2002, 2004). However,
significant variability has generally been seen in the volumetric and
metabolic data across populations and between genders, complicated
by reports of differences in regionally specific changes within
individual brain growth trajectories (Giedd et al., 1996a, 1999; Gogtay
et al., 2004). Furthermore, because most prior studies have limited
number of subjects and included analysis of T1-weighted (T1w) data
only, previous findings have not been easily extrapolated among
studies, between specific age-groups, or to the general pediatric
population.

To address these issues, the National Institutes of Health (NIH)MRI
Study of Normal Brain Development has developed a large, combined
cross-sectional and longitudinal, population-based study design to
generate a meaningful normative database of T1-weighted (T1w),
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T2w and proton density weighted (PDw) structural images that will
be useful in the study of both normal brain development,
and childhood neurological and neuropsychiatric diseases (Evans
and B.D.C. Group, 2006; Almli et al., 2007). Previous reports (Evans
and B.D.C. Group, 2006; Almli et al., 2007; Waber et al., 2007) have
detailed the study's design, imaging protocols and analysis, and
behavioral/cognitive testing methods. This report describes the
creation and usefulness of age-appropriate atlases based on the
Objective 1 data (i.e., subjects aged 4.5–18.5 years) from the MRI
Study of Normal Brain Development.

In addition, data characterizing cognitive and behavioral con-
structs for all infants, children, and adolescents in the study were
acquired along with structural imaging data to enable examination
and characterization of correlations between structure and function
associated with ongoing developmental processes. Our hope is that
the construction of a population-based, representative database of
MRI structural and metabolic data correlated with validated cogni-
tive/behavioral measurements will improve our ability to detect and
interpret differences in brain development that correspond to
pediatric psychiatric and neurological disorders.

Many automated techniques for registration, tissue classification,
and statistical analysis use a template brain (Mazziotta et al., 2001a,b),
including mni_autoreg (Collins et al., 1994), SPM (Ashburner and
Friston, 1997), and FSL (Smith et al., 2004). However, such techniques
are not ideal for pediatric analysis because the templates were created
by averaging MRI data from young adults. Since the developing brain
is not simply a smaller version of an adult brain, the use of adult
templates may introduce a bias in analysis. For example, Muzik et al.
(2000) showed that, when using an adult template with SPM96, the
registration of pediatric data was more variable than that of adult
data. In addition, Wilke et al. (2002a,b) found that the analysis of
pediatric data depended greatly on processing techniques and spatial
normalization methods. In electroencephalography source analysis,
Hoeksma et al. (2005) found differences between pediatric and adult
data, and demonstrated that an adult target was less adequate for
pediatric data. Machilsen et al. (2007) also found standard registra-
tion methods using the MNI (Montreal Neurological Institute)
template to be less robust with pediatric data.

These types of problems indicate a need for developmental age
specific brain templates. To achieve this age specificity, some studies
have used data from a single subject for the template. For example,
Jelacic et al. (2006) built an interactive Web-based atlas for subjects
under 4 years of age that facilitates the comparison of a given subject
with standard datasets from a database. Shan et al. (2006) built a
digital pediatric brain structure atlas from T1w MRI scans from a
single 9-year-old subject. However, the main problem with using
single subject templates is that, despite being a typical healthy
individual, the chosen subject may represent an extreme tail of the
normal distribution for some brain regions. Moreover, a single subject
template cannot represent the anatomical variability in the popula-
tion. The solution to these problems is to build atlases from multiple
subjects. In the pediatric literature, Joshi et al. (2004) used unbiased
diffeomorphic atlas construction techniques to build a template of
eight 2-year-old subjects. Kazemi et al. (2007) developed a neonatal
atlas for spatial normalization of whole brain MRI, based on data from
seven subjects. Bhatia et al. (2007) used an expectation-maximization
framework to build an MRI atlas for 1- and 2-year-olds. However,
these atlases either were created from a small number of subjects or
cover a very narrow age range. More recently, Wilke et al. (2008)
created a “Template-O-Matic” toolbox for creating population-specific
templates based on the unsupervised tissue segmentation and linear
coregistration of individual pediatric scans with regression on
independent variables such as age and gender. Although this enables
a user to generate an appropriate intensity average template volume
for a particular study, anatomical details may be blurred in regions of
high variability such as the cortex because only linear registration is
used. Therefore, in this paper we create a series of age-specific,
nonlinearly registered pediatric templates from 324 subjects within
the age range of 4.5 to 18.5 years that include T1w, T2w, and PDw
averages as well as average tissue maps for GM, WM, and
cerebrospinal fluid (CSF). Because the atlas-building process uses
nonlinear registration, these templates have the advantage of being
age-specific while retaining significant anatomical detail.

Many groups have investigated techniques for creating an
anatomical average from a group of subjects such that the result is
representative of the population. In some of the first work published
on this topic, Guimond et al. (1998, 2000) developed methods of
building a template atlas with both average intensity and average
shape. These methods begin by selecting or creating an initial
template, which may be a single subject or a linear average like the
MNI305 volume used in mni_autoreg, SPM, or FSL. Each subject in the
group is then nonlinearly registered to the template, and the
estimated transformation is used to resample the subject's MRI in
the template space. A voxel-by-voxel average is computed across all
subjects to produce the average-intensity image, and to warp this
image to have an average shape, all nonlinear transformations are
averaged together. The inverse of the average nonlinear transforma-
tion is then applied to resample the average-intensity image, resulting
in a template with both an average unbiased shape and average
intensity. To account for imperfections in the nonlinear registration
procedure, multiple iterations are performed, each time using the new
template as the registration target, until the difference between two
successive templates is smaller than some threshold.

This procedure has been used as a general strategy in many
subsequent papers that addressed different issues in the template-
building process, such as the selection of the first template, data used
to build the template, similarity function used to drive the
registration, type of nonlinear transformation modeled, and method
used for averaging. For example, Shattuck et al. (2008) used the
nonlinear registrationmethods of AIR (Woods et al., 1998), FSL (Smith
et al., 2004), and SPM to create average targets from 40 healthy
normal controls. Wang et al. (2005) evaluated different template
construction strategies for atlas-based segmentation and found that
an intensity-average template based on nonlinear coregistration was
best for the segmentation of 49 brain regions. Joshi and Miller (2000)
and Joshi and Miller (2000), Joshi et al. (2004) used diffeomorphic
registration to build unbiased average templates, a technique later
modified by Lorenzen et al. (2005) to create an unbiased atlas as a
Fréchet mean estimation process. Bhatia et al. (2007) interleaved
tissue classification and nonlinear registration of the tissue probability
maps to build an average three-dimensional (3D) MRI template.

To facilitate the processing of pediatric imaging data, we have
produced a number of age-appropriate, representative, average brain
templates using nonlinear deformation to standard coordinates. The
construction of a registration target that is both age-appropriate and
representative will allow meaningful correlation of anatomical
changes and development. Furthermore, nonlinear deformation
methods were used for their superior spatial detail and ability to
register anatomies from different subjects and across different ages.

Here, we present the procedure used to create unbiased atlas
templates that include a series of symmetric and asymmetric atlases.
We created and compared atlases from two databases of MR images
covering the age range of 4.5 to 43.5 years: (1) a collection of 324
pediatric (4.5–18.5 years) MRI scans from the NIH-funded MRI Study
of Normal Brain Development (hereafter, NIHPD, for NIH pediatric
database) (Evans and B.D.C. Group, 2006) and (2) an MRI database
of young adult brains, using data from 152 subjects (aged 18.5–
43.5 years) acquired at the Montreal Neurological Institute (MNI) as
part of the International Consortium for Brain Mapping (known as the
ICBM database) (Mazziotta et al., 1995). These data were used to
create templates with the following characteristics: (1) average (over
the population analyzed) normalized intensity; (2) average shape;
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(3) (optionally) left–right symmetry; (4) high contrast-to-noise ratio;
(5) high level of anatomical structural detail (as seen in the individual
images); and (6) compatibility with new ICBM 152 space that is
compatible with the older MNI305 stereotaxic space (Janke et al.,
2006).

The main contributions of this paper concern the templates that
are created and made available to the scientific community. To our
knowledge, this is the only dataset containing (1) an epidemiolog-
ically ascertained sample of children aged 4.5 to 18.5 years old,
representative of the U.S. population with respect to income (as a
proxy for socioeconomic status) and race/ethnicity, (2) where each
child has been carefully screened with respect to medical and
psychiatric factors (including family history), and (3) has been very
well characterized using a variety of standardized interviews, rating
scales and cognitive tests (Evans and B.D.C. Group, 2006). These
factors ensure that the templates will be useful as normative models.

In addition to the T1w templates for the NIHPD and the ICBM
database, the following templates were also created: T2w and PDw
templates, average brain masks and probabilistic atlases of GM, WM,
and CSF maps. Finally, to demonstrate the usefulness of the pediatric
templates, the bias of using a population-specific template is shown
by comparing the results obtained using the NIHPD 4.5–18.5
templates and the new ICBM 152 template using deformation-based
morphometry analysis (Chung et al., 2001).
Table 1
Nonlinear registration parameters. Step size is defined as the distance between control
nodes for the free-form deformation recovered by ANIMAL. The blurring kernel is the
size of the full-width-half-maximum of the Gaussian kernel used to blur the source and
target data. The neighborhood size is the diameter of the local neighborhood used to
estimate the local correlation that defined local similarity.

Iteration Step size
(mm)

Blurring kernel
(mm)

Neighborhood size
(mm)

Local iterations

1–4 32 16 96 20
5–8 16 8 48 20
9–12 8 4 24 20
13–16 4 2 12 10
17–20 2 1 6 10
Materials and methods

Creation of an unbiased template

Over the last several years, several competing techniques have been
developed for building population-specific templates. The rationale
behind building a population-specific atlas is described in (Mazziotta et
al., 2001a,b); the practical impact of such an atlas on the analysis of
functional data is described in Good et al. (2001), and its impact on the
analysis of pediatric data is given in (Wilke et al., 2002a,b, 2003; Kazemi
et al., 2007). To reiterate the most important issues, an unbiased brain
template is needed (1) to provide a registration target for automatic
image processing techniques (e.g., those in Evans et al., 1993; Collins
et al., 1994; Thompson and Toga, 2002); (2) to act as an atlas for volume
estimation of brain regions (Amit et al., 1991; Christensen et al., 1994;
Collins et al., 1999;Mazziotta et al., 2001a,b; Toga and Thompson, 2001;
Thompson and Toga, 2002; Essen andDavid, 2002; Thompson and Toga,
2002; Toga and Thompson, 2007; Essen and David, 2005; Seghers et al.,
2004; Grabner et al., 2006); and (3) to function as a reference for a
particular population group in order to study intra- and inter-group
variability or growth (Thompson and Toga, 2002; Gerig et al., 2006).

Recently, a number of algorithms have been published for
constructing population-specific templates. The first approaches to
building average templates were based on manual linear coregistra-
tion of individual scans into some kind of normalized reference space
(e.g., Evans et al., 1993), a process later improved by using automatic
tools (Collins et al., 1994) to register individual scans into the
common space (Janke et al., 2006). Unfortunately, the variability of
human brain anatomy leads to a limited resemblance between the
average template and the real scans of individual subjects. Moreover,
templates produced by linear registration were not very suitable for
the automatic segmentation of brain substructures by deformable
template algorithms (Carmichael et al., 2005). As described above,
several methods were developed to produce a template more
representative of the anatomy (Guimond et al., 1998, 2000, 2001;
Mazziotta et al., 2001a,b; Bhatia et al., 2004; Joshi et al., 2004;
Lorenzen et al., 2005; Essen and David, 2002; Wang et al., 2005).
Generally, these methods may be classified into two types: (1) fea-
ture-matching algorithms that rely on matching homologous features
of the individual scans and (2) intensity-matching algorithms that use
some generic cost function. The procedure described here belongs to
the second type.

All templates described below use the original ICBM 152 (linear
average) template as the initial reference target template volume for
linear registration and intensity normalization. Our method is
iterative, requiring N (2*N for the symmetric template) nonlinear
registrations to be performed at each iteration step, where N is the
number of subjects. We empirically show that the method converges
to a stable solution after 20 iterations, thus requiring a total of 20*N
nonlinear registrations to be performed (40*N for the symmetric
template).

Nonlinear average

The work described here depends on the nonlinear registration
engine of Automatic Nonlinear Image Matching and Anatomical
Labeling (ANIMAL) (Louis Collins et al., 1995). While other non-linear
registration techniques could have been chosen (Ardekani et al., 2005;
Avants et al., 2006; Lorenzen and Joshi, 2003), we selected ANIMAL
because we have extensive experience with the procedure and a
recent study (Guizzard et al., 2009) has shown that when used with
appropriate parameters, the results of the ANIMAL inter-subject
registration procedure are comparable to ART (Ardekani et al., 2005)
and SyN (Avants et al., 2008), the two top ranked registration
procedures in the recent nonlinear registration evaluation paper of
Klein et al. (2009). While in theory the linear elastic regularization
used in ANIMAL does not guarantee the recovered transformation to
be diffeomorphic, the set of registration parameters used here
constrains the transformation to be smooth, bijective and invertible;
characteristics needed for the atlas building procedure described
below.

To estimate the required nonlinear transformation between a
source and a target volume, the ANIMAL algorithm attempts to match
hierarchically image gray-level intensity features in local neighbor-
hoods arranged on a 3D grid by maximizing the cross-correlation of
intensities between the source and target images. First, the deforma-
tions required to match blurred versions of the source and target data
are estimated, producing a dense 3D deformation field, where a
displacement vector is stored at each node of the field that best
matches the local neighborhoods. Then, this deformation field is
upsampled and used as input to the next iteration of the procedure,
where the blurring is reduced and the estimation of the deformation
field is refined. In this manner, large smooth deformations are
recovered first, and finer, more local, deformations are recovered last.
The schedule of grid step size, blurring, neighborhood size, and
iterations is given in Table 1.

Our atlas generation technique is based on the work of (Guimond
et al., 1998, 2001) and employs the principles of average model
construction using elastic body deformations from (Miller et al.,
1997). We use the minimum deformation template notation from the
latter. Essentially, the problem can be formulated as follows: Given a
set of n 3DMRI volumes (I1… In), our objective is to find a 3D template

http://dx.doi.org/10.1002/hbm.460030304
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Φ, which satisfies two constraints simultaneously, one for intensity,
and one for the transformation. The first constraint is to minimize the
mean squared intensity difference between the template Φ and each
subject Ii, transformed to match the template:

Φ⁎ = argmin
Φ

∑
n

i=1
∫

volume

Φ vð Þ−Ii Ψi;Φ vð Þ
� �� �2

dv

" #
; ð1Þ

where v is a volume coordinate,Ψi,Φ are the individual 3Dmappings from
the templateΦ to each subject volume Ii,Φ(v) is the template intensity at
location v, and Ii Ψi;Φ vð Þ

� �
is the intensity in the subject's MRI after

transformation byΨi,Φ,. The transformationΨ is constrained using simple
elastic body model, such that for each subject i:

Ψi;Φ = argmin
Ψ

∫
volume

Φ vð Þ−Ii Ψ vð Þð Þð Þ2dv ð2Þ

The second constraint is to minimize the magnitude of all
deformations Ψi,Φ required to map the template Φ to each subject i:

Φ⁎ = argmin
Φ

∑
n

i=1
∫

volume

jΨi;Φ vð Þ−vj2dv
" #

; ð3Þ

In short, we are simultaneously minimizing Eqs. (1) and (3);
Eq. (2) is minimized for each subject-template pair.

The transformation Ψi,T is represented with a dense deformation
vector field h, such that Ψ xð Þ = x + h xð Þ and Ψ−1 xð Þ = x + h−1 xð Þ
where h(x)maybedefined on a discrete gridwith a givendistance (step
size) between nodes, as in the ANIMAL algorithm (see Fig. 1). Following
this formalism, we have developed an iterative algorithm minimizing
the mean square differences in Eqs. (1) and (3). Each iteration of the
algorithm interleavesminimization of both objective functions, first the
mean square difference in terms of deformations (Eq. (3)) and second,
themean square difference in terms of intensity (Eq. (1)). To denote the
mapping of each subject found at each consecutive step of the algorithm
we use Xi,k , and the current approximation of the template Tk.when the
algorithm converges Xi,k → Ψi,Φ,,Tk→Φ⁎ producing the minimum
deformation template Φ⁎ and mapping Ψi,Φ. , from template to each
subject. The algorithm is as follows:

1. Given Tk (theapproximation templateΦ⁎ at iteration k), for each scan
Ii, calculate Xi,k (mappings from template to an individual scan i, on
the iteration k), using the Y

−1
i,k−1 (inverse corrected mappings of the

scan i, iteration k−1) as a starting point. The identity transform for
the first iteration and the linear ICBM 152 average was used as T0.
Fig. 1. Schematic representation of the model building algorithm: dotted lines represent
mapping of a voxel in the initial model (Model 0) to each subject, solid lines represent
mapping of individual subjects into the next model (Model 1), dashed lines represent the
voxel-wise residual error of the models at each iteration.
2. Calculate the residual error based on the average deformation X0,k

of the current template Tk :

X0;k = x + ∑
n
hi xð Þ= n ð4Þ

3. Calculate corrected inverse mappings: Yi, k=Xi, k
−1 •X0, k, where “•”

indicates composition of transformations. This step corresponds to
the function minimization of Eq. (3) (i.e., deformation related),
note that Yi,k is defined in the space of each subject, and must be
numerically inverted for use, hence the name inverse mapping.

4. Apply corrected inverse mappings to individual subjects and
generate an average that will be used as a new template, thus
minimizing Eq. (1) (i.e., intensity related):

Tk + 1 xð Þ = ∑
n
I Yi;k xð Þ
� �

= n: ð5Þ

5. Repeat from step 1 until convergence is reached.

In nonlinear registration, the process is repeated with diminishing
step sizes in a hierarchical fashion. For the convergence condition, the
rootmeansquare (RMS)magnitude of the average residual deformation
vector field generated in step 2 is computed, and the process is stopped
once the difference between two subsequent steps falls below a certain
threshold. In general, directly averaging deformation fields is not
guaranteed to produce a diffeomorphic transformation. Some authors
have suggested using a Log-Euclidean setting (Arsigny et al., 2006),
however we do not use such a scheme. Our algorithm is similar to a
numerical estimation technique, where the goal is to use a computa-
tionally simpler method that yields progressively smaller errors as the
method converges. As such, the potential error incurred in this step
becomes insignificant as the method converges. Our experiments
showed that performing four iterations for a given step size was
sufficient to achieve convergence at the given level of detail, down to a
2-mm step size. In contrast to the previously published method
(Guimond et al., 1998, 2001), we always use the coordinate system of
the current template to calculate nonlinear deformation fields Xi, thus
ensuring that individual deformation vectors defined at each location
have a common origin between different subjects. Moreover, informa-
tion from the previous iteration is used to initialize the nonlinear
registration at the next iteration, which is particularly important in
terms of speed for the convergence of the iterative process.

Symmetric model

As human brains have a certain degree of asymmetry (Toga and
Thompson, 2003), the average template is expected to be asymmetric
to reflect the average inequalities between the left and right
hemispheres. However, in some studies, it may be desirable to treat
both hemispheres equally. For example, when estimating left–right
differences in a population, it is preferable not to use an asymmetric
template, since it is difficult, if not impossible, to disambiguate the
template's asymmetry from the population results. For example,
detection of local volume differences with respect to the template
should be equally sensitive on both sides of the brain.

To build a symmetric template, we introduce a transformation F
that flips (or mirrors) a scan I in the x direction, around the midline.
The flipped scan is denoted as F(I). Also we denote the transformation
that maps the template Φ to the flipped scan as Ψf. From a
mathematical point of view, we would like Φ to have the following
property: for each scan I, and corresponding template mapping Ψ:

Ψ Ið Þ = F Ψf F−1 Ið Þ
� �� �

ð6Þ

i.e., registering the flipped image and then flipping the result should
be the same as registering the unflipped image. (Note that the flipping
operator has the property that F=F−1.)
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To achieve this, we have added another step into the non-linear
registration portion of the iterative algorithm described above. If the
registration procedure was perfect, we would only need to complete
one registration, and then flip the result to build the symmetricmodel.
However, to address imperfections in the ANIMAL registration
procedure, we perform two non-linear registrations for each subject:
one with the original image and with the flipped image. We do not
treat the two registrations independently; instead we ensure that
non-linear mappings calculated for the pair satisfy Eq. (6):

1. Given Tk (the approximation of template Φ⁎ at iteration k), for each
scan Ii, calculate Xi,k (mappings from template to an individual scan i,
on the iteration k), using the Yi,k−1

−1 (inverse correctedmappings from
step 3 above) from theprevious iteration as a starting point (identity is
used for the first iteration). Calculate amapping between the template
Tk and the flipped version of the scan F(Ii): Xi,k

f , using the flipped
version of Yi,k−1

−1 as a starting point. Then, calculate the average
between Xi,k and F•Xi,k

f •F−1, producing Xi,k′ and Xi,k′
f=F•Xi,k′ •F−1.

From this point, transformations Xi,k′ and Xi,k′
f are treated indepen-

dently, and the rest of the algorithm continues, averaging transforma-
tions as if twice as many subjects were used.

2. The new template calculated at the end of the iteration is replaced
with

T ′
k + 1 = average Tk + 1; F Tk + 1

� �� �

The resulting averages are always symmetric by this construction.
The final 2 mm symmetric and asymmetric templates for the

entire NIHPD group were used as a starting point to generate the
corresponding templates for the remaining age sub-ranges using the
procedures described above.

Subjects

NIH pediatric database
In the course of the NIH-funded MRI Study of Normal Brain

Development (see Evans and B.D.C. Group, 2006) for a description of
the study and details of the MRI acquisition), MRI data was collected
from 433 children aged 4.5–18.5 years (see Fig. 2 for a histogram of
age distribution). In the project, T1w, T2w, and PDw data were
obtained from six sites across the United States. The T1w data were
acquired on either Siemens or General Electric (GE) 1.5 T scanners
with a 3D RF-spoiled gradient echo acquisition with a repetition time
Fig. 2. NIHPD 4.5–18.5 age distribution (left) of the 324 subjects that passed QC a
(TR)=22–25 ms, echo time (TE)=10–11 ms, flip angle 30°, refocus-
ing pulse of 180°, sagittal acquisition with a field of view (FOV) of
256 mm SI and 204 mm anterior-posterior (AP). The slice thickness
was 1.0 mm for Siemens and 1.1–1.5 mm for GE. The 2D T2w/PDw
dual contrast fast spin echo sequence was acquired in the axial
direction with TR=3500 ms, TE1=15–17 ms, TE2=115–119 ms,
FOV of 256 mm AP and 224 mm left-right (LR) with a 2 mm slice
thickness. The ethics committees of the respective scanning sites
approved the study, and informed consent for all subjects was
obtained from the children's parents or children of adult age (subjects
older then 18 years). Although the MRI data contained both primary
and fallback acquisitions, we used only the primary acquisition data
because of its higher resolution and contrast. Quality control of the
data was applied to eliminate scans that did not adhere to protocol or
that suffered from severe motion artifacts. In the end, data from 324
subjects passed quality control and were used in the processing
described below.

All NIHPD subjects were divided into the following age groups:
(a) 4.5–18.5 years (all 324 subjects); (b) 4.5–8.5 years (82 subjects);
(c) 7.0–11.0 years (112 subjects); (e) 7.5–13.5 years (162 subjects);
(f) 10.0–14.0 years (105 subjects); (g) 13.0–18.5 years (108 subjects).
These specific age group atlases were selected in an attempt to
capture potentially critical aspects of brain development as they may
be related to pubertal status. In our samples, puberty ranges from
roughly 9–10 years through 16–17 years of age (based on the
assessment by Petersen et al., 1988). Thus, the 4.5–8.5, 7.0–11.0,
7.5–13.5, 10.0–14.0, and 13.0–18.5 atlases would represent pre-
puberty, pre- to early puberty, pre- to mid-puberty, early to advanced
puberty, and mid-puberty through post-puberty, respectively. The
selection of these ages was reinforced by graphic data presented by
Waber et al. (2007), which consistently showed changes in the
performance trajectories for most neuropsychological assessments
between the ages of 9–10 years through 14–15 years. This selection
also ensured each group contains a large number of subjects. Finally,
because the age ranges are overlapping, the data from some subjects
were used to generate several templates. Note that this should not
cause any bias, as the templates are to be used independently.

ICBM database
Within the ICBM project, MRI data from 152 young normal adults

(18.5–43.5 years; see Fig. 2 for a histogram of age distribution) were
acquired on a Philips 1.5T Gyroscan (Best, Netherlands) scanner at the
Montreal Neurological Institute (Mazziotta et al., 1995). The T1w data
nd were included in template generation; ICBM 152 age distribution (right).
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were acquired with a spoiled gradient echo sequence (sagittal
acquisition, 140 contiguous 1-mm thick slices, TR=18 ms,
TE=10 ms, flip angle 30°, rectangular FOV of 256 mm SI and
204 mm AP). The T2w/PDw data were acquired as a dual contrast
fast spin echo sequence acquired in the axial direction with
TR=3300 ms, TE1=34 ms, TE2=120 ms, FOV of 256 mm AP and
224 mm LR, with a 2 mm slice thickness. The Ethics Committee of the
Montreal Neurological Institute approved the study, and informed
consent was obtained from all participants.
Image processing tools

The following data preprocessing steps were applied to all MRI
scans prior to building the atlas: (1) N3 non-uniformity correction
(Sled et al., 1998); (2) linear normalization of each scan's intensity to
be in the same range as the ICBM 152 template by a single linear
histogram scaling (Nyul and Udupa, 1999); (3) automatic linear (nine
parameters) registration to the ICBM 152 stereotaxic space using
mritotal from the MINC mni_autoreg software package (Collins et al.,
1994); and (4) brain mask creation using BET from the FSL package
(Smith, 2002). Only the voxels within the brain volume after linear
mapping into stereotaxic space were used for the nonlinear
registration procedure described below.

For the actual implementation, we used programs from the MINC
image processing framework, namely, minctracc for linear and
nonlinear registration, xfmavg and xfminvert for operations on
transformation maps, and mincaverage to calculate intensity
averages, all of which are publicly available (packages.bic.mni.
mcgill.ca). To resample the individual images, we used the B-spline
algorithm from ITK based on (Thevenaz et al., 2000) (publicly
available from www.itk.org). All models were generated on a
cluster consisting of 16 dual Pentium-III 1.4 GHz machines running
Ubuntu Linux 8.04, using Sun Grid Engine 6.1 to distribute computa-
tions among themachines. The total time required to build an average
template for 324 subjects was 90 hours, not counting the
preprocessing.
Results

Algorithm behavior

Average asymmetric and symmetric templates were generated for
all subjects in the NIHPD group (4.5–18.5 years). Fig. 3 shows
qualitatively the progression of the average asymmetric template
and its standard deviation map at different iterations for a given step
size. In the figure, the anatomical detail, in particular near the cortex,
becomes increasingly better defined and the voxel-wise intensity
variability is reduced with successive iterations.

To quantitatively track the convergence of the model, Fig. 4 shows
the voxel-wise RMS magnitude of the residual error at each iteration
for the asymmetric (black squares) and symmetric (red circles) fitting
processes for all NIHPD subjects (4.5–18.5 years). Both curves show
similar behavior with respect to the step size and number of
iterations, although the displacements are understandably slightly
larger for the symmetric model. Another measure of the goodness of
fit is the change in the voxel-wise intensity standard deviation,
calculated during the averaging of 324 individual warped scans (see
Fig. 5). Note how the values of the residual error decrease for a given
scale value and then increase at the next scale, before decreasing once
again. These jumps are due to the decreases in scale (finer resolution),
where more differences are recovered between subjects. If all scans
are perfectly normalized, this graph should asymptotically reach the
noise level of the acquisitions. The behavior is similar for the creation
of the symmetric and asymmetric templates.
Average anatomy templates

The algorithm was applied to each of the age subgroups of the
NIHPD and to the subjects in the ICBM database. Fig. 6 shows the final
average asymmetric T1w templates for the six NIHPD age ranges and
the ICBM young adult population: In each case, the templates provide
significant anatomical detail in the central region, cerebellum,
brainstem, and cortex, even though a large number of subjects were
averaged for each template (e.g., 82 [4.5–8.5 years], 112 [7–11 years],
and 152 subjects for the ICBM young adult average). See the T1w
pediatric templates in Fig. 7 for better detail.

For each age-range dataset from the NIHPD and for the subjects in
the ICBM database, templates of T2w and PDw modalities were
generated (see Fig. 8). In addition, tissue probability maps were
created using a genetic tissue classification algorithm on T1w images
(Tohka et al., 2007), followed by a partial volume effect estimation of
the tissue probability maps using all three modalities (T1w, T2w,
PDw) (Tohka et al., 2004). For each subject, the individual T2w, PDw,
and tissue probability maps were warped using the deformation field
obtained during the creation of the T1wmodel, and averaged together
to create the average T2w, PDw (c.f. Fig. 8), GM, WM, and CSF tissue
probability maps, respectively. Fig. 9 shows the tissue probability
maps for the full age range of the NIHPD and for all subjects in the
ICBMdatabase. Fig. 10 shows the detailed GM,WM, and CSF templates
for the six age-specific NIHPD pediatric templates and the ICBM young
adult template. Fig. 11 identifies some anatomical differences
between the NIHPD 4.5–8.5 and ICBM 18.5–43.5 templates. The tissue
probability maps, brain masks, and the average T1w, T2w, and PDw
templates are publicly available in both MINC and NIFTI formats
(http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1).

Subtle morphological differences between each of these templates
(Figs. 6–11) correspond to the maturation of the cerebral anatomy.
For example, with all templates normalized to the same overall brain
size, with age the corpus callosum thins, flattens slightly and
lengthens slightly in the AP direction (Figs. 11 and 12). In addition,
the lateral ventricles increase in size and the sulcal spaces widen in
adulthood. In the frontal lobe, the ratio of WM to GM appears to
increase with age. Further, the basal ganglia and thalamus appear
wider and longer with increasing age, the pons enlarges with age and
the posterior part of the brain (cerebellum and occipital pole) appears
to shift in the superior direction, with the cerebellum widening with
age (see Fig. 12).

Deformation-based morphometry example study

As an example of the potential effect the choice of template can
have on analysis, a DBM study of the youngest subjects from the
NIHPD was completed using four different target templates: the 7.0–
11.0 years, the 10.0–14.0 years, and the 13.0–18.5 years NIHPD atlas
templates as well as the ICBM young adult atlas template. The test set
included subjects in the age range of 4.5–6.9 years that passed MRI
quality control with the primary acquisition sequence and thus were
comparable to the atlas templates (n=66 subjects). The objective
here was not to complete a full DBM study, but rather to quantify the
differences (or potential bias) that choice of template might have on
eventual analysis. The templates are compared in a pair-wise fashion
such that one template (7.0–11.0 years) is close to the appropriate age
of the subjects and the second template is selected from the remaining
three that are further away in age. These results clearly show that the
bias (or difference) between templates increases as the difference in
average age between templates is increased.

Each of the T1w MRI volumes in the test set was processed four
times according to the standard data preprocessing steps (as
described above), each time using one of the four aforementioned
templates. After preprocessing, the nonlinear registration algorithm
ANIMAL was used to estimate the mapping between each template

http://www.itk.org
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Fig. 3. Average asymmetric template (4.5–18.5 years old) generated at each level of fitting. The grey scale images show the intensity average anatomy, while the rainbow colour scale
shows the intensity standard deviation for selected iterations in the hierarchical fitting process. One can see that as fitting progresses, anatomical features become less blurred and
the intensity variability is reduced. The intensity range of the average data sets runs from 0 to 100.
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and the preprocessed, brain-masked, linearly transformed data for
each of the test subjects. This procedure yielded 66×4 deformation
fields.

The Jacobian determinant J was estimated for each node in each
deformation field. The log Jacobian was computed, producing four
fields of the local volume difference, logJNIHPD 7.0–11.0, logJNIHPD 10.0–14.0,
logJNIHPD 13.0–18.5, and logJICBM, for each subject of the test set. As the
log Jacobian maps are defined in the space of the templates, for
comparison, theyneed tobe transformed into a commonspace. AllNIHPD
log Jacobianmaps were transformed through the nonlinear deformation,
by which each NIHPD template was mapped to the space of the ICBM
template for analysis. A voxel-wise, pair-wise Student's t-test was then
performed on the absolute difference from 0.0 between the resampled
logJNIHPD 7.0–11.0 and the logJNIHPD 10.0–14.0, logJNIHPD 13.0–18.5 and the logJICBM
templates. To account for the multiple-comparisons we have used False
Discovery Rate (FDR) of 5% to calculate threshold for statistically
significant differences (Genovese et al., 2002).

Since the test subjects are not drawn from the same age range as
the target templates, the average log Jacobian map is not expected to
be null. This is indeed the case, and for each template, the average
magnitude of the deformation bias increases with age. The results of
the Student's t-test shown in Fig. 13 demonstrate regions where this
bias is significantly (corrected for multiple comparisons, FDR=5%)
different between pairs of templates. When the age difference
between templates is small, for example when logJNIHPD 7.0–11.0 and
logJNIHPD 10.0–14.0 are compared, the potentially biased regions are
quite small and focused near the center of the brain. However, as the
age between the templates increases, the size of the significantly
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Fig. 4. RMSmagnitude of the residual error vector field for each iteration (i.e., the bias in the average deformation for the current template), x axis shows the step-size in mm. On the
top image, the symmetric (red circles) and asymmetric (black squares) NIHPD 4.5–18.5 models are compared. On the bottom, the different NIHPD age sub-ranges are plotted for the
asymmetric atlas creation. One can see that at each iteration for each step size, the average RMS residual error magnitude is reduced, indicating that the optimization procedure is
reaching a minima.
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different regions increases as well. When an adult template is used to
analyze a pediatric dataset in the 4.5–6.9 years range, there is a
systematic bias in the estimation of tissue growth or shrinkage in the
central regions of the brain, particularly around the ventricles. This
result is not surprising, given the different appearance of the
ventricles and the corpus callosum in these templates (see Figs. 6
and 11).

Discussion

On the method

We have developed and characterized a method of creating
unbiased symmetric and asymmetric templates ofMRI data from large
ensembles of subjects. Our method uses iterative refinement with
successively finer scales of nonlinear registration to yield templates
with a high degree of anatomical detail, even at the cortex. For this
paper, we created unbiased symmetric and asymmetric templates of
pediatric data for six (overlapping) age ranges, using MRI data
available to qualified researchers from the NIH MRI Study of Normal
Brain Development. For comparison, we built a young adult template
from MRI data from 152 young adults who had participated in the
ICBM project (Mazziotta et al., 1995). In each case, the templates
include nonlinear averages of T1w, T2w, and PDw images, average
brain masks, and average GM, WM, and CSF maps. These atlases are
publicly available from http://www.bic.mni.mcgill.ca/ServicesA-
tlases, where they can be viewed and downloaded.

Results of the iterative averaging procedure demonstrate that it is
possible to generate average maps of anatomy from large numbers of
subjects and retain detail not only for the central region of the brain,
but also at the cortex (see Figs. 6–10). Figs. 3–5 show that the iterative
process behaveswell and convergeswith a small number of iterations.

On the atlases

The templates were created for specific age ranges of subjects,
selected from a epidemiological sample of normal healthy children
4.5–18.5 years old, that are representative of the U.S. population and
have been carefully screened for medical and psychiatric factors and
have been characterized using a series of standardized rating scales,

http://www.bic.mni.mcgill.ca/ServicesAtlases
http://www.bic.mni.mcgill.ca/ServicesAtlases
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Fig. 5. RMS of intensity standard deviation (SD) between individual scans at each iteration for the creation of the NIHPD 4.5–18.5 years old atlas, x axis shows the step-size in mm. As
the procedure advances, the RMS intensity SD between iterations decreases progressively for creation of both symmetric (red circles) and asymmetric (black squares) models.

321V. Fonov et al. / NeuroImage 54 (2011) 313–327
cognitive tests and interviews. The use of such a cohort makes these
templates practically useful for both clinical and more basic research
in pediatric studies.

The generated symmetric and asymmetric templates should enable
better unbiased analyses of pediatric data, with each type of template
appropriate for certain types of analysis. For example, a symmetric
template is better suited to analyze left–right differences in a particular
population, whereas the asymmetric templates should be used as
registration targets for all other studies where left–right comparison is
not the major goal. In addition, one only has to manually segment one
side of the brain when building a symmetric segmentation atlas.

Not surprisingly, our DBM study demonstrated that different
templates give rise to different results; therefore, using an adult template
Fig. 6. NIHPD asymmetric templates (first six columns) + ICBM as
for pediatric data will yield different results than an age-appropriate
template. Furthermore, comparisons between templates showed that
this variation increases as the average age between templates increases.
Experiments with the test set demonstrated that using an atlas close to
the appropriate age yields fewer regions of potential bias than using an
adult atlas. Indeed, Fig. 13 shows large regions where the deformation
field is different from 1.0, indicating regions where the atlas is, on
average, either larger or smaller than the corresponding regions of the
internal test subjects. Since the experiments presented here only show
that a difference exists, it is not possible to judge which template is
preferable; selection of the best templatewill be task-specific. However,
one might assume that a more accurate template (in terms of average
morphometry) is better.
ymmetric template (rightmost column) for the T1w modality.
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Fig. 7. Close up of the T1w, T2w and PDw (from top to bottom) atlas data to show cortical detail.
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Comparison to other atlas building strategies

Our atlas-building strategy bears some similarities to previous
iterative methods (Guimond et al., 1998, 2000; Joshi et al., 2004; Bhatia
et al., 2007), but with some important differences: For example, in
Guimond et al. (1998, 2000), the subject was registered to a template,
and the deformations were averaged, inverted, and then applied to the
average resampled data to remove bias. Here, we compute the
deformations from the template to each subject, after linear registration
in stereotaxic space, to allow estimation of the nonlinear deformation in
the template space and justify vector averaging. Grabner et al. (2006)
extended the work of Guimond et al. to include steps to build a
symmetric template similar to those we use here. However, in contrast
to both Guimond and Grabner, who used tri-linear interpolation to
resample the MRI data, we use spline interpolation to yield slightly
better results (Thévenaz et al., 2000). Guimond and Grabner also start
Fig. 8. NIHPD 4.5–18.5 template (left) and ICBM 18.5–43.0 template (right
from scratch at each iteration; that is, at iteration n, they recompute the
registration steps 0, 1…n, where iteration 0 is a linear transformation
to the target, whereas we use the transformation computed at iteration
n−1 as the starting point for iteration n, which helps maintain the
stability of the process. Moreover, unlike Joshi et al. (2004), who used a
large deformation diffeomorphic fluid approach that integrates stream-
lines (i.e., velocity field integration) into the deformation averaging
approach, our work (and that of Guimond and Grabner) uses a linear
elastic model, enabling a simpler averaging of vectors to estimate the
mean deformation field. Finally, Bhatia et al. (2007) alternated group-
wise combined segmentation and B-spline registration of the tissue
classes in a global optimization procedure to form the templates. By
contrast, our technique fits T1 intensities directly using a local
optimization registration procedure.

Whereas we average data from all subjects within a group, the
Template-O-Matic method (Wilke et al., 2008) uses statistical analysis
), showing the T1w, T2w and PDw average templates for each group.
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Fig. 9. Comparison of probabilistic atlas of the brain tissue types (GM, WM, CSF) for the NIHPD 4.5–18.5 atlas (leftmost 3 columns) and the ICBM 18.5–43.5 atlas (rightmost 3
columns). The brightest voxels indicate high probability of that tissue class. Note that the skin and skull outlines are overlaid on each subimage to facilitate comparisons.
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to compute weights of affine-registered GM and WMmaps from each
subject to generate customized tissue map templates that match a
particular pediatric population under study. This differs from our
method, where (1) age ranges are predefined according to hypotheses
regarding aspects of brain development and (2) nonlinear iterative
registration is used to align all datasets. The latter results in the much
clearer and sharper average tissue templates seen in Fig. 9, compared
to Fig. 3 of Wilke et al. (2008). Still, the statistical subject-weighting
scheme deserves further investigation to determine, for instance, if it
Fig. 10. NIHPD templates (leftmost 6 columns) + ICBM template (rightmost column) of the
blue color, CSF.
can be combined with a nonlinear registration scheme similar to that
described here.

A number of factors complicate the direct comparison of our
template results with those published previously, including differences
between the MRI data quality and number of subjects used to build the
templates, the particular population studied, alignment method,
registration strategy, scale of the deformation, and different metrics
reported. With these caveats in mind, we compare our template results
with those in the literature: Shan et al. (2006) created an atlas from the
combined tissue class atlas with red representing gray matter; green, white matter and
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Fig. 11. Comparison between NIHPD 4.5–8.5 template (red) and ICBM 18.5–43.5 template (green), overlapping regions in yellow. The following anatomical differences are
highlighted: (1) thicker insular cortex in pediatric atlas, (2) more posterior occipital pole in pediatric atlas, (3) different shape and GM/WM ratio in cerebellum, (4) more anterior
temporal pole in pediatric atlas, (5) slightly different hippocampal shape, (6) flatter, thinner, longer corpus callosum in adult atlas, (7) thicker GM in pediatric atlas.
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anatomyof a single 9-year-old subject. The atlases of Jelacic et al. (2006)
allow the comparison of the anatomy of a given subject with those of
other subjects,manually selected froma small groupof standard normal
scans. Kochunov et al. (2001), Park et al. (2005), andWu et al. (2007) all
described methods to select the best template from a collection of
potentialMRI scans.As a justification for usinga single subject atlas, they
cited the blurred appearance of older average templates such as the
MNI305 or ICBM 152, whichwere created using only linear transforma-
tions. However, while a single subject template may be a good match
globally for a specific subject under study, it is still possible that some
local region of the template might represent an extreme of the normal
distribution, which could potentially result in a biased analysis.
Furthermore, when studying groups of subjects, it is necessary to align
all subjects into a common coordinate space. With the best template
strategy, this is impossible because there is a different best template for
every subject being studied. By contrast, the atlases presented here
represent theaverage anatomyof large groups of subjects; thus, they are
less biased than atlases created from single subjects. In addition, the
same template can be used as a common registration target for studies
involving multiple subjects. Finally, the iterative nonlinear registration
strategy used here results in templates with high anatomical detail
throughout the brain, thus obviating the need to justify the use of a
single subject atlas for registration.

As far as multi-subject atlases, Joshi et al. (2004), Kazemi et al.
(2007), and Bhatia et al. (2007) created atlases fromeight, seven, and 22
Fig. 12. Comparison between NIHPD 4.5–8.5 and ICBM 18.5–43.5 templates. When compared
suci (A = Post Central Sulcus, B = Parieto-Occipital Sulcus, C = Calcarine Fissure), decrea
ventricles (F), and thicker cortex overall, Internal architecture of the thalamus has a slightly
spheno-occipital synchondrosis (I), smaller pons (J).
subjects, respectively. Though an improvement on single subject
templates, these atlases used substantially fewer subjects than those
described here. Finally, these dedicated atlases represent the anatomy
from a small, limited age range, whereas our atlases span ages from 4.5
to 43.5 years. Qualitatively, the atlas presented in Fig. 4 of Joshi et al.
(2004) and that presented in Figs. 1 and 2 of Bhatia et al. (2007) appear
to have slightly less detail in the cortex than the atlases presented here,
perhaps due to the larger number and the (older) ages of subjects used
to create our templates.

In conclusion, we have presented a method for unbiased atlas
generation from large ensembles of MRI data. We have demonstrated
that the iterative method converges and the resulting atlas templates
maintain high anatomical detail throughout the brain. These publicly
available templates are derived from a truly normal, well-characterized
population and should facilitate spatial normalization and image
analysis for better understanding of pediatric populations.

Disclaimer

The views herein do not necessarily represent the official views of
the National Institute of Child Health and Human Development, the
National Institute on Drug Abuse, the National Institute of Mental
Health, the National Institute of Neurological Disorders and Stroke, the
National Institutes of Health, the U.S. Department of Health and Human
Services, or any other agency of the United States Government.
to the ICBM atlas, the NIHPD 4.5–8.5 atlas has thinner skull and scalp, narrower cortical
sed separation of the cerebellar folia (D), thinner corpus callosum (E), smaller lateral
different shape (G), Different shape of the pituitary gland (H), and the presence of the
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Fig. 13. Regions of potential bias when using different atlases. Map of statistically significant differences in log Jacobians when mapping the NIHPD 4.5–6.9 age group to the NIHPD
7.0–11.0 (baseline for comparison) and the NIHPD 10.0–14.0 (top row), NIHPD 13.0–18.5 (middle row) and ICBM 18.5–43.5 (bottom row) templates, all presented in the space of the
ICBM 18.5–45.0 template. Red color indicates regions where the selected templates produces significantly (5% False Discovery Rate (Genovese et al., 2002)) bigger log Jacobian
determinant (i.e., a significant difference in local volume) compared to the NIHPD 7.0–11.0 template, and blue color indicates where the selected template yields a statistically
significant smaller Jacobian determinant. One can see that the red regions are much larger than the blue regions, indicating potential bias non-age appropriate template for analysis
of pediatric data in the 4.5–6.9 years range.
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Appendix A. Brain Development Cooperative Group

The MRI Study of Normal Brain Development is a cooperative study
performed by six pediatric study centers in collaboration with a Data
Coordinating Center (DCC), a Clinical Coordinating Center (CCC), a
Diffusion Tensor Processing Center (DPC), and staff of the National
Institute of Child Health and Human Development (NICHD), the
National Institute of Mental Health (NIMH), the National Institute for
Drug Abuse (NIDA), and the National Institute for Neurological Diseases
and Stroke (NINDS), Rockville, Maryland. Key personnel from the six
pediatric study centers are as follows: Children's Hospital Medical
Center of Cincinnati, Principal Investigator William S. Ball, M.D.,
Investigators Anna Weber Byars, Ph.D., Mark Schapiro, M.D., Wendy
Bommer, R.N., April Carr, B.S., April German, B.A., Scott Dunn, R.T.;
Children's Hospital Boston, Principal InvestigatorMichael J. Rivkin,M.D.,
Investigators Deborah Waber, Ph.D., Robert Mulkern, Ph.D., Sridhar
Vajapeyam, Ph.D., Abigail Chiverton, B.A., Peter Davis, B.S., Julie Koo, B.S.,
JackiMarmor,M.A., ChristineMrakotsky, Ph.D.,M.A., Richard Robertson,
M.D., Gloria McAnulty, Ph.D.; University of Texas Health Science Center
at Houston, Principal Investigators Michael E. Brandt, Ph.D., Jack M.
Fletcher, Ph.D., Larry A. Kramer, M.D., Investigators Grace Yang, M.Ed.,
Cara McCormack, B.S., Kathleen M. Hebert, M.A., Hilda Volero, M.D.;
Washington University in St. Louis, Principal Investigators Kelly
Botteron, M.D., Robert C. McKinstry, M.D., Ph.D., Investigators William
Warren, Tomoyuki Nishino, M.S., C. Robert Almli, Ph.D., Richard Todd,
Ph.D., M.D., John Constantino, M.D.; University of California Los Angeles,
Principal Investigator James T. McCracken, M.D., Investigators Jennifer
Levitt, M.D., Jeffrey Alger, Ph.D., Joseph O'Neil, Ph.D., Arthur Toga, Ph.D.,
Robert Asarnow, Ph.D., David Fadale, B.A., Laura Heinichen, B.A., Cedric
Ireland B.A.; Children's Hospital of Philadelphia, Principal Investigators
Dah-Jyuu Wang, Ph.D. and Edward Moss, Ph.D., Investigator Robert A.
Zimmerman,M.D., andResearchStaff BrookeBintliff, B.S., RuthBradford,
Janice Newman, M.B.A. The Principal Investigator of the data coordi-
nating center at McGill University is Alan C. Evans, Ph.D., Investigators
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Rozalia Arnaoutelis, B.S., G. Bruce Pike, Ph.D., D. Louis Collins, Ph.D.,
Gabriel Leonard, Ph.D., Tomas Paus, M.D., Alex Zijdenbos, Ph.D., and
Research Staff Samir Das, B.S., Vladimir Fonov, Ph.D., Luke Fu, B.S.,
Jonathan Harlap, Ilana Leppert, B.E., DeniseMilovan, M.A., Dario Vins,
B.C., and atGeorgetownUniversity, Thomas Zeffiro,M.D., Ph.D. and John
Van Meter, Ph.D. Investigators at the Neurostatistics Laboratory,
Harvard University/McLeanHospital, Nicholas Lange, Sc.D. andMichael
P. Froimowitz, M.S., work with data coordinating center staff and all
other team members on biostatistical study design and data analyses.
The Principal Investigator of the Clinical Coordinating Center at
Washington University is Kelly Botteron, M.D., Investigators C. Robert
Almli, Ph.D., Cheryl Rainey, B.S., Stan Henderson, M.S., Tomoyuki
Nishino, M.S., William Warren, Jennifer L. Edwards, M.SW., Diane
Dubois, R.N., Karla Smith, Tish Singer and Aaron A. Wilber, M.S. The
Principal Investigator of the Diffusion Tensor Processing Center at the
National Institutes of Health is Carlo Pierpaoli, M.D., Ph.D., Investigators
Peter J. Basser, Ph.D., Lin-Ching Chang, Sc.D., Chen Guan Koay, Ph.D.
and Lindsay Walker, M.S. The Principal Collaborators at the National
Institutes of Health are Lisa Freund, Ph.D. (NICHD), Judith Rumsey, Ph.D.
(NIMH), Lauren Baskir, Ph.D. (NIMH), Laurence Stanford, Ph.D. (NIDA),
KarenSirocco, Ph.D. (NIDA) and fromNINDS, KatrinaGwinn-Hardy,M.D.
and Giovanna Spinella, M.D. The Principal Investigator of the Spectros-
copy Processing Center at the University of California Los Angeles is
James T. McCracken, M.D., Investigators Jeffry R. Alger, Ph.D., Jennifer
Levitt, M.D., Joseph O'Neill, Ph.D.

References

Almli, C.R., Rivkin, M.J., et al., 2007. The NIH MRI study of normal brain development
(Objective-2): newborns, infants, toddlers, and preschoolers. Neuroimage 35 (1),
308–325.

Amit, Y., Grenander, U., et al., 1991. Structural image restoration through deformable
templates. J. Am. Stat. Assoc. 86 (414), 376–387.

Ardekani, B.A., Guckemus, S., et al., 2005. Quantitative comparison of algorithms for
inter-subject registration of 3D volumetric brain MRI scans. J. Neurosci. Methods
142 (1), 67–76.

Arsigny, V., Commowick, O., et al., 2006. A Log-Euclidean framework for statistics on
diffeomorphisms. Medical Image Computing and Computer-Assisted Intervention –

MICCAI 2006, pp. 924–931.
Ashburner, J., Friston, K., 1997. Multimodal image coregistration and partitioning—a

unified framework. Neuroimage 6 (3), 209–217.
Avants, B., Grossman, M., et al., 2006. Symmetric diffeomorphic image registration:

evaluating automated labeling of elderly and neurodegenerative cortex and frontal
lobe. Biomedical Image Registration, pp. 50–57.

Avants, B.B., Epstein, C.L., et al., 2008. Symmetric diffeomorphic image registration with
cross-correlation: evaluating automated labeling of elderly and neurodegenerative
brain. Med. Image Anal. 12 (1), 26–41.

Bartzokis, G., Beckson, M., et al., 2001. Age-related changes in frontal and temporal lobe
volumes in men: amagnetic resonance imaging study. Arch. Gen. Psychiatry 58 (5),
461–465.

Bhatia, K.K., Hajnal, J.V., et al., 2004. Consistent groupwise non-rigid registration for
atlas construction. Biomedical Imaging: Nano to Macro, 2004. IEEE International
Symposium on.

Bhatia, K., Aljabar, P., et al., 2007. Groupwise combined segmentation and registration
for atlas construction. Medical Image Computing and Computer-Assisted Inter-
vention—MICCAI 2007, pp. 532–540.

Blanton, R.E., Levitt, J.G., et al., 2001. Mapping cortical asymmetry and complexity
patterns in normal children. Psychiatry Res. 107 (1), 29–43.

Blanton, R.E., Levitt, J.G., et al., 2004. Gender differences in the left inferior frontal gyrus
in normal children. Neuroimage 22 (2), 626–636.

Blatter, D.D., Bigler, E.D., et al., 1995. Quantitative volumetric analysis of brainMR: normative
database spanning 5 decades of life. AJNR Am. J. Neuroradiol. 16 (2), 241–251.

Carmichael, O.T., Aizenstein, H.A., et al., 2005. Atlas-based hippocampus segmentation in
Alzheimer's disease and mild cognitive impairment. Neuroimage 27 (4), 979–990.

Caviness Jr., V.S., Kennedy, D.N., et al., 1996. The humanbrain age 7–11 years: a volumetric
analysis based on magnetic resonance images. Cereb. Cortex 6 (5), 726–736.

Caviness Jr., V.S., Lange, N.T., et al., 1999. MRI-based brain volumetrics: emergence of a
developmental brain science. Brain Dev. 21 (5), 289–295.

Christensen, G.E., Rabbitt, R.D., et al., 1994. 3D brain mapping using a deformable
neuroanatomy. Phys. Med. Biol. 39 (3), 609–618.

Chung, M.K., Worsley, K.J., et al., 2001. A unified statistical approach to deformation-
based morphometry. Neuroimage 14 (3), 595–606.

Collins,D.L., Neelin, P., et al., 1994. Automatic 3D intersubject registrationofMRvolumetric
data in standardized Talairach space. J. Comput. Assist. Tomogr. 18 (2), 192–205.

Collins, D.L., Zijdenbos, A.P., et al., 1999. ANIMAL+INSECT: improved cortical structure
segmentation. Information Processing in Medical Imaging: 16th International
Conference, IPMI'99, Visegrád, Hungary, June/July 1999. Proceedings: 210.
Courchesne, E., Chisum,H.J., et al., 2000.Normal brain development andaging: quantitative
analysis at in vivo MR imaging in healthy volunteers. Radiology 216 (3), 672–682.

De Bellis, M.D., Keshavan, M.S., et al., 2001. Sex differences in brain maturation during
childhood and adolescence. Cereb. Cortex 11 (6), 552–557.

Durston, S., Hulshoff Pol, H.E., et al., 2001. AnatomicalMRI of the developing human brain:
what have we learned? J. Am. Acad. Child Adolesc. Psychiatry 40 (9), 1012–1020.

Essen, V., David, C., 2002. Windows on the brain: the emerging role of atlases and
databases in neuroscience. Curr. Opin. Neurobiol. 12 (5), 574–579.

Essen, V., David, C., 2005. A Population-Average, Landmark- and Surface-based (PALS)
atlas of human cerebral cortex. Neuroimage 28 (3), 635–662.

Evans, A.C., B.D.C. Group, 2006. The NIH MRI study of normal brain development.
Neuroimage 30 (1), 184–202.

Evans, A.C., Collins, D.L., et al., 1993. 3D statistical neuroanatomical models from 305
MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993.,
1993 IEEE Conference Record.

Filipek, P.A., Richelme, C., et al., 1994. The young adult human brain: an MRI-based
morphometric analysis. Cereb. Cortex 4 (4), 344–360.

Genovese, C.R., Lazar, N.A., et al., 2002. Thresholding of Statistical Maps in Functional
Neuroimaging Using the False Discovery Rate. Neuroimage 15 (4), 870–878.

Gerig, G., Davis, B., et al., 2006. Computational anatomy to assess longitudinal trajectory
of brain growth. 3D Data Processing, Visualization, and Transmission, Third
International Symposium on.

Giedd, J.N., Rumsey, J.M., et al., 1996a. A quantitative MRI study of the corpus callosum
in children and adolescents. Brain Res. Dev. Brain Res. 91 (2), 274–280.

Giedd, J.N., Vaituzis, A.C., et al., 1996b. Quantitative MRI of the temporal lobe, amygdala,
and hippocampus in normal human development: ages 4–18 years. J. Comp.
Neurol. 366 (2), 223–230.

Giedd, J.N., Blumenthal, J., et al., 1999. Brain development during childhood and
adolescence: a longitudinal MRI study. Nat. Neurosci. 2 (10), 861–863.

Gogtay, N., Giedd, J., et al., 2002. Brain development in healthy, hyperactive, and
psychotic children. Arch. Neurol. 59 (8), 1244–1248.

Gogtay, N., Giedd, J.N., et al., 2004. Dynamic mapping of human cortical development
during childhood through early adulthood. Proc. Natl Acad. Sci. USA 101 (21),
8174–8179.

Good, C.D., Johnsrude, I.S., et al., 2001. A voxel-based morphometric study of ageing in
465 normal adult human brains. Neuroimage 14 (1 Pt 1), 21–36.

Grabner, G., Janke, A.L., et al., 2006. Symmetric atlasing and model based
segmentation: an application to the hippocampus in older adults. Med. Image
Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist.
Interv. 9 (Pt 2), 58–66.

Guimond, A., Meunier, J., et al., 1998. Automatic computation of average brain
models. Medical Image Computing and Computer-Assisted Interventation—
MICCAI'98, p. 631.

Guimond, A., Meunier, J., et al., 2000. Average brain models: a convergence study.
Comput. Vis. Image Underst. 77, 192–210.

Guimond, A., Roche, A., et al., 2001. Three-dimensional multimodal brain warping using
the demons algorithm and adaptive intensity corrections. IEEE Trans. Med. Imaging
20 (1), 58–69.

Guizzard, N., Fonov, V., et al., 2009. Symmetric optimization scheme versus constrained
symmetrization for non-linear registrations. MICCAI workshop on “Medical Image
Analysis on Multiple Sclerosis (validation and methodological issues)”.

Hoeksma, M.R., Kenemans, J.L., et al., 2005. Variability in spatial normalization of
pediatric and adult brain images. Clin. Neurophysiol. 116 (5), 1188–1194.

Janke, A., Evans, A., et al., 2006. MNI- and Talairach- space: everything you wanted to
know but were afraid to ask. HBM, Florence, Italy.

Jelacic, S., de Regt, D., et al., 2006. Interactive digital MR Atlas of the pediatric brain.
Radiographics 26 (2), 497–501.

Jernigan, T.L., Tallal, P., 1990. Late childhood changes in brain morphology observable
with MRI. Dev. Med. Child Neurol. 32 (5), 379–385.

Jernigan, T.L., Trauner, D.A., et al., 1991. Maturation of human cerebrum observed in
vivo during adolescence. Brain 114 (Pt 5), 2037–2049.

Joshi, S.C., Miller, M.I., 2000. Landmark matching via large deformation diffeomorph-
isms. IEEE Trans. Image Process. 9 (8), 1357–1370.

Joshi, S., Davis, B., et al., 2004. Unbiased diffeomorphic atlas construction for
computational anatomy. Neuroimage 23 (Suppl 1), S151–S160.

Kazemi, K., Moghaddam, H.A., et al., 2007. A neonatal atlas template for spatial
normalization of whole-brain magnetic resonance images of newborns: prelimi-
nary results. Neuroimage 37 (2), 463–473.

Kennedy, D.N., Lange, N., et al., 1998. Gyri of the human neocortex: an MRI-based
analysis of volume and variance. Cereb. Cortex 8 (4), 372–384.

Kennedy, D.N., Haselgrove, C., et al., 2003. MRI-based morphometric of typical and
atypical brain development. Ment. Retard. Dev. Disabil. Res. Rev. 9 (3), 155–160.

Klein, A., Andersson, J., et al., 2009. Evaluation of 14 nonlinear deformation algorithms
applied to human brain MRI registration. Neuroimage 46 (3), 786–802.

Kochunov, P., Lancaster, J.L., et al., 2001. Regional spatial normalization: toward an
optimal target. J. Comput. Assist. Tomogr. 25 (5), 805–816.

Lange, N., Giedd, J.N., et al., 1997. Variability of human brain structure size: ages 4–
20 years. Psychiatry Res. 74 (1), 1–12.

Lorenzen, P. J. and S. C. Joshi (2003). High-dimensional multi-modal image registration.
2717: 234-243.

Lorenzen, P., Davis, B., et al., 2005. Unbiased atlas formation via large deformations
metric mapping. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image
Comput. Comput. Assist. Interv. 8 (Pt 2), 411–418.

Louis Collins, D., Holmes, C.J., Peters, T.M., Evans, A.C., 1995. Automatic 3-D model-
based neuroanatomical segmentation. Human Brain Mapping 3 (3), 190–208.
http://dx.doi.org/10.1002/hbm.460030304.



327V. Fonov et al. / NeuroImage 54 (2011) 313–327
Machilsen, B., d'Agostino, E., et al., 2007. Linear normalization of MR brain images in
pediatric patients with periventricular leukomalacia. Neuroimage 35 (2), 686–697.

Mazziotta, J.C., Toga, A.W., et al., 1995. A probabilistic atlas of the human brain: theory
and rationale for its development. The International Consortium for Brain Mapping
(ICBM). Neuroimage 2 (2), 89–101.

Mazziotta, J., Toga, A., et al., 2001a. A probabilistic atlas and reference system for the
human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R.
Soc. B Biol. Sci. 356 (1412), 1293–1322.

Mazziotta, J., Toga, A., et al., 2001b. A four-dimensional probabilistic atlas of the human
brain. J. Am. Med. Inform. Assoc. 8 (5), 401–430.

Miller, M., Banerjee, A., et al., 1997. Statistical methods in computational anatomy. Stat.
Methods Med. Res. 6 (3), 267–299.

Muzik, O., Chugani, D.C., et al., 2000. Statistical parametric mapping: assessment of
application in children. Neuroimage 538–549.

Nyul, L.G., Udupa, J.K., 1999. On standardizing the MR image intensity scale. Magn.
Reson. Med. 42 (6), 1072–1081.

Park, H., Bland, P.H., et al., 2005. Least biased target selection in probabilistic atlas
construction. Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2005, pp. 419–426.

Paus, T., Zijdenbos, A., et al., 1999. Structural maturation of neural pathways in children
and adolescents: in vivo study. Science 283 (5409), 1908–1911.

Petersen, A.C., Crockett, L., et al., 1988. A self-report measure of pubertal status:
reliability, validity, and initial norms. J. Youth Adolesc. 17 (2), 117–133.

Pfefferbaum, A., Mathalon, D.H., et al., 1994. A quantitative magnetic resonance imaging
study of changes in brain morphology from infancy to late adulthood. Arch. Neurol.
51 (9), 874–887.

Reiss, A.L., Abrams, M.T., et al., 1996. Brain development, gender and IQ in children. A
volumetric imaging study. Brain 119 (Pt 5), 1763–1774.

Seghers, D., D'Agostino, E., et al., 2004. Construction of a brain template fromMR images
using state-of-the-art registration and segmentation techniques. Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2004, pp. 696–703.

Shan, Z., Parra, C., et al., 2006. A digital pediatric brain structure atlas from T1-weighted
MR images. Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2006, pp. 332–339.

Shattuck, D.W., Mirza, M., et al., 2008. Construction of a 3D probabilistic atlas of human
cortical structures. Neuroimage 39 (3), 1064–1080.

Sled, J.G., Zijdenbos, A.P., et al., 1998. A nonparametric method for automatic correction
of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17 (1), 87–97.

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17 (3),
143–155.

Smith, S.M., Jenkinson, M., et al., 2004. Advances in functional and structural MR image
analysis and implementation as FSL. Neuroimage 23, S208–S219.

Sowell, E.R., Thompson, P.M., et al., 1999. Localizing age-related changes in brain
structure between childhood and adolescence using statistical parametric
mapping. Neuroimage 9 (6 Pt 1), 587–597.
Sowell, E.R., Thompson, P.M., et al., 2002. Mapping sulcal pattern asymmetry and local
cortical surface gray matter distribution in vivo: maturation in perisylvian cortices.
Cereb. Cortex 12 (1), 17–26.

Sowell, E.R., Peterson, B.S., et al., 2003. Mapping cortical change across the human life
span. Nat. Neurosci. 6 (3), 309–315.

Sowell, E.R., Thompson, P.M., et al., 2004a. Longitudinal mapping of cortical thickness
and brain growth in normal children. J. Neurosci. 24 (38), 8223–8231.

Sowell, E.R., Thompson, P.M., et al., 2004b. Mapping changes in the human cortex
throughout the span of life. Neuroscientist 10 (4), 372–392.

Thevenaz, P., Blu, T., et al., 2000. Interpolation revisited [medical images application].
IEEE Trans. Med. Imaging 19 (7), 739–758.

Thévenaz, P., Blu, T., et al., 2000. Image Interpolation and Resampling. In: Bankman, I.N.
(Ed.), Handbook of Medical Imaging, Processing and Analysis. Academic Press, San
Diego, CA USA, pp. 393–420.

Thompson, P.M., Toga, A.W., 2002. A framework for computational anatomy. Comput.
Vis. Sci. 5 (1), 13–34.

Toga, A.W., Thompson, P.M., 2001. Maps of the brain. Anat. Rec. 265 (2), 37–53.
Toga, A.W., Thompson, P.M., 2003. Mapping brain asymmetry. Nat. Rev. Neurosci. 4 (1),

37–48.
Toga, A.W., Thompson, P.M., 2007. What is where and why it is important. Neuroimage

37 (4), 1045–1049.
Tohka, J., Zijdenbos, A., et al., 2004. Fast and robust parameter estimation for statistical

partial volume models in brain MRI. Neuroimage 23 (1), 84–97.
Tohka, J., Krestyannikov, E., et al., 2007. Genetic algorithms for finite mixture model

based voxel classification in neuroimaging. IEEE Trans. Med. Imaging 26 (5),
696–711.

Waber, D.P., De Moor, C., et al., 2007. The NIH MRI study of normal brain development:
performance of a population based sample of healthy children aged 6 to 18 years on
a neuropsychological battery. J. Int. Neuropsychol. Soc. 13 (05), 729–746.

Wang, Q., Seghers, D., et al., 2005. Construction and Validation of Mean Shape Atlas
Templates for Atlas-Based Brain Image Segmentation. Information Processing in
Medical Imaging, pp. 689–700.

Wilke, M., Schmithorst, V.J., et al., 2002a. Assessment of spatial normalization of whole-
brain magnetic resonance images in children. Hum. Brain Mapp. 17 (1), 48–60.

Wilke, M., Schmithorst, V.J., Holland, S.K., 2002b. Assessment of spatial normalization of
whole-brainmagnetic resonance images in children. Hum. BrainMapp. 17 (1), 48–60.

Wilke, M., Schmithorst, V.J., Holland, S.K., 2003. Normative pediatric brain data for
spatial normalization and segmentation differs from standard adult data. Magn.
Reson. Med. 50 (4), 749–757.

Wilke, M., Holland, S.K., et al., 2008. Template-O-Matic: A toolbox for creating
customized pediatric templates. Neuroimage 41 (3), 903–913.

Woods, R.P., Grafton, S.T., et al., 1998. Automated image registration: I. General methods
and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22 (1), 139–152.

Wu, M., Rosano, C., et al., 2007. Optimum template selection for atlas-based
segmentation. Neuroimage 34 (4), 1612–1618.


	Unbiased average age-appropriate atlases for pediatric studies
	Introduction
	Materials and methods
	Creation of an unbiased template
	Nonlinear average
	Symmetric model
	Subjects
	NIH pediatric database
	ICBM database

	Image processing tools

	Results
	Algorithm behavior
	Average anatomy templates
	Deformation-based morphometry example study

	Discussion
	On the method
	On the atlases
	Comparison to other atlas building strategies

	Disclaimer
	Acknowledgments
	Brain Development Cooperative Group
	References


