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4.2 Introduction-Why do we
need statistics?
Statistical analysis is concerned with making inference
about underlying patterns in data that often contain a
large amount of random error. This is certainly the
case with data, where the effect of a stimulus
may be as little as 1 per cent of the BOLD signal.
However, by careful averaging of the data over time,
such as averaging the BOLD response at the times
when the stimulus is ON, and subtracting the average
when the stimulus is OFF, we are often able to detect
such a small signal in the presence of considerable
background noise.

More complex experimental designs require more
complex analysis. The type of analysis can be guided
by constructing a model for the way in which the
BOLD response depends on the stimulus. Such a model
must include a component of random error which
explains how the observations vary even if the experi-
ment is repeated on the same subject under exactly the
same conditions. Statistics can be used to best estimate
the parameters in the model, including the variability
of the errors. It this random variability of the errors
that can then be used to assess the random variability,
or standard error, of the estimated parameters them-
selves. This key quantity allows the experimenter not
only to say that the BOLD response is increased by say
20 units due to a particular stimulus, but also how
accurate that estimate is, say units.

Finally, comparing the size of the increase to
standard error allows the experimenter to decide if any
increase has really taken place; after all, the 20 unit
increase could have occurred by chance alone when in
fact the true increase (after a very large number of
repetitions of the experiment) was very close to zero.
However, the fact that the increase is = 2.5 times
larger than its standard error makes this extremely

unlikely; in fact this would happen with a probability
of less than per cent (under certain reasonable
assumptions) if in fact there really was no true
increase. We usually report this as = 2-5, 0.01?
or we sometimes give the exact P-value, or probability
of a more extreme value of z than that observed, which
is 0.0062.

Motivated by the above discussion, our first step in
this chapter is build up a model of the data,
beginning with the haemodynamic response to the
stimulus (Section then the random error (Section
14.3). The remainder of the chapter then deals with
estimating the parameters of these models, assessing
their variability, and making decisions about whether
the data shows any evidence of a BOLD
response to the stimulus.

Theoretical statisticsmaterial in this chapter, that can
be skipped by the non-technical reader, is marked

14.2 Modelling the response to
the stimulus
In this section we model the way in which the BOLD
response depends on an external stimulus.Time will be
denoted by and the external stimulus will be denoted
by For example, could take the value 1when
the stimulus is ON and 0 when the stimulus is OFF (see
Figure The BOLD response at a particular
voxel, denoted by usually occurs between 3 and
1 0 s after the stimulus, peaking at about 6 s. This delay
and blurring is modelled by a haemodynamic response
function (HRF) (Figure which weights
past stimulus values by a convolution as follows:

- (14.1)

The HRF can be modelled as a simple gamma function
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(Lange and Zeger, 1997). Friston proposes a
difference of two gamma functions that captures the
fact that there is a small dip after the HRF has returned
to zero:

where = is the time to the peak, and = 6,
= 12, = = 0.9 s, and = 0.35 (Glover,

1999). This particular choice of HRF is shown in
Figure The resulting convolution of with

is shown in Figure This is then sampled at
the FMRI volume acquisition times ... to give
the response at volume i.

In many experiments several different stimuli are
presented. In the experiment used to illustrate the
methods in this chapter, a subject was given a painful
heat stimulus (49°C) to the left forearm for 9 s,
followed by a neutral stimulus for 9 s, interspersed
with s when no stimulus was presented. These two
stimuli and are shown in Figure We
can denote their corresponding responses by and

by convolution with as in (14.1). We usually
assume that the responses have different magnitudes, 
denoted by and and that they add together to

(a) Stimulus, alternating hot and warm stimuli separated by rest (9 s each).
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Fig. 14.1 (a)The hot and neutral stimuli (b)the hemodynamic response function and (c) its convolution with to
give the response The time between volumes is At = so is then subsampled at the n = 118volume acquisition times

3i to give the response = at time index i = 1, ...



produce the final BOLD response. In general, the effect
of m different responses in volume i, denoted by ..

is modelled as the linear model (Friston al.,
1995

+ + (14.3)

Many voxels in fMRI data also show a slow variation 
over time, known as drift. The removal of drift, or low
frequency noise, was described in Chapter 12. Recall
that drift can be removed either by high-pass filtering
or by introducing low frequency drift terms, such as
cosines, polynomials, or splines, into the linear model. 
However, drift also appears in this chapter, as the
problem of drift interacts with model design; the pres-
ence of drift limits the type of stimulus design that can
be used with fMRI experiments. Any stimulus that
behaves like drift, such as a steadily increasing stim-
ulus intensity, cannot be easily distinguished from drift
and is either impossible or very difficult to estimate
estimable with very high error). This includes block 
designs with very long blocks, such as presenting a 
stimulus continually during the second half of an
experiment. This type of design should be avoided.
The best designs should try to present the stimulus
fairly rapidly so that its effect can be assessed over a
short period where the drift has little effect (see Section 
14.8 for further discussion of optimal design). 

14.3 Modelling the random 
Statistical models usually contain two parts: the fixed
effects and the random error. The fixed effects are the
parts of the that do not vary if the experiment is
repeated; they capture the underlying scientific ‘truth’
that we hope to discover. The random error is the part
left over that varies every time new data is obtained.
Random error is very important for two reasons: first, 
it tells us how to best estimate the effect of the stim-
ulus, and second, and more importantly, it gives us a
way of assessing the error in the effect. This then
allows us to compare the effect with its random error,
and select those voxels where the effect is much larger 
than its random error, that is, voxels with high signal-
to-noise ratio.

The way to do this is to first combine the response
and the drift terms, if high-pass temporal filtering has

Statistical analysis activation images

not been applied, into a single linear model for the
fixed effects as in (14.3). Then a random error is
added to obtain the observed fMRI data, at time
index i:

= + ... + + (14.4)

The observations tend to be correlated in time, partic-
ularly in cortical regions, with correlations up to 0.4
between time points 3 apart (Fig. This effect
is known as temporal autocorrelation (correlation of
the errors separated by a fixed time lag) or smoothness;
it can be caused, for example, by simply blurring the
data in time, but is most likely due to some influence of
the random error of the preceding time points on that
of the current point.

14.3.1 *Modellingthe temporal 
correlation

Why is the temporal correlation structure important?
The reason has to do not so much with how to estimate
the signal strengths but with how to assess the stan-
dard errors of these estimates, and hence how to detect
the presence of the signal. For this reason, we must
take some care to model the correlation structure.

The simplest is the first order autoregressive model. 
This is by combining the error from the 
previous time point with a error term to produce
the error for rhe current time point:

where 1 and is a ‘white noise’ sequence of
independent and identically distributed normal
random variables with mean 0 and standard deviation

written as - With such a model, the
temporal correlation decays exponentially as the lag
increases:

More complex oscillatory behaviour as well as expo-
nential decay can be obtained by adding more to
give autoregressive models of order known as
models:

= + ... + +
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rho

(c) Sd of effect

of freedom.

To take into account white noise from the scanner,
Purdon et (1998)has extended the AR(1)model as
follows:

(b) Effect, hot stimulus

statistic effect sd, df = 12

Fig. 14.2 Statistical analysis of the data. (a)The estimated autocorrelation parameter after bias correction and
spatial smoothing with a 15mm FWHM Gaussian filter. Note that the correlation is high in cortical (b) The effect of
the hot stimulus minus the neutral stimulus, (c)The estimated standard deviation of the effect Note that it is
much higher in cortical regions than elsewhere in the brain. (d)The Tstatistic to (b)divided by (c),with 112degrees

The correlation then becomes

8, = + (14.5)

in which a second independent white noise term
is added to an component. This 

extra component accounts for the scanner white
noise which is added to physiological ‘coloured’
(temporally correlated) noise from the brain itself.

Cor =
1+ -

if 0 and 1 if = In other words, there is a jump
at zero lag, known in the geostatistics literature as a
‘nugget effect’. Further autoregressive terms can be
added. This is a special type of state space model 
(Caines 1988) in which (14.5) is the state equation, 
and (14.6) is the observation equation. State space 
models are extremely powerful at capturing complex 
dynamic relationships, including drift.
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14.4 Estimating the response
magnitudes
So far we have built a simple model for the BOLD
response (Section 14.2) and the random error that is
added to that response (Section 14.3).The magnitudes

of the responses are still unknown, and the purpose 
of this section is to find good estimates of them
(Sections 14.5 and 14.9 look at how we estimate the
noise). We present three methods: the ‘best possible’ 
(fully efficient, that is, most accurate) method, the 
potentially more robust method, and the
Fourier space method. Finally we compare the three 
methods.

14.4.1 “Notation

To do the theoretical work in this section we shall need 
matrix notation:

As before, n is the number of time points (volumes) 
and is the number of different stimuli or drift terms
(explanatory variables) being modelled.

We will denote the variance of the vector of errors
by the matrix where is an unknown scalar, and
the element of V in row i and column multiplied by

is the covariance between and For the AR(1)
model, for example,

We further assume that the distribution of is multi-

variate normal, so that we can write the entire linear
model as:

Y + (14.7)

A general unbiased estimator of can be found by first
multiplying (14.7) through by an n x n matrix A
(various possible choices of A will be discussed below)
to give:

= AY,

= +

= AX,

= (14.8)

The least squares estimator of is the value of that
minimizes the sum of squared errors in that is,

min -

We shall adopt conventional statistical notation and
denote estimators by throughout. It can be shown
that

where + denotes the Moore-Penrose pseudoinverse, 
the ‘best possible’ inverse that minimizes the error 
sum-of-squares. For any choice of A, is unbiased and
its variance matrix is given by: 

= =

Note that the estimation of (by calculating the
pseudoinverse of the design matrix and then using

= is what is referred to generally as fitting the
model to the data. 

14.4.2 fully efficient estimator

The fully efficient (most accurate, minimum vari-
ance) estimator of is obtained by choosing A so that
the variance of the errors is proportional to the iden-
tity matrix, equivalent to ‘whitening’ the errors, by the
Gauss-Markov Theorem. This process removes any
temporal smoothness in the data, whether caused by
the intrinsic smoothness of the random errors, or by
pre-filtering. This is accomplished by factoring V, for
example by a Cholesky factorization, then inverting
the transpose of the factor: 
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V = H'H, A = AVA' = I,

where I is the n x n identity matrix. Doing this in prac-
tice can be very time consuming if it is repeated at
every voxel. Fortunately thcrc are computationally
efficient ways of finding A if the errors are generated by
an process or a state space model (using the 
Kalman filter). For the AR(1)model, for example,

A =

1 0 0 ... 0
R 0 ... 0

0 R j h

, 0 ... 0 R

where = 1- so that = and = -

1- = 2, ... n.

14.4.3 "The more robust estimator of
SPM '99

An alternative, adopted by SPM '99, is to 'precolour',
or smooth, the data (and the model). This yields an
unbiased estimator of but with slightly increased
variance. This small loss of efficiency is offset by a
more robust estimator of the variance, that is, an esti-
mator of whose estimated variance is less sensitive to
departures from the assumed form of Rather than
modelling the correlation structure of the original
observations, adopts an model for the
smoothed data.

14.4.4 "Estimation in Fourier space

Still another possibility is to choose A so that the trans-
formed observations ? are independent though not
necessarily equally variable (as for the fully efficient 
estimator). It is a remarkable fact that if the error
process is stationary (the same correlation structure at
any time) then this can be achieved by choosing the 
rows of A to be the Fourier transform sine and cosine
basis functions (the reason is that these basis functions
are almost eigenvectors of V).This would be exactly so
if the correlation structure were periodic; 
icity is less important if the sequence is long.
Multiplying by A is then equivalent to taking the 
Fourier transform, a very rapid operation. 

advantage is that the resulting errors become

almost independent, but with variances equal to the
spectrum of the process (in engineering terms, the
expected power of the process at each frequency). This
simplifies the analysis; fitting the model (14.8) is then
equivalent to weighted least squares, with weights
inversely proportional to the spectrum. From this
point of view, the SPM '99 method can be seen as
weighted least squares with weights proportional to
the spectrum of the haemodynamic response function, 
which gives more weight to the frequencies that are
passed by the haemodynamic response, and less weight
to those that are damped by the haemodynamic 
response.

An added advantage of working in Fourier space is
that convolution of the stimulus with the 

response function (14.1) becomes simple multi-
plication of their Fourier transforms. We make use of
this to estimate the haemodynamic response itself in
Section 14.11.

14.4.5 Comparison of the methods

The fully efficient method, based on pre-whitening
data, produces the best estimators if the correlation 
structure is correctly modelled. The SPM method is
more robust to biases in modeling and estimating the
correlation structure, at the expensive of losing a little 
accuracy (again if the correlation structure is correctly
modelled). It is not easy to choose between them, but 
fortunately both methods give very similar answers in
most situations. The Fourier space method is simply a
convenient way of implementing either the fully effi-
cient or the SPM methods, particularly when the
design is periodic.

It should be noted that parameter estimation for 
some types of experimental design is unaffected by the
choice of A. It can be shown that if the columns of X
are linear combinations of eigenvectors of A'A, then
the same estimator can be obtained by using least
squares in model ignoring multiplication by
A altogether. For fully efficient estimation, A'A =

which has the same eigenvectors as V. Now as
remarked above, the eigenvectors of V are the Fourier
sine and cosine functions, provided the error process is
stationary.

This implies that stimuli whose intensity varies as a 
sine or cosine function can be estimated with full effi-
ciency by ignoring A. Furthermore, for the SPM '99
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method, A’A is a Toeplitz matrix whose eigenvectors
are almost the Fourier sines and cosines, so here again 
a design of this sort is estimated with full efficiency by
the SPM ’99 method. The reason should now be clear:
for this design, the regressors are just 1at a subset of p
of the frequencies, and zero elsewhere. Data at only
these frequencies are used to estimate m parameters,
so any weighting scheme yields the same parameter
estimates.

Block designs are almost sine functions, so these are
estimated with almost full efficiency by the SPM ’99
method. Random event-related designs have a more
complex spectrum so these are most affected by the
choice of method; precolouring can result in a fairly
inefficient analysis in the case of dense event-related
designs.

14.5 the variance
In this section we look at how to estimate the error
variance assuming for the moment that the error 
correlation structure V is known (we shall look at esti-
mating V a little later in Section 14.9). The estimator 
is based on the residuals, defined as the difference
between the data and the estimated fixed effects 

where R = I - The estimator of is the sum of
squares of the residuals divided by a constant chosen
so that is unbiased:

=

Its effective degrees of freedom, based on matching
second moments, is

=

so that the distribution of is well approximated
by a distribution with v degrees of freedom, known
as the Satterthwaite approximation. If the estimation is
fully efficient, so that AVA’ = I, then the degrees of
freedom becomes the usual v = where is the
rank of and the Satterthwaite is
exact.

For example, say we have = 118 volumes, two
parameters for the response, and four para-

meters for a polynomial drift of degree 3 , giving m = 6
total parameters. If the fully efficient estimator is used

‘prewhitening’), the degrees of freedom is v =

118 - 6 112.

14.6 Detecting a n effect
In the previous two sections we have given methods for 
estimating both the signal and noise parameters.
Usually we are more interested in comparing signal
parameters, such as whether the hot stimulus gives a
bigger response than the neutral stimulus. In other
words, we are interested in the difference between the
hot stimulus and the neutral stimulus, - This is
known as an effect (an effect could of course be just a 
single magnitude, say In this section we give esti-
mates for an effect and its variance. We then turn to
the crucial question of detecting an effect, that is,
whether or not there is any evidence for an effect. In 
this way we can detect those voxels where there is
evidence that the pain stimulus produces a BOLD
response over and above that produced by the neutral 
stimulus.

14.6.1 T-tests

The particular differences of the parameters that
make up the effect are specified by a vector c,
a vector of the length as which specifies a
linear combination of the parameters First of all,
this is estimated by the same linear combination of the
estimated parameters (from now on we shall use
the term effect to refer to the estimator as well as to the
combination of parameters to be estimated).

The simplest contrast involves only one explanatory
variable. For example, to test activation in the hot
condition versus rest, the contrast vector is
c’ = (10 0 0 0 0) (the first zero excludes the neutral 
condition from the contrast and the other four exclude
the cubic drift). This means that the estimate of the
effect is simply = If, however, we are interested
in the difference between the hot stimulus and
the neutral stimulus then the contrast vector is
c‘ = (1-1 0 0 0 0). This means that the estimate
of the effect is = - (Figure

We have now defined the effect via the contrast 
vector, and given a natural estimator of it. As usual, we
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would also like to estimate the variance of the effect,
which is given by

(14.9)

An example of the estimated standard deviation (the
square root of the estimated variance (14.9)) is shown
in Figure Note that it is much higher in cortical
regions than elsewhere in the brain.

Finally we test whether or not there is any evidence
for the effect, that is whether the effect differs from
zero, using the ratio of the effect to its standard error,
called the T statistic:

This has an approximate distribution with v degrees
of freedom (exact if AVA' = I) when there is no effect,
that is, = 0. An example is shown in Figure

where large values of T indicate evidence for
an effect.

Note that T (or F) statistic images are often con-
verted into Z statistic images, where the theoretical T
(or F) null distribution (given the relevant degrees-of-
freedom) is converted into a unit-variance Gaussian 
distribution (which does not depend on degrees-of-
freedom). Thus Z statistic images are often referred to
as 'Gaussianised T-statistics' etc. (Note however that
the random field theory in Sections 14.12.1 and
14.12.2 does not apply to an image of Gaussianised
statistics, and must be applied to the original
Gaussianised images of T or F statistics.) 

14.6.2 F-tests for several contrasts

Sometimes we may wish to make a simultaneous test
of several contrasts at once. For example, we may wish
to detect difference between the hot and neutral
stimuli and rest. This can be done by using a contrast
matrix

The first row compares hot to rest, the second
compares neutral to rest. To test K 1contrasts at the
same time, that is, if c is a K x m matrix, the T statistic
is replaced by an F statistic defined by

which has an approximate F distribution with K and v
degrees of freedom (exact if AVA' = I) when there is
no effect, = 0. The effects are then detected simul-
taneously by large values of F. If K = 1, then F =
so the F-test is equivalent to the T-test.

An alternative is to use the increase in error sum of
squares when the model is restricted so that = 0.
One way of doing this is to replace X with X(I-
If R, is the equivalent of R under the restricted model,
so that the restricted residuals are = then the
resulting F statistic is

= - - R,)

which has an approximate F distribution with and v
degrees of freedom, where

= - -

If the estimation is fully efficient (AVA' = I) then the
two F-tests are identical = F).

14.6.3 When to use F-tests

F-tests should only be used when we are interested in
any linear combination of the contrasts. For example,
an F-test would be appropriate for detecting regions
with high polynomial drift, since we would be inter-
ested in either a linear, quadratic or cubic trend, or any
linear combination of these. In this case we could use
the contrast matrix

0 0 0 1 0 0

0 0 0 0 0 1
0 1

Another good use of the F-test is for detecting effects
when the haemodynamic response is modelled by a set 
of basis functions (see Section 14.11).

The F-test could also be used for detecting differ-
ences between a set of stimuli as in but a
significant result would simply say that there were
some differences between the stimuli, without saying
which ones were different. Researchers would prob-
ably be more interested in comparing each stimulus 
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would also like to estimate the variance of the effect,

K
which is given by

= (14.9)

An example of the estimated standard deviation (the
square root of the estimated variance (14.9))is shown
in Figure Note that it is much higher in cortical
regions than elsewhere in the brain.

Finally we test whether or not there is any evidence
for the effect, that is whether the effect differs from
zero, using the ratio of the effect to its standard error,
called the T statistic:

which has an approximate F distribution with K and v
degrees of freedom (exact if AVA‘ = I) when there is
no effect, = 0. The effects are then detected simul-
taneously by large values of F. If K = 1, then =

so the F-test is equivalent to the T-test.
An alternative is to use the increase in error sum of

squares when the model is restricted so that 0.
One way of doing this is to replace X with X(I-
If is the equivalent of R under the restricted model, 
so that the restricted residuals are = then the 
resulting statistic is

= - -R,)

This has an approximate t distribution with v degrees
of freedom (exact if AVA‘ I) when there is no effect,
that is, = 0. An example is shown in Figure 

where large values of T indicate evidence for
an effect.

Note that T (or F) statistic images are often con-
verted into statistic images, where the theoretical T
(or null distribution (given the relevant degrees-of-
freedom) is converted into a unit-variance Gaussian
distribution (which does not depend on degrees-of-
freedom). Thus Z statistic images are often referred to
as ‘Gaussianised T-statistics’ etc. (Note however that
the random field theory in Sections 14.12.1 and
14.12.2 does not apply to an image of Gaussianised
statistics, and must be applied to the original
Gaussianised images of or F statistics.)

14.6.2 F-tests for several contrasts

Sometimes we may wish to make a simultaneous test
of several contrasts at once. For example, we may wish
to detect any difference between the hot and neutral
stimuli and rest. This can be done by using a contrast
matrix

The first row compares hot to rest, the second
compares neutral to rest. To test K 1contrasts at the
same time, that is, if c is a K x m matrix, the T statistic
is replaced by an F statistic defined by

If the estimation is fully efficient (AVA‘ = I) then the 
two F-tests are identical = F ) .

When to use F-tests

F-tests should only be used when we are interested in 
any linear combination of the contrasts. For example,
an F-test would be appropriate for detecting regions 
with high polynomial drift, since we would be inter-
ested in either a linear, quadratic or cubic trend, or any 
linear combination of these. In this case we could use
the contrast matrix

0 0 0 1 0 0

0 0 0 0 0 1

Another good use of the F-test is for detecting effects
when the haemodynamic response is modelled by a set 
of basis functions (see Section 14.11).

The F-test could also be used for detecting differ-
ences between a set of stimuli as in but a
significant result would simply say that there were 
some differences between the stimuli, without saying
which ones were different. Researchers would prob-
ably be more interested in comparing each stimulus



L J 7

with a baseline, or paired comparisons between all 
pairs of stimuli, using a simple If desired, a 
Bonferroni correction could be used to correct for 
multiple T-tests, in which the values are multiplied
by the number of tests made. In other words, most 
scientific questions can be handled by a few 
chosen rather than an F-test.

14.7 Setting up the model-an
example

the experimenter, specifying the the stimuli t )
the contrasts c are the most difficult steps in the
ysis, because these relate the design of the
t to the scientific questions. A few examples should
clarify some important issues.

7.1 A linear intensity effect 

pose a single stimulus is compared to a baseline, 
the intensity of the stimulus varies. We are 

first in whether the stimulus was detected, and
. whether the effect increases with stimulus

Suppose the stimulus is presented sequentially 
he first 10 blocks, with intensity values 0 (no

1, 2, 3, 4, 5 , and two stimulus functions
variables) and are set up to

ure a linear intensity effect, as follows (recall that
is convolved with

Linear model. orthogonalized 
2 3 4 5 6 7 8 9 1 0

o o o
t) 1 0 1 0 1 0 1

0 0 0 1 0 2

Response

Each block might comprise say 3 volumes of 3 s each,
and these 10 blocks might be repeated say 4 times in 
one run to give 120 volumes in all. Recall that the
constant term, which models the baseline level (hori-
zontal axis), would normally be included in the drift 
terms.

Note that the second stimulus model has been
centered by subtracting its mean. This allows us to
look at two (nearly) orthogonal contrasts, that is,
contrasts whose estimators are statistically indepen-
dent: c’ = (10) which tests for an overall effect of the
stimulus compared to baseline and c’ = 1)
which tests for a linear effect of stimulus intensity 
These contrasts are not quite orthogonal because of
the temporal correlation. Note that if had been
replaced by 0 10 2 0 3 0 4 0 as follows:

Linear model, not orthogonalized
Block 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 1 0 1 0
0 1 0 2 0 3 0 4 0

0 1 2  3 4 5  
Intensity

then the fit of the model would be identical, but the
interpretation of the tests would be different. The
second contrast c‘ (0 1)would still test for a linear 
effect of stimulus intensity but the first contrast
c’ = (10) would now test for the intercept of the
intensity response ( that is, whether zero intensity 
gives response. Replacing it with c’ = (13 ) ,
where is the average of the non-zero intensities, 
would once again test for an overall effect of the stim-
ulus as above.

I
2 3 4 5

Intensity
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0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

14.7.2 A quadratic intensity effect

Sometimes the relationship of intensity to response
may be non-linear. This can be captured by adding
higher order terms, such as the quadratic term

=

Ouadratic model
Block 1 2 3 4 5 6 7 8 9 10 
Intensity o o o o

0 1 0 1 0 1 0 1 0 1
0 1 0 2 0 3 0 4 0 5
0 1 0 4 0 9 0 1 6 0 25

Response

0 1 2 3 4 5
Intensity

Response

0 1 2  3 4 5  
Intensity

The coefficients are now the effects of
each stimulus level relative to the baseline (0 stimulus).
To test for an arbitrary unspecified non-linear effect,
use an F-test with contrast matrix 

1 0 0 0 0

The contrast c‘ = (10 0) tests for whether zero inten-
sity gives zero response, c‘ (0 tests for whether
the slope at the origin is zero, and C’ = (00 1)tests
for a quadratic (non-linear) response. These terms can
be orthogonalized (approximately) by replacing t )
with 0 -2 0 -1 0 0 0 1 0 2 and with 0 2 0
- 10 -2 0 -10 2, in which case c’ = (10 0) tests for
an overall effect, c’ = tests for a linear effect,
and c‘ = (0 0 1)tests for the same quadratic effect as
before.

14.7.3 Intensity as a factor

The factor model assigns a separate parameter to each
level of the intensity, allowing for an arbitrary rela-
tionship between stimulus intensity and response:

Factor model 
Block 1 2 3 4 5 6 7 8 9 1 0
Intensity o o o o

I 0 1 0 0 0 0 0 0 0 0

The factor model is identical to a fourth degree poly-
nomial because a fourth degree polynomial can be
fitted exactly through any five points. We can still test
for polynomial effects using the factor model: to test
for an overall effect, use c’ = (11 1 1);to test for a
linear effect, use c‘ = (-2 -1 0 12); to test for a
quadratic effect, use c’ = (2 -1 -2 -1 2).

What is the difference between testing for a linear 
effect using the contrast c‘ = (-2-1 0 12) in the
factor model and the contrast c’ = (0 1)in the linear
model? The estimated effect is identical in both cases,
but their standard deviations might be different. The
reason is that the linear model only allows only for a
linear effect, whereas the factor model allows for more 
polynomial effects.

If the effect is predominantly linear, then the F-test
may fail to detect it, in other words, it has less
sensitivity than a T-test with the contrast c’
(-2-1 0 12). This is the price paid for not knowing
where to look; the F-test looks for all possible effects:
overall, linear, quadratic, cubic and quartic, so natu-
rally it has to sacrifice some sensitivity against a 
directed search for any one of them. The usual advice
applies here: first look in the direction where you 
expect to see something (T-test),then look in all possi-
ble directions for the unanticipated 
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14.7.4 The design

Two comments on the design of this experiment. First,
the design could be improved by rearranging the 
temporal order of the intensity levels, because a linear
intensity effect could be confounded with drift. The
reason is that if an effect of interest looks like drift,
then it will be partially removed by the drift terms in
the linear model. A good choice might be to present the
stimulus intensities in the order 4 13 which is
orthogonal to a linear drift. Second, since the primary 
interest is probably detection of the stimulus, it has
been alternated with the baseline, rather than say
putting all the baselines together at one end. The next
section, 14.8 on optimal design, gives a justification for
this.

14.7.5 The baseline or rest condition

In the factor model there is no explicit indicator vari-
able, such as 10 0 1 10 for the baseline or rest
condition of no stimulus; the same is true for the

example. What is special about this condi-
tion? What would happen if we simply had the five
intensity levels, or the hot and neutral stimulus, with
no rest or baseline in between? Which one would
treat as the baseline? The answer is that the baseline is 
the condition of the subject before volume acquisition 
commenced. In the varying intensity experiment, we
are assuming that the condition of 0 stimulus persisted 
before scanning commenced, so this is the baseline and
it is not modelled as a separate condition. In the 

experiment, the subject was at rest with no
heat stimulus before scanning commenced, so this is
the baseline.

If the experiment consisted of alter-
nating hot and neutral stimuli applied at the start of
the first volume, with no rest in between, then the hot
and neutral conditions should still be modelled with a
separate stimulus response, as in Figure 14.1 but
without the gaps. The baseline or rest condition would 
appear in the first few volumes, carried over by the
haemodynamic response function. The first coefficient 

would then measure the difference between the hot
stimulus and this amount of pre-scanning base-
line; the same would be true for the neutral stimulus
coefficient Obviously by themselves these coeffi-
cients would not be very informative (due to high

standard deviation; one explanatory variable is very 
nearly the inverse of the other, leading to poorly condi-
tioned estimation of the individual parameters). How-
ever, the main interest is the difference between the hot
and the neutral, and this would still be well estimated
(low standard deviation) by the difference of the coef-
ficients - If on the other hand the neutral stim-
ulus was continuously applied preceding the first
volume, then it would become the baseline and only
the hot stimulus would be used; the coefficient of
the hot stimulus would then measure the difference
hot-neutral.

14.8 Optimal experimental
design
The question arises of how to optimally design the
experiment in order for the data to contain the 
maximum possible amount of extractable information. 
In other words, how should we choose frequency
and duration of the stimuli in order to have the greatest
sensitivity in detecting the effects, and to estimate the
effects as accurately as possible. If an on-off stimulus is
presented too rapidly in short blocks then the 
dynamic response function will smooth the response to
near-uniformity. On the other hand, a short stimulus
presentation is desirable since it capitalises on the
temporal correlation, which reduces the variance of
the on minus the off volumes. Optimal designs have
been investigated by Friston (19996).

The problem comes down to finding the stimulus
that minimizes from (14.9). To simplify the
discussion, assume that there is just one parameter,

= 1, no drift, = 1, and we use the fully efficient
estimator so that AVA’ = I. Then

where and are the Fourier transforms of the
haemodynamic response function and the stimulus at
frequency and is the variance of the Fourier 
transform of the errors (spectrum) at that frequency,

= - + for a (periodic)
process. For fixed total stimulus sum of

squares



262 Worsley

(14.11) is minimized by placing all of the weight of
at the value of that maximizes I and zero else-
where. In other words, the optimal design should be a
sine wave with frequency that maximizes the spectrum
of the haemodynamic response function divided by the
spectrum of the noise. Interestingly enough, this is
precisely the stimulus whose estimation is unaffected
by the choice of A.

The block design with equal on and off periods
should be close to optimal since it closely matches a
sine wave. For the haemodynamic response function
(14.2) and an process with 0 p 0.5 at 3
volume intervals, the optimal period of the block
design is 21 to 16 s, or about 4 to 3 times the delay of
the haemodynamic response. This optimal period is
not changed greatly by drift removal, which mainly 
affects low frequency stimuli. For comparing the 
response between two stimuli the same result applies:
the two stimuli should be presented alternatively in 
equal blocks with a period of 21 to 16 s.

For event-related designs, in which the stimulus
duration is one volume or less, optimal design depends
on the volume interval. For the example analysed here, 
the optimal design is one event every to 4 volumes,
or 15 to 12 s, as varies between 0 and 0.5.

14.9 "Estimating the correlation
structure
Getting the correct correlation structure, specified by
V, is very important for three reasons: first, it guides us
to the best estimator (see Section second, it tells
us how to best design the experiment, (see Section

but third, and most importantly, it leads to the
correct estimator of the variance of the estimator, vital
for getting the correct T o r statistic. In this section we
look at how to estimate V, which we have so far
assumed is known.

Estimating V, or the parameters such as p that make
up is not as straightforward as estimating and
There are no simple methods that give best unbiased
answers; the better methods all involve costly iterative 
calculations that are expensive to compute. One of the
simplest methods is the Cochrane-Orcutt method that

first estimates by least squares for the original
unsmoothed data that is with A = I. This esti-
mator is always unbiased, though perhaps not the
most accurate, but at least it ensures that the residuals
r contain only error and no signal, due to the fact that
the expectation of the residuals is zero, that is, aver-
aged over all random instances of the errors. Moreover 
the correlation structure of the residuals is closely
approximated by the matrix V that we wish to esti-
mate.

The parameters of an model are easily esti-
mated from the autocorrelations of the residuals via
the Yule-Walker equations, but A = can be esti-
mated directly from the autocorrelations (see Worsley 
et al. 2000). This is based only on an estimate of the
first + 1)x + 1) elements of V, given by the
sample autocorrelation out to lag p:

A slight bias creeps into these estimators due to the
correlation of the residuals induced by removing an
estimated linear effect from the observations. Typic-
ally, they are about 0.05 lower than expected. Worsley 

al. (2000)gives a simple method of correcting this. 
Using the estimated A, the parameters can be
re-estimated from (14.8) and the above procedure can 
be iterated to convergence, but in practice just one
iteration seems to be enough.

The parameters of a state space model can be esti-
mated by using a predictor to obtain the like-
lihood of the parameters. This must then be
maximized by iterative methods to find maximum like-
lihood estimators. Purdon et al. (1998)avoided this by
estimating the white noise variance from outside the 
brain, where the AR(1)contribution is assumed to be
zero, then estimating the AR(1) component from 
voxels inside the brain, assuming the white noise vari-
ance is the same as outside. 

and Zeger (1997) took a non-parametric
approach. Noting that the Fourier transform of a
stationary error sequence diagonalizes V (that is,
makes the variance matrix into a diagonal matrix),
they assumed that the diagonal components (the
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trum) is a smooth function of the frequency. Instead of
fitting a model to the spectrum, they simply smoothed
it avoiding the frequencies which contained the signal.
This works well for a periodic stimulus, since the
signal is then confined to the frequency of the signal
and its higher harmonics. Taking this further, other 
authors have proposed simply averaging the spectrum
either side of the main harmonic, in effect using linear
interpolation as a form of smoother (Marchini and

2000). These approaches are more
complicated to implement in the case of non-periodic
stimuli.

14.10 Spatial smoothing
so
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far no information has been used from neigh-
voxels, and all our models have been fitted 

:pendently at each voxel. If it is felt that the signal
nds over a certain predetermined region (region of
rest, ROI) in space then it can be shown that signal

is optimal if the data is simply averaged over 
in that region (the ROI approach).

ince we do not usually know the location of the
a reasonable compromise is to smooth the data 

a kernel whose shape matches the assumed spatial 
pattern. The most common choice is a

shaped kernel. For example, if it is felt that
signal covers a 10 mm region, then the data should
smoothed with a wide kernel (see also
pter 12). The ROI approach can be seen as a 

case in which we smooth the data with a 
iel whose shape matches the ROI. 

10.1 Scale space

the data has been criticised because it 
resolvability for detectability. Moreover, we need

in advance the width of the signal to be
smoothing with a 10 mm kernel will be

for 10 mm signals but less optimal for or
nm signals. A way out of this was first proposed by
ne and Mazoyer (1994) in which a range of filter
ths is used to create an extra scale dimension to the

known as ‘scale space’. To maintain constant
in scale space, filter widths should be chosen

equally spaced on a log scale, 8, 12, 18, 
nm. The data is now searched in location as well as

scale, though there is a small price to pay in terms of
an increase in the critical threshold of the resulting T
statistics (see the end of Section 14.12.1).

14.10.2 Spatial information

Solo et al. (2000) have proposed a novel approach to
overcoming the problem of incorporating spatial infor-
mation without smoothing the data. The idea is to
estimate the signal parameters without smoothing, but
to estimate the noise parameters by smoothing the like-
lihood, not the data. An information criterion is used
to set the extent of the smoothing, producing an adap-
tive smoother. The result is that local information is
used to estimate the variability of the signal, but not
the signal itself. 

Worsley et al. (2000) took a similar approach by
advocating smoothing the parameters ... of an

model for the noise, without smoothing the 
estimators of the signal or the variance (Figure
14.2).

SPM ’99 takes this idea to the limit by averaging the
AR parameters over all voxels, to produce a global 
estimate common to the whole brain. The robustness
conferred by high frequency filtering offsets the bias in
this estimator. 

14.1 1 Estimating the 
haemodynamic response function
So far we have assumed a fixed parametric form for the
haemodynamic function. Although the para-
meters are usually reasonably well known, it is still 
worth estimating these parameters. For some types of
experiment, the parameters themselves, such as the
delay, are of intrinsic interest. 

First we shall present some methods for estimating
the haemodynamic response function parameters, then 
in Sections 14.11.1 and 14.11.2 we shall look at the
cost of over and under estimating these parameters.
Finally in Section 14.11.3 we shall look at non-linear
alternatives to the basic convolution model (14.1).

The problem with estimating parameters of the
haemodynamic response is that its parameters enter
the model in a non-linear fashion, requiring 
consuming iterative estimation methods. Lange and
Zeger (1997) take this route, estimating the
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meters of a gamma model by regression
techniques.

Rajapakse et (1999)instead modified the form of
the haemodynamic response to make it easier to esti-
mate. They chose a Gaussian function for the 
dynamic response, whose mean and variance
parameters can then be estimated by least squares in
the frequency domain. Even though the Gaussian is
not a realistic model for the haemodynamic response,
since its support includes negative lags, this method 
appears to give reasonable results.

Liao al. inspired by have pro-
posed linearizing the scale of the haemodynamic 
response by expanding as a Taylor series in an
unknown scale change

where We can then convolve the stimuli
with - and add these to the model, which 
allows for different scales for different types of stimuli.
It is then possible to estimate from the ratio of the
two coefficients to produce a 3D image of the delay of
the haemodynamic response, and a 3D image of its
standard error.

To give yet greater flexibility, proposes
modeling the haemodynaniic response function as a
linear combination of a set of basis functions
j 1, ... that capture possible differential delays and
dispersions:

(14.12)

where = 1, ... J are unknown parameters to be
estimated. One such set of basis functions is a set of
gamma density functions with different delays and
dispersions, or a single gamma density modulated by
one period of a sine wave with different frequencies.

The advantage of this approach is that the response 
(14.4) is still linear in the unknown parameters:

= -

If we allow different parameters for different stimuli, 
then the resulting model (14.4) is still a linear model, 

now instead of m parameters. This means that all
the above methods can be used to rapidly estimate the
parameters and test for activation.

Burock and Dale (2000) have taken this further by
replacing the integral in (14.1)by a sum over the first
few lags, then simply modeling the haemodynamic
response by arbitrary coefficients. In effect, they pro-
pose modeling the haemodynamic response function
by a linear combination of basis functions as above, 
with one basis function for each lag taking the value 1
at that lag and 0 elsewhere. This highly parameterized
linear model is easy to estimate, but there is an atten-
dant loss of sensitivity at detecting activation, relative
to knowing the haemodynamic response exactly, 
which we shall discuss in the next section 14.11.1. 

Finally, Genovese et (2000)have taken the most
sophisticated approach. Each part of the haemody-
namic response is modelled separately: the time to
onset, the rate of increase, the duration of the
response, the rate of decline, the undershoot, and the
recovery. Priors are constructed for each of these para-
meters, and all the other signal and noise parameters,
and the entire model is estimated by Bayesian methods
using the Gibbs sampler. This makes it possible to
generate the posterior distribution of any combination 
of parameters, though the time required for such an
analysis is forbidding.

,

14.11.1 Over-specifying the haemodynamic 
response function

The reason for the loss of sensitivity when using a large 
number of basis functions for the haemodynamic
response is quite simple. The null model with no acti-
vation due to one stimulus has no effect of that stim-
ulus and hence no convolution with a haemodynamic 
response function. It therefore has J less parameters
than the model with activation, so we must use the
statistic with J and degrees of freedom to detect
activation. The sensitivity of the test decreases as
increases. It can be shown this translates into 
having only about observations instead of
observations, for large In other words, the extra 
parameters dilute the effect of the activation, making it 
harder to detect.

However, it must be remembered that a haemody-
namic response function with too few parameters may 
be biased, resulting also in a of sensitivity because 
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it will fail to capture all of the response. Obviously one
should try to strike a balance between too few para-
meters to adequately capture the response, and too 
many parameters that the response.

The lesson is that the more flexibility allowed for the
response, the more difficult it is to detect it. The best
strategy is to try to model the haemodynamic response
with a small number of well chosen basis functions, or
preferably just one basis function. These comments
apply equally well to the models in Section
14.11.3.

14.11.2 Misspecifying the haemodynamic
response function

What is the cost of mis-specifying the haemodynamic
response function? First, there is no effect at all on the
validity of the analysis. P-values for detecting pure
activation are still correct even if the haemodynamic 
response is wrong because they are based on the null
model in which there is no activation and hence no
haemodynamic response. However, it is still important
to get the haemodynamic response correct when
comparing activations, because now the null model
does contain a haemodynamic response, equal for the
conditions to be compared.

The main cost of misspecifying the haemodynamic 
response is a loss of sensitivity. This is more
pronounced for event-related designs than for block
designs, because the block stimulus with long blocks is
less affected by convolution with the haemodynamic 
response function. In fact some stimuli are completely
unaffected by convolution with the haemodynamic 
response function. One such is the sine wave stimulus 
with arbitrary amplitude and phase, that is, a linear 
combination of sine and cosine with the same known
frequency

= +

Convolution of with any haemodynamic response 
function changes and but leaves the form of the
model unchanged. This means that for this design,
there is no cost to misspecifying the haemodynamic 
response-in fact it can be ignored altogether.

14.11.3 Non-linear haemodynamic
response and stimulus non-additivity

The linearity of the haemodynamic response, and
hence the additivity of signals closely separated in
time, has been questioned by several authors. Is the
response always a simple convolution of stimuli with a
haemodynamic response function? Friston et al.

have addressed this by expanding the 
dynamic convolution itself as a set of Volterra kernels.
The second-order model is:

The first term is the simple convolution model (14.1)
in which past stimuli have a linear effect on the current 
response. The second term is the second-order Volterra
kernel in which past stimuli have a quadratic (in-
cluding interactions) effect on the current response.
(Note that without loss of generality is symmetric:

In other words, this model
allows for the possibility that the effect of stimuli may
not be purely additive; the response to two stimuli in 
close succession may be different from the sum of the
separate responses if the two stimuli are far apart in
time.

It might be possible to estimate the second-order
kernel by extending the method of Burock and Dale
(2000) (Section 14.11). The integrals in (14.13) could
be replaced by summations over the first few lags, and
the discrete kernels become arbitrary unknown para-
meters. The result is once again a large linear model
including linear and quadratic terms in the first few 
lags of the stimulus. However, the large number of
parameters to be estimated might make this method
prohibitive.

A more practical suggestion, due to Friston et al.
is to model the first and second order kernels

by a linear combination of a small number of basis
functions = 1, ... extending (14.12): 



266 K.J. Worsley

where 1 are unknown parameters
to be estimated. The convolution of each basis func-
tion with the stimulus is = so that
the response becomes:

which is once again linear in the unknown parameters,
so it can be fitted by the linear models methods above.
Linearity of the haemodynamic response and stimulus
additivity can now be tested by an F statistic for the 
bivariate terms 1 J as in Section 14.6.

14.1 2 Detecting an effect at an
unknown location
In this section we shall look at the question of detecting
an effect or activation 0) at an unknown
spatial location, rather than at a known location as in
Section 14.6. Very often we do not know in advance
where to look for an effect, and we are interested in 
searching the whole brain, or part of it. This presents
special statistical problems related to the problem of
multiple comparisons, or multiple tests. Two methods
have been proposed, the first based on the maximum 
of the or F statistic, the second based on the spatial 
extent of the region where these statistics exceed some 
threshold value. Both involve results from random
field theory (Adler 1981).

14.12.1 The maximum test statistic

An obvious method is to select those locations where a 
test statistic Z (which could alternatively be the
statistic or F statistic of Section 14.6) is large, that is,
to threshold the image of Z at a height z. The problem
is then to choose the threshold to exclude false posi-
tives with a high probability, say 0.95. Setting to the
usual (uncorrected) = 0.05 critical value of Z (1.64
in the Gaussian case) means that 5 per cent of the
activated parts of the brain will show false positives.
We need to raise so that the probability of finding any
activation in the non-activated regions is 0.05. This is
a type of multiple comparison problem, since we are 

testing the hypothesis of no activation at a very large
number of voxels.

A simple solution is to apply a Bonferroni correc-
tion. The probability of detecting any activation in the 
unactivated locations is bounded by assuming that the
unactivated locations cover the entire search region. By
the Bonferroni inequality, the probability of detecting
any activation is further bounded by

Z (14.14)

where the maximum is taken over all N voxels in
the search region. For a = 0.05 test of Gaussian
statistics, critical thresholds of 4-5 are common. This 
procedure is conservative if the image is smooth,
although for data it often gives very accurate
thresholds.

Random field theory gives a less conservative
(lower) P-value if the image is smooth. As with time
series analysis, if the statistic image is smooth, then 
there are less truly independent voxels than the orig-
inal voxel count. Thus the N used above should be
reduced to the correct number of independent voxels,
giving less conservative thresholding. The smoothness
of the statistic image is estimated and a ‘resel’ size is
derived, where a resel is larger than a voxel and repre-
sents the size of ‘independent voxels’. The resulting
thresholding is thus:

D

Z z ) (14.15)
d=O

where D is the number of dimensions of the search
region, is the number of
(resolution elements) in the search region, and
is the Euler characteristic density. The
approximation (14.15)is based on the fact that the left
hand side is the exact expectation of the Euler charac-
teristic of the region above the threshold z. The Euler
characteristic counts the number of clusters if the
region has no holes, which is likely to be the case if is
large. Details can be found in Worsley et al.

The approximation (14.15) is accurate for search
regions of any size or shape, even a single point, but it
is best for search regions that are not too concave.
Sometimes it is better to surround a highly convoluted
search region, such as the cortical surface, by a convex 
hull with slightly higher volume but less surface area,
to get a lower and more accurate 
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For large search regions, the last term (d = 3) is the
most important. The number of is

=

where V is the volume of the search region and FWHM
is the effective full width at half maximum of a
Gaussian kernel used to smooth the data. The corre-
sponding EC density for a T statistics image with
degrees of is

=

For small search regions, the lower dimensional terms
d 3 become important. However, the P-value
(14.15)is not very sensitive to the shape of the search
region, so that assuming a spherical search region gives
a very good approximation. In practice, it is better to
take the minimum of the the two P-values (14.14) and
(14.15). Figure 14.3 shows the statistic thresholded 
at the = 0.05 value of = 4.86, found by equating
(14.15) to 0.05 and solving for

Extensions of the result (14.15) to scale space
random fields are given in Worsley Here
the search is over all spatial filter widths as well over
location, so that the width of the signal is estimated as 

well as its location. The price to pay is an increase in 
critical threshold of about 0.5.

14.12.2 The maximum spatial extent of the
test statistic 

An alternative test can be based on the spatial extent of
clusters of connected components of supra threshold
voxels where Z (Friston et 1994).Typically is
chosen to be about 3 for a Gaussian random field.
Once again the image must be a smooth stationary
random field. The idea is to approximate the shape of
the image by a quadratic with a peak at the local
maximum. For a Gaussian random field, it can be
shown that the second spatial derivative of this
quadratic is well approximated by Z where
A = for large z. The spatial extent S is then
approximated by the volume of the quadratic of height

above z :

S

where

det + (14.16)

For large the upper tail probability of H is well
approximated by

> h ) =

h )
(max Z z ) exp (14.17)

from which we conclude that has an approximate
exponential distribution with mean From this we
can find the approximate P-value of the spatial extent 
S of a single cluster:

P(S 5 ) (14.18)

The P-value for the largest spatial extent is obtained by
a simple Bonferroni correction for the expected
number of clusters N:

S 5 ) P(S

where Z
Fig. 14.3
of 4.86. from (14.15). 

The T statistic thresholded at the = 0.05 value
(14.19)
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We can substantially improve the value of the con-
stant by equating the expected total spatial extent, 
given by P(Z to that obtained by summing up 
the spatial extents of all the clusters ...

z ) ... + S,)

Using the fact that

from it follows that

+

Cao (1999) has extended these results to Tand fields,
but unfortunately there are no theoretical results for
non-smooth fields such as raw fMRI data. 

14.12.3 Searching in small regions 

For small pre-specified search regions such as the
the P-values for the maximum test statistic 

are very well estimated by but the results in
section 14.12.2 only apply to large search regions. 
Friston (1997)has proposed a fascinating method that
avoids the awkward problem of pre-specifying a small 
search region altogether. We threshold the image of
test statistics at then simply pick the nearest peak to
a point or region of interest. The clever part is this.
Since we have identified this peak based only on its
spatial location and not based on its height or extent, 
there is now no need to correct for searching over all 
peaks. Hence, the P-value for its spatial extent S is
simply P(S s) from and the P-value for its
peak height above is simply P(H h)from (14.17).

14.13 Multiple sessions, and
subjects
fMRI experiments are often repeated for several runs
in the same session, several sessions on the same 
subject, and for several subjects drawn from a popula-
tion. We shall assume that all the images have been
aligned to a common stereotactic space (see Chapter

so that anatomical variability is not a problem.

Nevertheless, there remains a very different sort of
statistical problem. 

It has long been recognized that a simple fixed
effects analysis, in which we assume that the signal
strength identical in all runs, sessions and subjects,
is incorrect (Holmes and Friston, 1998). A random
effects analysis seems the most appropriate, in which 
the error of the effect is calculated from independent 
repetitions, not from the noise error Unfortunately
this leads to an awkward practical problem: usually
the number of repetitions (runs, sessions, subjects) is
small, so the available degrees of freedom is small. For 
most purposes this would not be too serious, but in
brain mapping we are often looking in the
tails of the distribution, where low degrees of freedom
give very large critical thresholds for maximum test
statistics, which substantially reduces the sensitivity of
detecting any activation. Added to this is the problem 
of Gaussian for the errors; although 
the Central Limit Theorem assures good normality for
test statistics, it is not clear that normality is main-
tained far into the tails of the distribution. 

In PET data, degrees of freedom can be increased by
spatially smoothing the random effects variance to
produce a global estimate for the entire brain. 
Unfortunately this cannot be done for fMRI data 
because the variance is much too spatially structured.
Instead, Worsley et (2000)assume that the ratio of
random effects variance to fixed effects vari-
ance is locally constant. The degrees of freedom
is increased by spatially smoothing this ratio with a

= 15 FWHM Gaussian kernel, then multi-
plying back by the unsmoothed fixed effects variance.
The residual variance is then estimated by

The result is a slightly biased but much less variable
estimate of the variance of an effect, that comes
midway between a random effects analysis (no
smoothing, = 0) and a fixed effects analysis 
(complete smoothing, = to a global ratio of 1).

A simple formula, based on random field theory,
gives the effective degrees of freedom of the variance
ratio:
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iere is the random effects degrees of freedom
d is the FWHM of the signal, usually 
ten to be that of the raw data (typically 6 mm). The

effective degrees of freedom of the residuals,
is estimated by

proportion y do, and the rest do not? The paper then 
gives a lower bound for based on the data, such that
the true y is larger than the lower bound with a prob-
ability of at least 0.95. In other words, we obtain a
type of (conservative) confidence interval for the 
proportion of subjects that show a fixed effect. 

iere is the fixed effects degrees of freedom. In
we choose the amount of smoothing so

the final degrees of freedom is at least 100,
suring that errors in its estimation do not greatly

the distribution of test statistics. 

13.1 Conjunctions

alternative method of dealing with multiple
bjects is through conjunctions. A conjunction is
nply the locations where all the subjects' test 
s exceed a fixed threshold (Friston We
interested in the P-value of this event if in fact there 

no activation for any of the subjects, which is
to the P-value of the maximum (over location) of

minimum (over subjects) of the test statistic 
ages. There is a neat formula for this based on
ndom field theory (Worsley and Friston 2000).
It is useful to compare this with the above regular-

random effects analysis. As it stands, conjunction 
alysis is still a fixed effects analysis, since the

of the test statistic is based errors estimated
thin subjects, rather than between subjects. The
ndom effects analysis assumes that there is an effect

each subject that is zero when averaged over all 
bjects. In other words, the random effects analysis is
ing a much weaker null hypothesis than the fixed

analysis; the random effects analysis assumes
at there is an effect, but this effect is randomly
stributed about zero; the fixed effects analysis 
mands in addition that the variability of this random

is zero, forcing the effect on each subject to be
entically zero.
However, Friston et turns the

analysis into a neat test for a type of random
He asks the following question: suppose we say

at a given subject shows an effect if it passes a usual 
= 0.05 test based on a fixed effect; what is the

that all subjects will show this type of effect in
small region a conjunction), if in fact a

14.14 Conclusion
This chapter has presented a review of methods for
setting up a model for data, described how to
estimate the parameters of this model, and how to
assess the errors in these estimates. It obviously
presupposes that the experimenter knows quite a lot
about how and when the stimulus affects the BOLD
response, but it does not suppose that we know which
regions of the brain are affected. Thresholding and
looking at cluster size of activated regions, will detect
those regions that are affected above background 
noise.

There are other approaches that make far fewer
assumptions about the time course of the expected
BOLD response. Most of these are based on some sort
of decomposition of the data into time courses and
spatial patterns that are uncorrelated (singular value
decomposition (SVD), principal components analysis
(PCA)), or independent (independent components 
analysis (ICA)). These methods can be extremely
useful at suggesting or generating hypotheses that can
be captured and confirmed by the models presented in 
this chapter.

The idea of using a hypothesis test to detect acti-
vated regions does contain a fundamental flaw that all
experimenters should be aware of. Think of it this
way: if we had enough data, Tstatistics would increase
(as the square root of the number of time points or
subjects) until all voxels were 'activated'! In reality,
every voxel must be affected by the stimulus, perhaps
by a very tiny amount; it is impossible to believe that

= 0.000000000 exactly. So thresholding simply
excludes those voxels where we do not yet have
enough evidence to distinguish their effects from zero.
If we had more evidence, perhaps with better scanners, 
or simply more time points, we would surely be able to
do so. But then we would probably not want to detect
activated regions. As for satellite images, the job for 
statisticians would then be signal rather



270 K.J. Worsley

than signal detection. The distinguishing feature of our
fMRI data is that there is so little signal to enhance.
Even with the advent of better scanners this is still 
likely to be the case, because neuroscientists will surely
devise yet more subtle experiments that will push the
signal to the limits of detectability.
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