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surement and analytical stability to broader 
notions of generalizability (Table 1). A very 
narrow notion of generalizability would be 
test–retest reliability on the same scanner, same 
subject, within 30 min, while a more extended 
notion would be using different scanners on 
the same subject with reimaging occurring 
within 7 d. Generalization over analyses cor-
responds to reanalysis of the same data using 
identical or similar tools. One variant of this is 
‘computational reproducibility’5, where inde-
pendent researchers reanalyze the data and 
compare their results. We also considered ver-
sions of generalizability corresponding to tra-
ditional scientific notions of ‘replication’, such 
as whether a result is stable over different sam-
ples of subjects or populations of subjects. The 
most challenging and arguably most important 
form of generalizability is whether a finding 
additionally holds under variation in the stim-
uli and experimental methods. Underlying all 
of these concerns about reproducibility is how 
theory-building requires reproducible empiri-
cal phenomena, and thus a theory will only be 
as accurate and generalizable as the data that 
are used to inspire and/or test it.

Regardless of the precise scope of general-
ization, operationalizing any of these versions 
of reproducibility requires explicit definitions 
of the outcome of interest, which in itself is a 
challenge. Previous efforts have found gener-
ally good measures of test–retest reliability of 
MRI for both voxelwise and region of inter-
est measures (for example6–8), but this is the 
most narrow notion of reproducibility. A large 

attempted to replicate 100 psychology stud-
ies and succeeded in only 39 cases2, there is 
mounting evidence that scientific results are 
less reliable than widely assumed.

Efforts promoting open science principles 
across fields (for example3) as a means of fos-
tering transparency and reproducibility are 
valuable, but we also need efforts focusing spe-
cifically on human neuroimaging. To address 
this need, the Organization for Human Brain 
Mapping (OHBM) created the Committee on 
Best Practices in Data Analysis and Sharing 
(COBIDAS; http://www.humanbrainmap-
ping.org/cobidas)4. This group was charged 
with creating a report that would compile the 
best practices for open science in neuroimag-
ing and distill these principles into specific 
research practices. The report was developed 
in collaboration with the OHBM community, 
which provided feedback on a draft and rati-
fied the final version.

In this Commentary, we review the chal-
lenging issues that arose in the formation of the 
report and identify both initial successes and 
key remaining shortcomings in current practice.

What is reproducibility?
Open science comprises a number of different 
goals and principles. The COBIDAS was spe-
cifically concerned with ‘open data’ and ‘open 
methodology’, both of which are in service of 
‘open reproducible research.’ An immediate 
challenge was to obtain a working definition 
of reproducibility. We considered a hierarchy 
of reproducibility concepts ranging from mea-

The advancement of science requires continu-
ous examination of the principles and practices 
by which the research community operates. In 
recent years, this ongoing evaluative process 
has flagged concerns about the reproducibility 
of published research. From the early claim by 
John Ioannidis in 2005 that “most published 
research findings are false”1 to the recent work 
by the Open Science Collaboration, which 
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dations for statistical modeling, where specific 
(and common) bad practices have been identi-
fied10,11. We have also made concrete recom-
mendations for data sharing, where practice 
is still evolving.

From solicited community input, we were 
struck by the emphatic and diverse views on 
the types of data to share. Some strongly felt 
it was essential to share the rawest form of the 
data from the scanner (DICOM format), while 
others felt that preprocessed, ready-to-analyze 
data should be shared; still others emphasized 
the utility of sharing extensively processed 
data linked to published figures. We evaluated 
the pros and cons of each form of data sharing; 
for example, while sharing preprocessed data 
can minimize the effort needed for reanalysis 
and speed advances based on new uses of the 
data, it may preclude alternate preprocess-
ing options that facilitate new findings (for 
example, more sophisticated image registra-
tion schemes or changing the degree of spatial 
smoothing used). In the end, we endorsed the 
sharing of data in as many forms as is feasible.

Are we ready for open science in 
neuroimaging?
Brain imaging research is complicated, not 
only at the level of the conducting a study but 

design and acquisition through results report-
ing and data sharing. We quickly realized that 
it is neither feasible nor desirable to prescribe 
exactly how any one type of experiment should 
be conducted. For example, when looking at 
task functional MRI (fMRI), the optimal 
experimental design to use will depend on 
whether one is just trying to detect the pres-
ence of an effect or rather estimate the shape of 
the hemodynamic response function.

The one ‘practice’ that can be universally 
commended is the transparent and complete 
reporting of all facets of a study, allowing a 
critical reader to evaluate the work and fully 
understand its strengths and limitations. This 
also facilitates subsequent research efforts 
by other investigators, who can exactly fol-
low (or carefully manipulate) each aspect of a 
study. This includes conveying the ‘researcher 
degrees of freedom’, by reporting other analyti-
cal paths applied unsuccessfully on the present 
data before arriving at the published results. 
Although formidable, the reporting checklists 
provided in the COBIDAS MRI report reflects 
the breadth and depth of information needed 
to ensure another researcher could replicate 
the work.

To further facilitate reproducibility, the 
COBIDAS report includes specific recommen-

scale project to measure the generalizability of 
MRI findings across studies, akin to the Open 
Science Collaboration’s efforts in psychology2, 
has not been undertaken in neuroimaging; 
however, the one effort that set out to repro-
duce brain structure–behavior correlations 
found only 1 of 17 findings were replicated9, 
though this work is limited by small replica-
tion sample sizes. More work is needed in this 
area to better quantify the generalizability of 
MRI findings.

In short, quantifying ‘reproducibility’ requires 
precisely defining the scope of variation being 
considered, the exact outcome that is being mea-
sured and a metric of the stability of that out-
come. The COBIDAS did not set out to estimate 
reproducibility but was motivated to identify 
practices that can maximize analytical stability 
and generalizability of individual studies.

Prescribing best practice
Neuroimaging is a broad field, encompass-
ing a range of approaches across a grow-
ing number of modalities. We restricted the 
scope of the COBIDAS report to include the 
range of all human neuroimaging using MRI, 
though most of the principles discussed can 
be applied to other modalities. We established 
seven domains of practice, from experimental 

Table 1  A partial taxonomy of reproducibility in neuroimaging.
Levels of generalization Participants MRI acquisition Experiment Analysis Personnel

Population Sample Scanner Visit Data Stimulus 
population

Stimulus 
sample

Method Code Experimenter Data 
analyst

Generalization over  
measurements

ISO repeatability  
(e.g., 30-min intrascanner reliability)

• • • • D • • • • • •

ISO intermediate reproducibility  
(e.g., 7-d intrascanner reliability)

• • • D D • • • • • •

ISO reproducibility  
(e.g., 7-d interscanner reliability)

• • D D D • • • • • •

Generalization over analyses

Analysis replicability • • • • • • • • • • •

Collegial analysis replicability • • • • • • • • • • D

Peng5 reproducibility • • • • • • • • D D D

Generalization over materials and 
methods

Near replicability (different subjects) • D • – – • • • • • •

Intermediate replicability  
(different labs)

• D D – – • • • • D D

Far replicability (different  
experimental & analytical methods)

• D D – – • D D D D D

Hypothesis generalizability (different 
subject populations & types of stimuli)

D D D – – D D D D D D

For each type of reproducibility (row), the variable (column) that is held constant (•, bullet) or allowed to vary (D, different) is indicated; minus (–) indicates ‘not applicable’. 
Variations in the participants studied can be described in terms of the population they belong to (for example, different patient groups or people from different cultures) or whether 
the same sample or a distinct sample of individuals is used. The MRI scanner used can be the same or not, and if the same participant sample is considered, the very same data 
can be used or new data can be acquired on the same or different days (visits) to the scanner. Experimental variation has many forms, including the particular experimental design, 
but here we only consider stimuli. The type of stimulus used (stimulus population) may change; for example, in a working memory experiment, letter stimuli might be replaced 
with shape stimuli. A more subtle change would be using a different sample of stimuli of the same type; for example, different particular shapes. The analysis method may vary; for 
example, with structural MRI for predicting patient disease status, a linear discriminant might be used instead of a nonlinear support vector machine. Analysis code more narrowly 
reflects the particular implementation of a given method. The personnel conducting the research provide another important source of variation, whether this is the experimenter or 
data analyst. Finally, note that the International Standards Organization (ISO) has precise definitions of reproducibility24 as indicated in the first three rows, but these capture only 
the minimal levels of generalizability.
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ing, neuroimaging benefits from numerous 
free and well-supported software tools (see 
Supplementary Table 1 for an incomplete list). 
This constellation of tools could be seen as fuel 
for limitless researcher degrees-of-freedom, 
and indeed there is a need for the community 
to identify a set of ‘reference pipelines’ for 
common analyses. However, since each tool 
makes particular assumptions about neuro-
anatomical and neurophysiological processes, 
it is not possible to recommend the optimal 
analyses for every possible type of data and 
analysis objective. Only with user experience 
and reproducibility comparisons will the field 
be able to identify what are the preferred ana-
lytical approaches.

There is a particular embrace of data shar-
ing in the resting-state fMRI community. Since 
resting-state analyses methods remain in flux, 
sharing of this data has particular value as it 
allows future improvements in methods to be 
assessed and benchmarked relative to previ-
ous analyses. For resting and task fMRI and 
structural MRI, there are a number of projects 
that have led the way in this area, including the 
sibling projects FCON1000 and INDI (http://
fcon_1000.projects.nitrc.org, ref. 17), and the 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI; http://www.adni-info.org). The freely 
available data from these studies have become 
invaluable resources for methodologists evalu-
ating novel image processing algorithms, not 
to mention the value of the primary scientific 
outputs from these projects.

One promising new standard is the Brain 
Imaging Data Structure (BIDS)18, a simple 
system for organizing MRI data after conver-
sion to the NIFTI format. BIDS provides a 
common, consistent directory hierarchy and 
naming system for files, as well as support-
ing ‘sidecar’ files for key associated data (like 
stimulus timing information for task fMRI). 
With a fixed standard for representing data, 
this has supported the creation of a number of 
‘BIDS apps’, self-contained programs that can 
automatically process data arranged according 
to BIDS. Simple, widely used standards such as 
this have the potential to dramatically reduce 
the effort required to exchange and share data.

New tools are set to dramatically advance 
computational reproducibility. A challenge 
to even something as simple as rerunning 
the same data with the same code is the ever-
changing versions of software and the libraries 
that software depends on. The last five years 
have seen the growth of virtual machines and 
containers to share not just data but complete 
environments for processing data. A virtual 
machine (VM) is an emulator of a computer, 
including its hardware, operating system and 
file system. It can be shared as a single file and 

that if data sharing and open science priori-
ties in general are to take hold, support from 
academic institutions, journals and granting 
agencies is crucial for improving the incentives 
for open practices and developing ways to give 
appropriate credit for efforts in data sharing.

Finally there is the very real worry of fail-
ing to comply with human ethics provisions 
for protecting subject privacy. It can be argued 
that, once file headers are scrubbed of person-
ally identifiable information and structural 
images have facial features obscured, the data 
are completely anonymized and thus freely 
sharable. However, individual ethics boards 
have varying views on this, and it is best to 
write ethics consent documents explicitly with 
data sharing in mind. This topic would greatly 
benefit from leadership from national research 
organizations to seek consensus and then 
establish exactly what comprises anonymized 
brain imaging data. In particular, ethics boards 
often only try to minimize the risk to subjects 
when we are also obliged to maximize the ben-
efit of our research to science and society, so 
as to honor the contribution of our subjects12. 
The future value of shared data must be con-
sidered in ethical decision making.

While studies lacking shared data and hav-
ing opaque methodological detail are typical, 
some authors have embraced the challenges 
of sharing data and analysis methodology. 
Some recent examples that are particularly 
thorough and elegant include Waskom et 
al.13 and Whitaker et al.14, each of which 
published a complete array of analysis 
scripts for generating all figures and results 
in the paper (https://github.com/mwaskom/
Waskom_JNeurosci_2014 and https://github.
com/KirstieJane/NSPN_WhitakerVertes_
PNAS2016, respectively), and Pernet et 
al.15, which likewise shared raw data and 
analysis scripts as well as all results maps in 
electronic form. From an organizational per-
spective, some labs are simply making open 
science a policy. Most recently, the Montreal 
Neurological Institute announced that their 
work would be open, with all results and data 
made freely available at the time of publica-
tion16. These few examples demonstrate that 
some researchers are embracing open science 
principles, but do the tools exist to make it 
practical on a widespread basis?

Existing tools for open neuroimaging
There is an emerging ecosystem of open sci-
ence tools for neuroimaging research. Tools 
are available to assist in creating human ethics 
documents that maximize the ease of later data 
sharing before any data is collected; and for 
everything from experimental model presen-
tation and preprocessing to statistical model-

also at the level of sharing its results and data. 
We are encouraged that thorough reporting 
of results is uncontroversial, practices are 
improving and the sharing of data to facilitate 
replication is increasingly viewed as essential. 
However, data sharing poses new challenges. 
Here we consider a number of concerns that 
investigators have with data sharing that 
impede adoption of open practices.

First, some individual researchers may 
assert ownership of their data and thus may 
not feel compelled to share. Counter to this 
is the drive for publically funded research to 
produce widely accessible data that can be 
reused and integrated into further research. 
Researchers may feel that sharing their data 
will result in a loss of competitive advantage, 
with other researchers swooping in to pub-
lish their planned studies based on the same 
data. The actual risk of this will depend on the 
data and hypotheses, but it should be weighed 
against the opportunity of new collaborations 
resulting from the sharing. These concerns 
can be alleviated by delaying the sharing 
or using a data-sharing repository with an 
embargo period.

Another fear is that, upon sharing data, 
other researchers will discover errors in an 
analysis or previously undiscovered problems 
with the data. As scientists, we are supposed to 
be objective arbiters of evidence and theory, 
but we are not infallible and must be ready to 
accept criticism and revise our claims when 
errors are discovered. Even when no errors are 
found, a reanalysis may support conclusions 
inconsistent with the original study. For con-
troversial topics, there may also be adversarial 
reanalyzes. We see no better way to advance 
understanding on a contested finding than to 
have as many researchers as possible puzzling 
over the data at hand. However, we need to 
develop a culture of constructive criticism, 
which recognizes that errors are an inevi-
table part of scientific progress and protects 
individual researchers from inappropriately 
harsh consequences when honest mistakes 
are discovered.

A very practical concern, especially for 
junior investigators, is what is perceived as 
an unjustifiable cost of data sharing. Current 
incentives do not justify spending large 
amounts of time preparing data for sharing, 
as institutional promotion panels or grant 
reviewers currently do not adequately reward 
such efforts. Counter to this is the greater 
potential impact of a work when it may be 
cited not just for its scientific findings but 
also when its data is reused in other works. 
Data description papers can document and 
provide credit for high-quality data acquisi-
tion efforts for the open community. We assert 
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Beyond the investigator
Many of the practices advocated here and 
in the full COBIDAS MRI report require 
individuals to change the way they conduct 
research. Almost every such change requires 
an investment of time and resources. While 
we argue these have implicit rewards (for 
example, shared data will never be lost when 
the postdoc moves on), the advance of open 
science will require leadership at the insti-
tutional level. To provide appropriate incen-
tives, universities and research centers need 
to explicitly consider the value of sharing of 
data and code as a unique research output 
in promotion and review exercises. Journals 
should require that papers’ statistic images 
be archived and should promote papers with 
exemplary open science practices, like those 
that share data, code or executable containers 
such as VMs. Foundations and granting agen-
cies need to make data sharing a priority, rec-
ognizing and funding the explicit costs of data 
management required to make this happen. 
And finally, professional organizations like 
OHBM should prioritize efforts in education 
to make open science practices accessible to 
all. With the coordinated efforts of individual 
researchers, academic institutions, journals, 
granting agencies and professional organiza-
tions, we can accelerate the drive toward open 
science and maximize the reproducibility of 
neuroimaging findings going forward.
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statistics (~1 MB compressed), either through 
generic or dedicated repositories (for example, 
Neurovault or BALSA (http://balsa.wustl.edu)), 
are relatively minimal. As such, COBIDAS 
recommends the deposition of unthresholded 
statistical images into archival resources for all 
studies. Widespread adoption of this practice 
will dramatically increase our capacity for more 
precise meta-analyses and allow more critical 
assessment of study results through exploration 
of complete 3D images.

One foundation of computational reproduc-
ibility is modern software engineering practice. 
Whether the analysis uses a small set of scripts or 
a comprehensive end-to-end pipeline, neuroim-
aging data analysis depends on coding. Modern 
software engineering includes practices like ver-
sion control and unit testing. Version control 
ensures that revisions of the code are identifiable 
and archived, and ideally it is based on an open 
platform that allows wide inspection and input; 
unit tests verify the correctness of individual fac-
ets of the code and can be set to automatically 
run each time the code is updated. This is not to 
say that every group should hire a programmer 
but rather that every researcher writing scripts 
or code should obtain proficiency with basic 
software engineering skills and practices21 (see 
Software Carpentry for basics instruction for 
nonprogrammers; http://software-carpentry.
org). With routine research grounded in well-
written, less-fragile code, it will be much easier 
to establish analysis pipelines that can both be 
reused within a lab and facilitate computational 
reproducibility verified by others.

Study designs have traditionally been opti-
mized to maximize statistical power to detect 
differences between groups. With a growing 
emphasis on prediction, whether (for example) 
identifying early risk for psychosis or progres-
sion of a neurodegenerative disease, studies 
should be optimized to build predictive models 
that will generalize to the population of inter-
est in yet-unseen data. Large multisite studies 
that capture wide variation in human popula-
tions and site-specific technical idiosyncrasies 
are essential for building classifiers with good 
performance on new data. Whether obtained 
with prospectively optimized homogeneous 
acquisition and preprocessing strategies (for 
example, Human Connectome Project22 or 
the UK Biobank (http://imaging.ukbiobank.
ac.uk/)) or via larger but more heterogeneous, 
aggregate multisite approaches (for example, 
FCON1000/INDI, PING (http://pingstudy.
ucsd.edu), and the ABCD Study (http://abcd-
study.org)), which are ideal for retrospectively 
determined optimized image processing strate-
gies23, the generalizability of predictive models 
will be a key design objective and performance 
indicator in the future.

when run, an entire computer system comes 
into existence based on a snapshot of the 
libraries and software interdependencies of 
one particular system. From within this VM, 
data can be run through a complete process-
ing pipeline; with the original data of a study 
this will reproduce the results exactly, while 
new data can also be imported to evaluate the 
unique aspects of a pipeline. A downside to 
VMs is their gross size, as they are as large as 
any operating system. Containers are minia-
ture VMs, lacking the full operating system but 
providing the specialized software and librar-
ies required to execute a given task. The BIDS 
apps mentioned above rely on such contain-
ers, encapsulating software packages large and 
small that alleviate installation of a myriad of 
software dependencies.

Open science tools are gaining traction. 
For example, the CBRAIN web-based analy-
sis service (http://www.cbrain.mcgill.ca) sup-
ports over 260 collaborators in 20 countries; 
the COINS service (http://coins.mrn.org) cur-
rently hosts data on over 40,000 subjects for 
643 studies; the LONI Pipeline (http://pipe-
line.loni.usc.edu) has an average of 100,000 
daily jobs from 200 different analysis work-
flows; the Neurovault repository (http://neu-
rovault.org) hosts 450 public collections; and 
the FCP/INDI openly shares over 15,000 rest-
ing fMRI and structural MRI data sets.

Continuous improvement of research 
practices
Despite a seeming wealth of tools, there 
remain specific areas in the field of neuroim-
aging that need to be embraced to increase 
reproducibility. Aside from the importance of 
carefully reporting the study design, methods 
and results mentioned above, we also identi-
fied priorities including archiving of statistical 
results, software engineering for reproducibil-
ity and optimizing projects for generalizability.

In genetics, the routine sharing of ‘summary 
data’ (z-score test statistics for each single 
nucleotide polymorphism) has facilitated meta-
analyses and methodological developments. 
For example, there is now a tool (LD-score 
regression) that can estimate genetic correlation 
using just z-score summary data and has had a 
dramatic impact in a short timespan due to the 
availability of such results19. In brain imaging, 
we have no tradition of sharing summary sta-
tistics (i.e., images of t- or z-scores or images of 
percent change effect and standard errors). As a 
result, the quality of meta-analyses are currently 
limited by their reliance on reported tables of 
maximum location coordinates, for which there 
is a substantial loss of information relative to the 
original statistic images20. In the current age, 
the costs of sharing such images of summary 
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