Level Set Methods: An Act of Violence

FEvolving Interfaces in Geometry,
Fluid Mechanics, Computer Vision
and Materials Sciences

J.A. Sethian !

Boundaries abound. Dynamic boundaries change position and shape in
response to the particular physics at work: examples are breaking waves in
the ocean, dancing flames in the fireplace, and milk swirling in a cup of tea.
Static boundaries, such as tumors in medical scans and cartoon characters
against a background animation, can be just as perplexing: try finding edges
in a picture of a dalmatian lying on a rug with spots! Surprisingly enough
(as we shall soon see), less familiar problems can be also cast in the setting
of evolving boundaries, including negotiating a piano through a cramped
apartment and finding the shortest path over a mountain range.

While the physics and chemistry that drives a boundary (or “interface”)
may be formidable, it can be difficult enough to simply follow the shape
of an evolving interface, even if its speed and direction of motion are well
understood. The first concern is the formation of sharp corners, as witnessed
by the intricate patterns in a snowflake. Second, distant edges can blend
together: the “edge” of a forest fire changes as separate fires burn together
and sparks carried by the wind ignite distant regions. And third, in three
dimensions (and higher), even finding a nice way to represent (let alone move)
an undulating boundary is a challenge.

Hermann Weyl, a vocal and well-known figure in mathematics, once said

“The introduction of a coordinate system to geometry is an act of violence.”?

!James Sethian is Professor of Mathematics at the University of California at Berkeley,
and Head of the Applied and Computational Mathematics Dept. at the Lawrence Berkeley
National Laboratory. He may be reached at sethian@math.berkeley.edu.

2Weyl relished his own opinionated views about mathematics. The actual quote is:
”The introduction of numbers as coordinates by reference to the particular division schemes

Level Set Methods commit this violence, and, in doing so, provide math-
ematical and computational tools for tracking evolving interfaces with sharp
corners and cusps, topological changes, and three dimensional complications.

Along the way, they efficiently compute optimal robot paths around obsta-
cles, extract clinically useful features from the noisy output of medical images,
and model the manufacturing steps that transfer a streetmap of circuitry onto
a tiny piece of silicon.

It will require a bit of background to explain these techniques. We will
start with a example of a moving interface, and indeed show why a coordinate
system seems so unnatural. Unfortunately, the traditional alternative, known
as an “intrinsic parameterization”, will turn out to have its own problems; it
is ill-suited for sharp corners and topological change. The right way to view
things, at least for computational purposes, comes from recasting the problem
in a higher dimensional space, where, paradoxically, a coordinate system
offers salvation. Armed with these level set techniques, we can efficiently
compute solutions to problems in geometry, fluid mechanics, computer vision,
and materials sciences.

An Opening Example

Take a piece of rope, glue the two ends together, and drop it on the
ground, making sure that the rope doesn’t cross over itself (this is known as
a simple closed curve.)

A Simple Closed Curve Not A Simple Closed Curve

of the open one-dimensional continuum is act of violence whose only practical vindication is
(its) special calculatory mangeability...”. Along the same lines, ”....the coordinate system
remains as the necessary residue of the ego-extinction.”

One defining characteristic of a curve is its curvature, which measures
how fast the curve bends at any spot. For example, a circle has a constant
curvature because it always is turning at the same rate; a smaller circle has
a higher constant curvature because it turns faster.

Now, suppose each piece of the curve moves perpendicular to the curve
with speed proportional to the curvature. Since the curvature can be either
positive or negative (depending on whether the curve is turning clockwise
or counterclockwise), some parts of the curve move outwards while others
move inwards. In the figure below, the red arrows are where the curvature is
negative, and the green arrows are where the curvature is positive: the arrows
are of different lengths because the magnitude (or “strength”) is larger at the
green arrows than it is at the red ones.

A

Y

What happens to this curve as it moves according to this “motion by
curvature”? If the initial curve is a circle, it’s easy to convince yourself (by
looking at the symmetry of the problem) that each point on the curve races in
towards the center, and the interface must collapse stay a circle and collapse
to a single point. In the figure above, you can probably also convince yourself
that the shape relaxes itself and smooths out and becomes more circular. In
fact, for any simple closed curve, there is a remarkably tidy mathematical
answer that explicitly predicts an interface’s future from its initial shape:
we will come to that theorem shortly. But since motion by curvature is one
component of many physical phenomena (for example, surface tension in a
soap bubble and freezing rates at the edge of a snowflake both depend on the
curvature at a point), let’s try to build a computer model of what happens
to an evolving interface moving “under its curvature”.

Representing an FEvolving Interface: Functional vs. Parametric

In order to move an interface, we need first a good way to describe it.
A standard way to describe a curve is as the graph of a function, so let’s
begin with that. Recall that a function f has the property that every input
produces a unique (that is, one and only one) output. Imagine now a steady
snow falling straight down on a hilly terrain, and let the function y = f(z,t =
0) describe the initial height y at any point x at time ¢ = 0. As the snow
accumulates, the height changes in time above each point z.

Yy vy

y=f(x,t=0)

y=f(x,t=1)

X X

Initial Position of Front Later in Time

Unfortunately, this is limited view; there is no guarantee that the initial
position of the front can be always written as the graph of a function. For
example, the initial shape below does not have a unique height for every
point x, nonethless the accumulation of snow on this shape can be easily
predicted.

Initial Shape is not a Graph

The limitation here, to recall our earlier quote, is our use of a coordinate
system; it has nothing to do with the problem, but has severely restrained
our options.

If you were a differential geometer, you would most likely abandon this
functional representation of an interface for the “parameterized” view. Imag-
ine you are walking along the interface, calling out both your = and y coor-
dinates as you move: at the same time that you walk, a friend is plotting
those points on the xy plane. The speed at which you walk is known as the
“parameterization”; the curve drawn by your friend is known as the “image”.
Regardless of whether you walk quickly or slowly, your friend will trace out
the same boundary. The advantage of this approach is that the dependence
on the coordinate system has vanished; you can orient the figure any way
you’d like, and things still work.

A First Attempt at a Numerical Algorithm

Suppose we try to use this parameterized representation of an interface
as the backbone of a numerical algorithm. We can walk around the curve,
and plant a blue bouy at regular intervals. These bouys, together with the
ropes that connect them together, form a discrete view of the boundary. A
discretized version of the earlier motion by curvature example would then
look like the following figure.

Recall that the length and direction of the arrows is determined by the
local curvature. The strategy is to advance the positions of the bouys ac-
cording to the arrows, recalculate new arrows, and then advance the bouys
again; the hope is that by using more bouys, a more accurate answer will
emerge.

Unfortunately, there are several flaws in this approach, some inconvenient,

some fatal. A look at the figure reveals an inconvenient one: the bouys
try and cross over themselves, and it becomes hard to keep the connecting
ropes organized. A remedy is to stop the advancement periodically, re-walk
along the curve, and drop new equi-spaced bouys. However, doing this for a
propagating surface in three dimensions is, at the very least, unpleasant.

A more serious problem comes when the evolving boundary attempts to
change its topology. Taking a slight detour, consider two separate circular
flames, each burning outwards at a constant speed: the shape of the evolving
interface is easily predicted.

LELEREE

Initial Flame Later in Time

As the two separate flames burn together, the evolving interfaces merge
into a single propagating front. However, a numerical algorithm based on a
discrete parameterization runs into real trouble: in the figure below, the two
pairs of bouys located inside the burned region must somehow be removed if
we want to track the true “edge” of the expanding flame.

Only “Edge” Bouys Correspond to Propagating Interface

Trying to systematically determine which bouys to remove is a confusing
task: doing so in three dimensions is overwhelming. (A detailed, technical
discussion of these issues may be found in [7]).

Paradoxically enough, the path to an efficient and versatile representation
of propagating interfaces leads directly to the violent act of introducing a
coordinate system. However, the trick is to do so in one higher dimension:
this is the fundamental idea behind level set methods, introduced in [6], and
based on earlier work in [7].

A Level Set Representation

Rather than follow the interface itself, the level set approach instead takes
the original interface and adds an extra dimension to the problem. Recall
the previous interface, which consisted of two expanding circular blue flames.
We are going to re-introduce a coordinate system, using the xy plane which
contains the interface, and a z direction to measure height.

Suppose we invent a function z = ¢(z,y,t = 0), just as was done pre-
viously, to take as input a point (x,y), and assigns a height z. This time,
however, assign as height z the distance from (z,y) to the interface at time
t=0.

This builds a surface (shown in red) with the property that it inter-
sects the zy plane exactly at the interface. The red surface is called the
level set function, because it accepts as input any point in the plane and
hands back a height as output. The blue interface is called the zero level set,
because it is the collection of all points that are at height zero.

Another way to see why this is called a “level set surface” is to imagine
a saw that can cut a slice of the surface and then drop it onto the xy plane.
However, the slice has to be perfectly level.

o [f the saw cuts the red level set surface at height zero above the xy plane,
the slice that will drop to the zy plane will be the original interface
corresponding to the pair of blue flames.

o If the saw cuts at some other height, a different slice will drop down,
producing one of the red curves instead.

Yet another way to view this level set function is to think of a topographic

Level Set Function ,
zZ=@ (x,y,t:O)\ Y

(X.y)

The Level Set Surface (in red) plots the distance from each point (z,y) to the Interface (in blue)

hiking map which gives surface elevations. We have chosen a map such that
sea level always corresponds to the edge (or edges!) of our interface, with
oceans inside the interface, and mountains outside the interface.

Our plan is to figure out how to change the height of the surface ¢(z, y,t)
in time to match the evolution of the interface. The goal is to let the level
set function expand, rise, fall, and do all the work: to find out where the
interface is at any time, we can simply cut the surface at zero height, in
other words, plot the zero contour.

At first glance, it might seem crazy to take the problem of a moving curve
and trade it in for a moving surface! More dimensions usually mean more
work. The reason the extra dimension is so powerful is that, rather than
track bouys around which can collide and stretch apart, we can now stand at
each point zy and adjust the height of the level set function. This means, for
example, that our topological problems have vanished; two expanding flames
which merge into one simply means that the zero level set at a particular
time becomes one curve rather than two.

Later in Time: Red Level Set Surface has moved, yielding new Blue Interface

To summarize, level set methods exchange a geometric, moving coordi-
nate representation for a fixed coordinate perspective where each point (z, y)
adjusts its value to measure the distance to the evolving interface. Using ter-
minology from basketball, marker particle/bouy methods are a man-to-man
coverage, while level set methods are a zone defense.

One of the most striking aspects of the level set approach is that noth-
ing is changed for interface problems in three (or more!) dimensions: while
slightly harder to visualize, the strategy is still the same. First, embed the
evolving surface in one higher dimension. In the case of a propagating sur-
face, this would mean using a time-dependent function ¢(z,y,z,t = 0) in
four-dimensional space. Then, adjust this higher dimensional function corre-
sponding to motion of the interface, and compute the “zero” level set to find
the position of the propagating interface. All together, the trick of embed-
ding the front in a higher dimensional function is well worth the added cost
(in fact, with some work, that cost can be made the same as that of marker
techniques).

Level Set Methods: Technical Details

The story would be incomplete with explaining how to actually move the
level set surface. Suppose you are given an interface separating one region
from another (either a closed curve in two dimensions or a closed surface in
three dimensions), and a speed F' that tells you how to move each point of the
interface. Here, F' can depend on all sorts of complex physics, such as heating
on either side of the interface, or fluid mechanical effects. Regardless, we shall
assume that the speed F'is handed to us, and gives the speed in the direction
perpendicular to the interface (observe that any tangential component will
have no effect on the position of the front).

F F
Front Propagating with Speed F

We build an initial value for the level set function ¢(z,y,t = 0) based on
the signed distance d from each point (z,y) to the initial front, choosing a
positive distance if we are outside the blue region, and a negative if we are
inside. This constructs an initial value for the level set function ¢; all that
remains is to figure out how to adjust its value in time to match the evolving
interface.

Fortunately, this is strikingly easy. Imagine a bouy sitting on the blue
front, and let its position be described by (z(t),y(¢)), where ¢ is time. Then
in order for this bouy to always ride on the edge of the blue interface as the
surface moves, it must always be true that:

¢(z(1),y(1),1) = 0,

since the blue interface always corresponds to the place where ¢ = 0. Now, all

10

we need to do is apply the chain rule from calculus: take the time derivative
of both sides, and substitute the speed function F' which tells how the front
moves. A little bit of algebraic manipulation produces the level set equation,

namely

oot F(s2+62)" =0,
where the subscripts let us know that we are taking partial derivatives.

The above level set equation is called an initial value partial differential
equation: initial value because it describes the time-evolution of a solution
on the basis of an initial state, and partial differential because the equation
contains partial derivatives. It transforms pure geometry problems into the
language of partial differential equations, where theoretical results about

existence and uniqueness of solutions may be used to analyze solutions for
different speed functions F'.

An illustration of the power of partial differential equations comes from
an additional example. Starting from the simple case of a constant speed
function F' = 1, and a sinusoidal initial interface, consider two solutions to
the problem.

The Swallowtail Solution The Leading Wave Solution

The two solutions are the same until a corner develops in the propagating
interface, at which point one of them overlaps itself, while the other chooses
only the leading wave. Let’s name the solution on the left the “swallowtail”
solution, and the one on the right the “leading wave” solution. Intuitively,
the “leading wave” solution seems like the physically correct one, especially
in light of the earlier discussion about removing markers which don’t lie on
the boundary between inside and outside.

11

A A *

Some Viscosity: F'=1— .1k Less Viscosity: F'=1— .0lx No Viscosity: F'=1

But which solution is chosen by the level set partial differential equation?
As soon as the evolving front develops the sharp corner, all bets are off: we
can’t evaluate the partial derivative at a place when the slope makes a sudden
jump in direction.

The answer comes from the mathematical theory of wviscosity solutions.
Loosely speaking, viscosity measures the ability of a fluid right damp sharp
transitions and mute sudden changes. If you drop a marble in a jar of honey,
the viscosity of the honey slows it down. We will use this idea of viscosity to
smooth out the corner in our propagating interface.

Recall that motion under curvature acts to smooth out sharp corners; we
can think of this as adding a little viscosity. With this in mind, let’s consider
a speed of the form F' = 1—0.1k, where & is the curvature. We can substitute
this speed into our level set equation to produce

b+ (62 +¢2)" = 01k

That little bit of curvature acts to smooth out the sharp corner; a little bit
less curvature (F' = 1 — .01k) smooths it out even less. Observe that even
though there is very little smoothing going on with such a small amount of
curvature, as long as some positive non-zero amount is added, it is enough
to guarantee that a corner never develops.

The theory of viscosity solutions leads to a remarkable fact: if we take a
sequence of problems, each with ever smaller viscosity, they will head towards
our corner “leading wave” solution. This means that all we need to do is solve
for the viscosity solution of our level set equation, and we are guaranteed to
pick out the right topological evolving front.

We’ve said very little about how one actually devises a numerical algo-
rithm to solve the level set equation. Briefly, numerical schemes discretize zy

12

space into a grid of points, like a perfect map of streets and avenues. Fach
city block holds a value for the level set function, and updates its value as
the surface moves using neighboring values to determine the necessary par-
tial derivatives in the level set equation. In practice, the most sophisticated
level set algorithms employ two critical improvements:

e Rather than update the value of the level set function everywhere, work
is confined to a thin region around the evolving front: this is known as
the narrow band method, see [1].

e In the case of fronts that always move forwards under some particular
speeds, an extraordinarily efficient fast marching method is preferred,

see [8].

Motion by Curvature

As a first application of level set methods, we can revisit motion by cur-
vature, and examine what happens to a closed curve moving with speed
F' = —k (the minus sign is chosen so that convex parts move in, and concave
parts move out). We've seen that a circle must collapse smoothly to a point
before it disappears, and argued that more complicated simple closed curves
must smooth out. In fact, Grayson, (see [3]), proved that every simple closed
curve collapses smoothly to a single point, without crossing over itself. This
is a remarkable theorem: no matter how complicated or convoluted a curve
might be, it quickly relaxes itself into a circular object and shrinks down to a
point. As illustration, in the figure below we show one such curve shrinking

to a circular object; from there, it is easy to believe that it shrinks to a point
and disappears.

13

Motion under Curvature: Collapse of a Curve to a Single Point

If you’d like to try this out, a java applet is available which allows you to
draw in any curve you’d like, and follow its evolution, see
http://math.berkeley.edu/~sethian/level set.html

14

Negotiating a Prano Through a Cramped Apartment:

Suppose you live in an apartment with lots of corridors and long skinny
halls. You’ve just bought a piano, which you need to get from the front door
to the back room. The first question is, is it actually possible to twist and
turn the piano in such a way as to get it back there? And second, if it is,
what is the shortest path?

This is a problem in robotic navigation with constraints; the navigation
part is to find the shortest path; the constraint part is the requirement
that you don’t accidentally add a few new holes in the walls as you move
the piano. With a little work, this can be recast as a problem involving
propagating interfaces: here, we briefly summarize the application of level
set methods and fast marching methods to optimal path navigation developed
in [4].

To see how this becomes an evolving interface, let’s start with a simpler
problem. Suppose you are standing in a parking lot. You are at point A,
your car is at point B, and there are no other cars in the lot. If you want the
shortest path to your car, you can just draw the straight line shown in the
figure on the left below.

B B B

: &

Straight Line from A to B Expanding Front Around A Trace Back to Find Path

But there’s a different way to find this path. Imagine a front expanding
from point A in all directions. Since it doesn’t ”cost” you any more to
walk in one direction over another, let the front expand with speed 1 in all
directions (Using our earlier terminology, let the speed F(z,y) = 1, which
means that the speed in the normal direction is always unity) That means
that the expanding front will be a growing circle around point A, which will

15

eventually touch point B. Once the front touches point B, you can find the
shortest path by starting at point B and proceeding backwards along the
path that is always perpendicular to the expanding front. If you do this,
you’ll get the straight line shown in the figure on the right above.

Now, let’s imagine that one half of the parking lot is full of snow, and
it’s slower to walk through snow. Furthermore, you’re standing on the snowy
side, and your car is on the dry side. In this case, the "shortest” path (that is,
the one that takes the least time), as shown in the figure on the right, is not
always a straight line. But we can still use our front propagation technique:
we expand a front around point A, only this time the front expands faster
when it is on dry pavement than it does over the snow. To build this in to
our front propagation problem, we let the speed F(z,y) be 1/2 if the point
(z,y) is on the snow, and 1 if the point (z,y) is on dry pavement. Once
the front hits the car, we again trace backwards from B to A, always going
perpendicular to the front, and construct the shortest (in time) path.

/
Left=snow, Right=dry = Expand Front Around A: Trace Back to Find Path

Now, let’s add other cars to the lot. We can represent those cars as places
where the speed function F(z,y) = 0; this means that it takes forever to walk
through a car. Again, we solve our front propagation problem, trace back,
and construct the optimal path. The key here is to have an algorithm which
allows the evolving interface to split into two or more fingers, and then merge
back together.

And finally, suppose you are carrying a ladder; this means that you must
angle the ladder between cars, where some orientations fit while others do not.
In terms of our evolving interface perspective, this means that we will add
an extra dimension to the problem, and now the speed function I depends

16

N /

Optimally Efficient Path Around Obstacles

on three variables: two for position (z,y) and one for the orientation 6 of the
ladder.

As illustration, we show the optimal trajectory of a piano around an
apartment: here we specify the initial and final configurations (position and
angle) of the piano, and then use the fast marching method to compute the
optimal trajectory.

80

60

40

20

20 40 60 80

Optimal Trajectories for Piano Movers

For further details about the application of level set methods to problems
in robotic navigation, see [4].

17

Shape Recovery in Medical Imaging

Another application of level set methods stems from the need to extract
useful anatomical features from medical images such as MRI or CAT scans.
While a skilled eye can pick out the desired boundaries from a noisy image,
even those delineated by slight changes in image intensity, asking a physician
to draw by hand outlines on each scan is both time-consuming and inex-
act. Automatic “edge detection” has drawn considerable attention, however,
educating a piece of software to both ignore noise and avoid introducing
non-existent boundaries is quite a challenge. One idea is to look for places
where there is a big jump in intensity between neighboring pixels. However,
it 1s hard to pick a good value for the jump; too small and you get extra
boundaries; too large and you miss the everything. As an example, given the
digital subtraction angiogram (DSA) below, a goal is to extract the outline
of the artery.

Digital Subtraction Angiogram

A different strategy comes from a level set approach [5], in which an
imaginary front is allowed to propagate from an initial speed. The trick is
to adjust the speed F to detect the edge of the shape:

e When the interface passes over places where the image gradient (that
is, the change in value from one pixel to the next) is small, we assume
we are not near a boundary, and we let the curve expand quickly.

e When the curve passes over places where the image gradient is large,
we suspect we are near the boundary, and slow the curve down.

18

In addition, a little surface tension (in the form of motion by curvature) is
included to slightly retard the expanding contours. Again, we use the fast
marching version of the level set method to obtain optimal performance;
three-dimensional edge detection is equally straightforward.

Evolving Front Driven by Function of Image Gradient

RS W

3D Liver 3D Spleen 3D Heart Chambers

19

Semiconductor Manufacturing: Etching, Deposition, and Photolithography

Part of the process of manufacturing a computer chip consists of digging
holes in silicon wafers and coating/shaping them with materials. As devices
sizes get smaller and smaller, this becomes an increasingly complicated and
expensive process. Level set methods (see [1]), have provided computational
models provide to track the evolution of the surface profile during various
stages of the manufacturing process.

For example, in photolithography, which resembles silk-screening, a pat-
tern mask is placed on a silicon wafer which is then exposed to light: this
weakens the ability of the exposed material to resist an etching. During
the photoresist development stage, the material is etched away, leaving deep
holes that form initial paths in the silicon.

On Left: Masking Pattern/On Right: Evolution of Lithographic Profile using
the Fast Marching Method and Technology Modeling Associates” DEPICT

One of the more complex manufacturing processes involves ion-milling,
in which a beam of reactive ions acts like a sandblaster and etches away at
a surface. This etching rate depends on, among other things, the angle at
which the beam hits the surface. Just like a bad golf swing, the most effective
etching angle is not always directly straight down; you can often dig out more
grass with a glancing blow from the side. The “yield function” relates how
much material is removed as a function of the incoming angle.

Interestingly enough, this process produces beveled, rounded edges in
some areas, and sharp cusps in others. While these are difficult problems

20

to model, they are handled easily by level set methods, due to their reliance
on numerical schemes which construct the correct viscosity solution of the
differential equation.

Initial Shape Final Shape (Rotated)
Etching of Downward Saddle under Ton-milling

Returning Full Circle: Motion by Curvature

We started this story with motion by curvature, demonstrated the re-
markable theorem that all simple closed curves collapse to a point, and then
followed with more involved interface motions. Not surprisingly, we haven’t
scratched the surface of problems that have been tracked using level set meth-
ods, including rising bubbles with surface tension, fluid mixtures, combustion
and flame propagation, fracture mechanics, and seismic travel time calcula-
tions. Nonetheless, the “simple” geometry problem of motion by curvature
holds a few more mysteries.

What happens in three dimensions? First, we need a definition for cur-
vature. Standing at point on a surface, the curvature of any path depends
on the direction we travel. For example, standing in the center of a horse’s
saddle, one curvature is positive since it bends up, while the other one bends
down and hence is negative. The mean curvature of a surface is defined as
the average between the biggest and smallest such curvatures.

Now, if we take a sphere and let it collapse under its mean curvature,
once again, by symmetry the sphere must collapse to a point. But for more
complex surfaces, this is not true. A dumbbell, if it has a narrow enough

21

handle, will split into two pieces! In the figure below (see [2]), a single surface
splits into five pieces before each one collapses to a point.

c%)o oé%

Collapse of a Two-handled Dumbbell

This is not just a mathematical oddity. Since surface tension is propor-
tional to curvature, at the core, this “non-theorem” sheds light on why drops
of fluid, when perturbed, often break into multiple parts.

Finally, let’s come full circle, and return to our example of a simple closed
curve collapsing under its curvature. Grayson’s theorem proves that all such
curves shrink to a single point: but which point? For circles, ovals, and
similarly symmetric curves, the location of the shrinkage spot can be deduced.

Beyond that, for general curves, no one knows.

Further Information and Bibliography

More information about level set methods and fast marching methods
may be found in a recent book “Level Set Methods” [8]. A web page devoted
to the topic, complete with movies, interactive java applets, and discussions of
applications in computer vision, materials, sciences, fluid mechanics, and ge-
ometry, may be found at http://math.berkeley.edu/~sethian/level set.html.

This work has been supported by the Applied Mathematics Subprogram
of the Office of Energy Research under contract DE-AC03-76SF00098, and
Division of Mathematical Sciences as the National Science Foundation. The
author would also like to thank Barry Cipra for his help with this article.

22

Bibliography

[1] Adalsteinsson, D., and Sethian, J.A.; A Unified Level Set Approach to
FEtching, Deposition and Lithography I, and II, J. Comp. Phys., 120, 1, pp.
128-144, 1995, and 122, 2, pp. 348-366, 1995.

[2] Chopp, D.L., and Sethian, J.A., Flow Under Curvature: Singularity
Formation, Minimal Surfaces, and Geodesics, Jour. Exper. Math., 2, 4, pp.
235-255, 1993.

[3] Grayson, M., The heal equalion shrinks embedded plane curves to
round points, J. Diff. Geom., Vol. 26, 285, 1987.

[4] Kimmel, R., and Sethian, J.A., Fast Marching Methods for Robotic
Navigation with Constraints, Center for Pure and Applied Mathematics Re-
port, Univ. of California, Berkeley, submitted for publication, IEEE Trans-
actions on Robotics, 1996.

[5] Malladi, R., and Sethian, J.A.; A Unified Approach to Noise Remouval,
Image Enhancement, and Shape Recovery, IEEE Trans. on Image Processing,
5, 11, 1554-1568, 1996; see also Malladi, R., Sethian, J.A., and Vemuri, B.C.,
Shape Modeling with Front Propagation: A Level Set Approach, IEEE Trans.
on Pattern Analysis and Machine Intelligence, 17, 2, pp. 158-175, 1995.

[6] Osher, S., and Sethian, J. A., Fronts propagating with curvature depen-
dent speed: Algorithms based on Hamilton-Jacobi Formulations, Jour. Comp.
Phys., Vol. 79, pp. 12-49, 1988.

[7] Sethian, J.A., Curvature and the evolution of fronts, Commun. in
Math. Physics, Vol. 101, pp. 487-499, 1985.

[8] Sethian, J.A., A Fast Marching Level Sel Method for Monotonically
Advancing Fronts, Proc. Nat. Acad. Sci., 93, 4, 1996.

[9] Sethian, J.A., Level Set Methods: Evolving Interfaces in Geometry,
Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Uni-
versity Press, 1996.

[10] Weyl, H., The Philosophy of Mathematics and Natural Science,
Atheneum, New York, 1963.

23

