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Textural Features for Image Classification
ROBERT M. HARALICK, K. SHANMUGAM, AND ITS'HAK DINSTEIN

AbstTact~Texture is one orthe important characteristics nsed in
identifying objects or regions of interest in an image, whether the image
he a photomicrograph, an aerial photograph, or a satellite image. This
paper describes some easily computable textural features based on gray­
tone spatial dependancies, and illustrates their application in cateWlry­
identification tasks of three different kinds of image data: photo­
microgra)lhll of five kinds of sandstones, 1:20 000 panchromatic aerial
photographs of eight land-use categories, and Earth Resources Tech­
nology Satellite (ERTS)multispecial imagery contaiuing seven land-use
categories. We use two kinds of decision rules: one for which the decision
regions are convex polyhedra (a piecewise linear decision rule), and one
for which the decision regions are rectangular paralleipipeds (a min-max
decision rule). In each experiment ftle data set was divided into two
parts, a training set and a test set. Test set identification accuracy is
89 percellt for the photomicrographs, 82 percent for the aerial photo­
graphic imagery, and 83 percent for the satellite imagery. These results
indicate that the easily computable textural features probably have a
general applicability for a wide variety of image-classification applica~

tions.

I. INTRODUCTION

WITH THE ADVENT of high~speed general-purpose
digital computers it is becoming possible to perform

mathematical or algorithmic processes on pictorial data
from images of photogni.phic quality. In most of these
processes, the pictorial information is represented as a
function of two variables (x,y). The image in its digital
form is usually stored in the computer as a two-dimensional
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array. If L", = {1,2,·· ,N",} and Ly = {1,2,·· ,Ny} are the
X and Y spatial domains, then L", x L y is the set of resolu­
tion cells and the digital image I is a function which assigns
some gray-tone value G € {1,2," ,Ng} to each and every
resolution cell; I: L", x Ly -loG. Various two-dimensional
analyses are performed on I to achieve specific image­
processing tasks such as coding, restoration, enhancement,
and classification. In recent years a tremendous amount of
computer processing of photographs has occurred, with
facilities having been developed to process anything from
aerial photographs to photomicrographs [I], [2].

In this paper we are concerned with the task of developing
a set of features for classifying or categorizing pictorial
data. The classification of pictorial data can be done on a
resolution cell basis (such as in identifying the crop category
of a resolution cell on satellite imagery) or on a block of
contiguous resolution cells (such as in identifying the crop
category of an entire agricultural field extending over a
large number of resolution cells). The most difficult step in
categorizing pictorial information from a large block of
resolution cells is that of defining a set of meaningful
features to describe the pictorial information from the block
of resolution cells. Once these features are defined, image
blocks can be categorized using. anyone of a multitude of
pattern~recognitiontechniques.

In a search for meaningful features for describing pic~

torial information, it is only natural to look toward the
types of features which human beings use in interpreting
pictorial information. Spectral, textural, and contextual
features are three fundamental pattern elements used in
human interpretation of color photographs. Spectral fea­
tures describe the average tonal variations in various bands
of the visible and/or infrared portion of an electromagnetic
spectrum, whereas textural features contain information
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about the spatial distribution of tonal variations within a
band. Contextual features contain information derived from
blocks of pictorial data surrounding the area being analyzed.
When small image areas from black and white photographs
are independently processed by a machine, then texture and
tone are most important.

The concept of tone is based on -the varying shades of
gray of resolution cells in a photographic image, while
texture is concerned with the spatial (statistical) distribution
of gray tones. Texture and tone are not independent con­
cepts; rather, they bear an inextricable relationship to one
another very much like the relationship between a particle
and a wave. Context, texture, and tone are always present ifl
the image, although at times one property can dominate the
other.

Texture can be evaluated as being fine, coarse, or smooth;
rippled, moIled, irregular, or lineated. For example, in the
humid tropics, fine texture on radar imagery can be in­
dicative of -nonresistant fine-grain sedimentary rocks and
unconsolidated sediments, while a coarse texture can be
indicative of coarser grained sedimentary rocks. A massive
texture with high-contrast components may be indicative of
igneous rocks. A hummocky texture can be indicative of
eroded igneous rocks.

Texture is an innate property of virtually all surfaces­
the grain of wood, the weave of a fabric, the pattern of
crops in a field, etc. It contains important information
about the structural arrangement of surfaces and their
relationship to the surrounding environment. Although it
is quite easy for human observers to recognize and describe
in empirical terms, texture has been extremely refractory to
precise definition and to analysis by digital computers.
Since the textural properties of images appear to carry
useful information for discrimination purposes, it is im­
portant to develop features for texture. We present in this
paper a computationally quick procedure for extracting
textural features of images and discuss the usefulness of
these features for discriminating between different kinds of
image data.

Early image texture studies have employed autocorreJa~

tion functions [3], power spectra [4], restricted first- and
second-order Markov meshes [5], and relative frequencies
of various gray levels on the unnormalized image [6].
These had some degree of success, but we know little more
about texture after finding the results of these experiments
than before because they did not try to specifically define,
characterize, or model texture. They only used some general
mathematical transformation which assigns numbers to the
transformed image in a nonspecific way.

Recent attempts to extract textural features have been
limited to developing algorithms for extracting specific
image properties such as coarseness and presence of edges.
Many such algorithms have been developed and tried on
special imagery. The subjective parameters (such as the
selection of thresholds) associated with the techniques do
not enable them to be generalized to imagery other than
that processed by the authors. Recently, Rosenfeld and his
coinvestigators presented a set of procedures for extracting
some textural properties of pictorial data [7]-[9]. In [7]
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Rosenfeld and Troy described a procedure for obtaining a
measure of the texture "coarseness" of images. Their pro­
cedures were based on the differences between the gray·tone
values of adjacent image elements ,and on the autocorrela­
tion of the image gray-tone values. In [8] Rosenfeld and
Thurston gave a procedure for detecting boundaries separat·
ing regions which differ in texture coarseness. In [9] Troy
et al. described gray~level manipulation procedures which
can be used for preprocessing of pictures before applying
the algorithms given in [7] and [8]. Procedures for detecting
textural properties such as lines and dots have also been
suggested by other investigators (see, for example, [lOT....
[12]). Before applying these procedures to pictures other
than the ones processed by the authors of the _respective
papers, the investigator has to make a choice as to the
method appropriate to the picture in question as well as the
selection of parameters for the particular method.

We are presenting in this paper a general procedure for
extracting textural properties of blocks of image data. These
features are calculated in the spatial domain, and the
statistical nature of texture is taken into account in our
procedure, which is based on the assumption that the tex­
ture information in an image J is contained in the overall
or "average" spatial relationship which the gray tones in
the image have to one another. We compute a set of gray~

tone spatial-dependence probability-distribution matrices
for a given image block and suggest a set of 14 textural
features which can be extracted from each of these matrices.
These features contain information about such image tex­
tural characteristics· as homogeneity, gray~tone linear de­
pendenciesOinear structure), contrast, number and nature
of boundaries present, and the complexity of the image. It
is important to note that the number of operations required
to compute anyone of these features is proportional to the
number of resolution cells in the image block. It is for this
reason that we call these features quickly computable.

We also investigate the usefulness of textural features for
categorizing or classifying image blocks from three different
data sets ranging from high-resolution photomicrographs
to low-resolution satellite imagery. The accuracy of clas­
sification on multiclass categorization using textural features
of these data sets was in the range of 80-90 percent.

II. TEXTURAL FEATURES

Our initial perspective of texture and tone is based on
the concept that texture and tone bear an inextricable
relationship to one another. Tone and texture are always
present in' an image, although one property can dominate
the other at times. T~e basic intuitively perceived relation~

ships between tone and texture are, the following. When a
small-area patch of an image has little variation-i.e., little
variation of features of discrete gray tone-the dominant
property of that area is tone. When a small~area patch has
a wide variation of features of discrete gray tone, the
dominant property of that area is texture. Crucial to this
distinction are the size of the small-area patch, the relative
sizes of the discrete features, and the number of distin­
guishable discrete features. As the number of distinguishable
tonal discrete features decreases, the tonal properties will
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90 degree,

Fig. 1. Resolution cells I and 5 are 0° (horizontal) nearest neighbors
to resolution cell *; resolution cells 2 and 6 are 1350 nearest neigh­
bors; resolution cells 3 and 7 are 90° nearest neighbors; and resolu­
tion cells 4 and 8 are 45° nearest neighbors to *. (Note this informa­
tion is purely spatial, and has nothing to do with gray-tone value8.)
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nearest-neighbor resolution cells themselves. We consider a
resolution cell-excluding those on the periphery of an
image, etc.-to have eight nearest-neighbor resolution cells
as in Fig. 1.

We assume that the texture-context information in an
image 1 is contained in the overall or "average" spatial
relationship which the gray tones in image 1 have to one
another. More specifically, we shall assume that this tex­
ture-context information is adequately specified by the
matrix of relative frequencies Pi} with which two neighbor­
ing resolution cells separated by distance d occur on the
image, one with gray tone i and the other with gray tone j.
Such matrices of gray-tone spatial-dependence frequencies
are a function of the angular relationship between the
neighboring resolution cells as well as a function of the
distance between them. Fig. 2 illustrates the set of all
horizontal neighboring resolution cells separated by distance
1. This set, along with the image gray tones, would be used
to calculate a distance 1 horizontal gray-tonespatial-de­
pendence matrix. Formally, for angles quantized to 45°
intervals the unnormalized frequencies are defined by

predominate. In fact, when the small·area patch is only the
size of one resolution cell, so that there is only one discrete
feature, the only property present is tone. As the number of
distinguishable features of discrete gray tone increases
within the small-area patch, the texture property will
dominate.

One important property of tone;-texture is the spatial
pattern of the resolution -cells composing each discrete
tonal fi~ature. When there is no spatial pattern and the
gray-tone variation between features is wide, a fine texture
results. As the spatial pattern becomes more definite and
involves more and more resolution cells, a coarser texture
results. An excellent set of photographs of different types
of texture may be found in [13].

The preceding description of texture is, of course, a gross
simplification and idealization of what actually occurs.
Discrete tonal features are really quite fuzzy in that they do
not necessarily stand out as entities by themselves. There­
fore the texture analysis we suggest is concerned with more
general or macroscopic concepts than discrete tonal features.

The procedure we suggest for obtaining the textural
features of an image is based on the assumption that the
texture information on an: image I is contained in the overall
or "average" spatial relationship' which the gray tones in
the image I have to one another. More specifically, we shall
assume that this texture information is adequately specified
by a set of gray-tone spatial-dependence matrices which are
computed for various angular relationships and distances
between neighboring resolution cell pairs on the image. All
of our textural features are derived from these angular
nearest-neighbor gray-tone spatial-dependence matrices.

Gray-Tone Spatial-Dependence Matrices

Suppose an image to be analyzed is rectangular and has
Nx resolution cells in the horizontal direction and Ny
resolution cells in the vertical direction. Suppose that the
gray tone appearing in each resolution cell is quantized 1 to
Ng levels. Let Lx = {I ,2,' .. ,Nx} be the horizontal spatial
domain, Ly = {I,2,.· -,Ny} be the vertical spatial domain,
and G = {I,2,'" ,Ng} be the set of Ng quantized gray
tones. The set Ly x Lx is the set of resolution cells of the
image ordered by their row-column designations. The image
I can be represented as a function which assigns some gray
tone in G to each resolution cell or pair of coordinates in
Ly x Lx; I: Ly x Lx _ G.

An essential component of our conceptual framework of
texture is a measure, or more precisely, four closely related
measures from which all of our texture features are derived.
These measures are arrays termed angular nearest-neighbor
gray-tone spatial-dependence matrices, and to describe
these,arrays we must emphasize our notion of adjacent or

where # denotes the number of elements in the set.

Note that these matrices are symmetric; P(i,j; d, a)
PU, i; d, a). The distance metric p implicit in the preceding

1 Variations in lighting, lens, film, developer, and digitizer usually
introduce monotonic transformations of the "true" image gray-tone
values. Under these conditions, we would want two images of the same
scene, one being a gray-tone monotonic transformation of the other
to produce the same features. Image normalization by equal-prob­
ability quantizing guarantees that images which are monotonic trans­
formations of one another produce the same results [141, [15J. An
,equal-probability quantizing algorithm is given in Appendix III.

l(k,l) ~ i, l(m,n) ~ i) (1)
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equations can be explicitly defined by

p(k,l),(m,n» ~ max {Ik - ml, 1/ - nil.

Consider Fig. 3(a), whichtepresents a 4 x 4 image with
four gray tones, mnging frOm 0 to 3. Fig. 3(b) shows the
general form of any gray-tone spatial~dependence matrix.
For example, the element in the (2,1) position of the
distance 1 horizontal PH matrix is the total number ohimes
two gray tones of value 2 and 1 occurred horizontally
adjacent to each other. To determine this number, we count
the number of pairs of resolution cells in R H such that the
first resolution cell of the pair has gray tone 2 and the
second resolution cell of the pair has gray tone 1. In Fig.
3(c}-3(f) we calculate all four distance 1 gray-tone spatial­
dependence matrices.

If needed, the appropriate frequency normalizations for
the matrices are easily computed. When the relationship is
nearest horizontal neighbor (d = 1, a = 0°), there will be
2(Nx - 1) neighboring resolution cell pairs on each row
and there are Ny rows, providing a total of 2Ny(Nx. - 1)
nearest horizontal neighbor pairs (see Fig. 3). When the
relationship is nearest right-diagonal neighbor (d = 1,
a = 45°) there will be 2(Nx - 1) 45° neighboring resolution
cell pairs for each row except the first, for which there are
none, and there are Ny rows. This provides a total of
2(N)) - l)(Nx. - 1) nearest right~diagonal neighbor pairs.
By symmetry there will be 2Nx.(Ny - 1) nearest vertical
neighbor pairs and 2(Nx. - l)(Ny - 1) nearest left-diagonal
neighbor pairs. After the number of neighboring resolution
cell pairs R used in computing a particular gray-tone
spatial-dependence matrix is obtained, the matrix is
normalized by dividing each entry in the matrix by R.

It is appropriate at this point to comment on the com~

putational aspects of obtaining the gray-tone spatial~de­

pendence matrices. The number of operations required to
process an image using our procedure is directly propor­
tional to the number of resolution cells n present in the
image. In comparison, the number of operations are of the
order of n log n if one wishes to use Fourier or Hadamard
transform to extract texture information. Also, to compute
the entries in the gray-tone spatial-dependence matrices,
.one needs to keep only two lines of image data in core at a

'time. Thus no severe storage constraints are imposed. For

mpst of the images we have processed, the computations
have been carried out on a small digital computer (PDP
15/20 with 12 kwords of core and two DEC tape drives).
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Fig. 3. (a) 4 x 4 image with four gray-tone values 0-3. (b) Generai
form of any gray-tone spatial-dependence matrix for image with
gray-tone values 0-3. "Hi,},) stands for number of times gray tones
i and j have been neighbors. (cHf) Calculation of ail four distance
1 gray-tone spatial-dependence matrices.

Textural Features Extracted/rom Gray-Tone Spatial­
Dependence Matrices

Our initial assumption in characterizing image texture is
that all the texture information is contained in the gray-tone

, spatial-dependence matrices"Hence all the textural features
we suggest are extracted from these gray-tone spatial~de­

pendence matrices. The equations which define a set of 1"4
measures of textural features are given in Appendix I.
Some of these measures relate to specific textural charac­
teristics of the image such as homogeneity, contrast, and
the presence of organized structure within the image. Other
measures characterize the complexity and nature of gray~

tone transitions which occur in the image. Even though
these features contain information about the textural
characteristics of the image, it is hard to identify which
specific textural characteristic is represented by each of
these features.

For illustrative purposes, we will define 3 of the 14
textural features in this section and explain the significance
of these features in terms of the kind of values they take on
for two images of distinctly different textural characteristicS
The features we consider are

((lk;I),(m,n)] • (lll)" " (l xlJ I k-m~ 0, 11-01 ~ II
U(1,II,II,2J), (1,2),(1,1(, (II,2),(1,3») ,1(1,3),(1,2)),
~1 ,3), (I ,4)), tl,4),(1,3)], ((2, I), 12,2J), 1(2,2),(2,1»),
112,2),(2,3)1-, ~2,3J,(2,2)), {(2,3),(2,4)], (12,4),(2,3)),

{(3,11,13,2)), 1(3,2):(3,1~, ((3,21;13,3~, (3,3),(3,2)1,
~3,3),(3,4~, P,4),(3,3j, {(4,1),(4,2j, ~4,2),(4,1~,

K4,2),(4,3~, ~4,3),14,21, ~4,3),(4,4», (14,4J,14,3)))

Set of all distance 1 horizontal neighboring resolution cells
on 4 x 4 image.

Fig. 2.
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Grassland Water Body

Angle ASM Contrast Correlation ASM Contrast Correlation

0° .0128 3.048 .8075 .1016 2.153 .7254
45" .0080 4.011 .6366 .0771 3.057 .4768
90° .0077 4.014 .5987 .0762 3.113 .4646

135" .0064 4.709 .4610 .0741 3.129 .4650
Avg. .0087 3.945 .6259 .0822 2.863 .5327

(,) (b)

Fig. 4. Textural features for two different land-use category images.

where Px' Py' (J'", and (J'y are the means and standard devi­
ations of the marginal distributions associated with P(i,j)JR,
and R is a normalizing constant.

Fig. 4 shows the digital printout of two 64 x 64 image
blocks taken from a satellite picture over the California
coastline (NASA ERTS Image no. 1002-18134). The image
shown in Fig. 4(a) is a representative sample of grasslands
and Fig. 4(b) is a representative sample of water bodies in
the area. The values of the features 11, 12, and/3 obtained
from gray-tone spatial-dependence matrices fo'r distance
d = 1, are shown below the images in Fig. 4.

The angular second-moment feature (ASM) 11 is a
measure of homogeneity of the image. In a homogeneous
image, such as shown in Fig. 4(b), there are very few dom­
inant gray-tone transitions. Hence the P matrix for this
image will have fewer entries of large magnitude. For an
image like the one shown in Fig. 2(a), the P matrix will have
a large number of small entries, and hence the ASM feature
(which is the sum of squares of the entries) in the P matrix
will be smaller. A comparison of the ASM values given

below the images in Fig. 4 shows the usefulness of the ASM
feature as a measure of the homogeneity of the image.

The contrast feature 12 is a difference moment of the P
matrix and is a measure of the contrast or the amount of
local variations present in an image. Since there is a large
amount of local variation present in the image of Fig. 4(a)
compared to the image shown in Fig. 4(h), the contrast
feature for the grassland image has consistently higher
values compared to the water-body'image.

The correlation feature 13 is a measure of gray-tone
linear-dependencies in the image. For both the images-.
shown in Fig. 4, the correlation feature is somewhat higher
in the horizontal (0°) direction, along the line of scan. The
water-body image consists mostly of a constant gray-tone
value for the water plus some additive noise. Since the noise
samples are mostly uncorrelated, the correlation features
for the water-body image have lower values compared to
the grassland image. Also, the grassland image has a con­
siderable amount of linear structure along 45° lines across
the image, and hence the value of the correlation feature is
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Fig. 5. Samples of photomicrographs of sandstones. (a) Dexter-L.
(b) Dexter-H. (c) St. Peter. (d) Upper Muddy. (e) Gaskel.

Co)

(b)

Co)

(d)

Ca)

15/20 computer is interfaced to the IDECS and the system
is capable of performing various functions of image pro­
cessing [25]. The IDECS is capable of processing up to
four image inputs. Three flying spot scanners can input
transparencies up to a maximum size of 4 x 5 in. A vidicon
scanner accepts larger transparencies as well as printed
images. Multi-image inputs are electronically registered and
combined into a format more suitable for interpretation.
Processed images are displayed on a color display unit
and/or a black and white monitor. A 24-channel disk is
synchronized with the system and used for storage of
processed digital images. Either manually or under com­
puter control, the IDECS/PDP is able to perform image
enhancement, video level slicing, area integration, category
discrimination, display of histograms and scatograms,
quantizing, and similar image-processing operations. The
algorithm used for quantizing the aerial photographic data
set digitized the images into eight levels in such a way that
the areas of the different levels (in each image) were equal.
Each. image was digitized into a 20 x 50 array. The eight
categories were residential old (RSOLD), residential new
(RESNU), LAKE, SWAMP, MARSH, URBAN, RAIL,
and SCRUB or WOOD (SCROD). The first six categories
contained 20 samples each, the RAIL and SCROD cate­
gories contained 10 and 40 samples, respectively. Samples
of the images are shown in Fig. 6.

3) Data Set Derived from Satellite Imagery: A variety
of satellite imagery is currently used for the remote sensing
of Earth resources. The most commonly used satellite

Data Set Description

1) Photomicrographs of Sandstones: Identification of the
types of rocks (sandstones) present in an underground
reservoir of crude oil is important in petroleum production
studies; hence we undertook a study to identify different
types of rocks from the textural characteristics of their
photomicrographs. The data set consisted -of 243 image
blocks of size 64 x 64 and the gray tones of the images were
equal-probability quantized into 16 levels. Details of the
algorithm used to perform this quantization are given in
Appendix III. There were five sandstone categories in the
data set, and samples of the photomicrographs are shown in
Fig. 5. The textural features for the 243 samples were
calculated from distance I gray-tone spatial-dependence
matrices.

2) Aerial Photographic Data Set: This data set consisted
of 170 images belonging to eight categories. These 170
images were manually sampled from 9 x 9-in 1: 20 000
aerial photography negatives provided by the Army En­
vironmental Topographic Laboratories, Fort Belvoir, Va.
[17]. The digitization of the sampled images was done on
the Image Discrimination, Enhancement, and Combination
System (IDECS)/PDP. The IDECS is an analog-digital near
real-time processing system that has been developed at the
University of Kansas Center for Research, Inc. A PDP

higher along this direction compared to the values for 90°
and 135° directions. More examples of the significance of
some of the textural features are presented in Appendix II.

The various features which we suggest are all functions
of distance and angle. The angular dependencies present a
special problem. Suppose image A has features a, b, c, and
d for angles 0°, 45°, 90°, and-135°, respectively, and image
B is identical to A except that B is rotated 90° with respect
to A. Then B will have features c, d, a, .and b for angles 0°,
45°,90°, and 135°, respectively. Since the texture context of
A is the same as the texture context of B, any decision rule
using the angular features a,b,c,d must produce the same
results for c,d,a,b. To guarantee this, we suggest that the
angularly dependent features not be used directly. Instead
we suggest that two functions of a, b, c, and d, their average
and range (which are invariant under rotation), be used as
inputs to the classifier.

III. APPLICATIONS OF TExtURAL FEATURES FOR IMAGE

CLASSIFICATION

In this section we present the results of our studies on
the usefulness of the textural features for categorizing
images. Three data sets were used in our study~ These data
sets were extracted from photomicrographs of different
rocks, from aerial photographs of man-made and natural
scenes, and from high-altitude satellite pictures of the earth.
A brief description of the data sets and classification al~

gorithms used and the results of classification experiments
will be preseilted. For further details the interested reader

·is referred to [16]-[18].
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Fig. 6. Samples of aerial photographic data set. (a) RSOLD. (b)
RESNU. (e) LAKE. (d) SWAMP. (e) MARSH. (f) URBAN.
(g) RAIL. (h) SCRUB. (i) WOOD. (SCRUB and WOOD are
classified together as SCROD.) Fig. 7. Satellite picture of Monterey Bay, Calif.

Cf)

(0)

Co)

(b)

Cd)

(,)

a reasonably large number of samples, we used a piecewise
linear-discriminant function method. The data sets were
partitioned arbitrarily into training and test sets. The
classification algorithm was developed using the samples in
the trainirig set and it was tested on the samples in the test
set.

A variety ofalgorithms have been discussed in the pattern­
recognition literature for obtaining piecewise linear-dis­
criminant functions for pattern classification [19]-[22]. In
a widely used algorithm, the pattern space is partitioned
into a number of regions using a set of hyperplanes (decision
boundaries) whose locations are determined by the sample
patterns. Each region is dominated by sample patterns of a
particular category. When a new pattern is presented for
identification, it is assigned a category depending on the
region to which it belongs. If the new pattern X is located in
a region dominated by sample patterns of category cj , then
X is classified as coming from category cj •

For the multicategory problem involving NR categories,
a total of NR(NR - 1)/2 hyperplanes are used t6 partition
the pattern space. These hyperplanes are defined by a set
of weight vectors W;j,i = 1,2,.· ',NR , j = 1,2," ',NR ,

j > i, which separates the sample patterns belonging to the
ith andjth categories. A regression type algorithm given in

_[19, ch. 4] was used to obtain the weight vectors. After the
location of the hyperplanes are determined, the classifica­
tion of new patterns is done as follows. For each category
c;' the number of hyperplanes VI which give a positive
response when the neW pattern X is presented are deter­
mined using

imagery is the multispectral scanner (MSS) imagery, which
consists of a set of images of a scene, where each image in
the set is created by scanning the radiance of the scene
from the satellite in a narrow band of wavelengths. The
MSS operates in wavelengths ranging from 0.3 to 16 pm,
and up to 24 scanners have been used in the past.

The data set used in our study was derived from a high~

altitude four~channel multispectral satellite image taken
over the California coastline. The image in one of the four
MSS bands is shown in Fig. 7. The ground area covered by
the image is about 14400 mF and the size of the digital
image is 2340 x 3200. Out of this large image, a subset of
624 contiguous image blocks of size 64 x 64 was taken
and used in our study. There were seven land-use categories
in the image; these are coastal forest, woodlands, annual
grasslands, urban areas, small and large irrigated fields, and
water bodies. The land-use category for each 64 x 64
image block was obtained by interpreting the color com­
posite of the multispectral image set. The textural features
were computed from the. distance 1 gray~tone spatial­
dependence matrix of the second MSS band image in the
multispectral image set.

Since the ground truth category information was derived
from the color composite image, we used a set of spectral
(color) features in addition to the textural features for
categorizing these images. The spectral features consisted
of the mean and standard deviation of the gray~tone values
of the 64 x64 image blocks in each of the four spectral
bands.

Classification Algorithms

1) Piecewise Linear Discriminant Function Method: For
categorizing image blocks in data sets I and 3, which have

1W;/21 + W;/Z
21 Wi/Z j

i ==: 1,2,.·· ,N... (5)



(7)

j ~ 1,2,.· ',K (8)
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where Z is the augmented pattern vector obtained by adding
a component of value I to X, Le.,

(6)

Xis assigned to category cj if Vj = max {Vi}' If there is a
tie between categories Cm arid Cn> then' X is assigned to Cm if
Wm/Z :<:: 0, or to Cn if Wm/Z < O. Several modifications
of the linear-discriminant function method and a multitude
of other classification procedures may be found in the'
references cited.

2) Min-Max Decision Rule: For the aerial photograph
data set which had a small number of samples per category
we used a min-max decision rule for categorizing the images
based on their textural features. The decision boundaries
were obtained by using all but one of the samples in the
data set, and the sample which was left out was then clas­
sified. The procedure was repeated for all the samples in
the data set to obtain the overall accuracy of the classifica­
tion scheme. This method of "leaving one sample out" is
widely used by investigators in the pattern·recognition field
when the data set has a small number of samples. The
decision rule is described as follows.

Decision rule: If bnk and ank define the minimum and
maximum values of the uniform distribution, (X I ,X2,' •. ,xN)

is assigned to category k if and only if

n = 1,2,.· ',N

for all j such that bnj :S X n :S anp n = 1,2,'" ,N. If there
exists no k such that bnk :S Xn :S a"k' n = 1,2,.· ',N, then
(x t>X2,' •• ,xn) is assigned to category k if and only if

£ min {Ix" - an.I,lxn - b".1}
n~ 1 (an. b"J

> f min {Ixn - G"jl,lx" - b",I}
- ,,~l (an; - b") ,

where K is the number of categories.

Results of Image Classification Studies

1) Photomicrograph Data' Set: A set of 8 variables, com­
prising the mean and variance of the textural features f" f2,
13' andf9 (for definitions of these features, see Appendix I),
computed from distance I gray-tone spatial~dependence

matrices, was used as an input to the classifier. The data
set was arbitrarily divided into a training set of 143 samples
and a test set of 100 samples. Piecewise linear-discriminant
functions for separating the patterns belonging to the five
sandstone categories were derived using the samples in the
training set. The contingency table for classifying the
samples in the test set is shown in Table I. The overall
accuracy of the classification scheme on the test set (ob­
tained by summing the diagonal elements in the con­
tingency table and dividing by the total number of samples

,"in the test set) wa~ 89 percent.
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TABLE I
CoNTINGENCY TABLE FOR THE CLASSlFlCATION OF PHOTOMICROGRAPHS

OF SANDSTONES

ASSIGNED CATEGORY To.ol

D..xtc<-.l D••••,-H St. Pet<, Upp., Go,~.1

Muddy

5
D.x'.'-l " 0 , 0 0 ~

D....,-H 0 " 0 0 0 "0
S•• Pe'e, , 0 " • 0 ~3 :l!.Jdy

~
0 0 • " 0 "Go,k.1 0 0 0 0 " "

TOTAL " " " " " '00

Number of samples in test set = 100; number of samples in training'
set = 143; overall accuracy of classification of test set = 89 percent.

TABLE II
CONnNGENCY TABLE fOR THE CLASSIfICATION OF THE AERIAL

PHOTOGRAPHIC DATA SET

ASSIGNED CATfOOIlY
TOTA

. RSOLD RESNU ~" SWAM ~., U~eAN RAtl SCROD

RSOlD " 0 • • , , • ,
'"

"
Rl'SNU ,

" 0 • , , , 0 '"0 ~" • 0 " 0 0 0 0 ,
'"§ SWAMP 0 0 0 "

, 0 0 0 '";) MARSH 0 0 0 0 " 0 0 • '"
~

URBAN , , • • 0 " 0 0 '"
~" 0 ,

" • • , ; ,
'"SCROD 0 0 0 0 , 0 " ~ '"

TOTAL '" " " " " " • " ''"
140 out of 170 images or 82.3 percent of the images were correctly

classified.

2) Aerial. Photographic Data Set: A min-max decision
rule was used for the classification of 170 images into eight
categories. The processing was done as follows. Four gray­
tone spatial-dependencies (for fOUf directions) were com­
puted for each image. Eleven textural features (fefi I as
defined in Appendix I) were computed, yielding a measure­
ment vector of 4 x II = 44 components fOf. each image.
Computation of the mean, range, and deviation of each
feature over the four directions reduced the dimensionality
to 33. The minimum and maximum statistics were computed
for 169 images and the min-max decision rule was used to
classify the image which was left out. This procedure was
repeated 170 times to classify all the images. Out of these
170 images, 140, or 82.3 percent of the images, were correctly
classified~ The contingency table is given in Table II.

3) Satellite Imagery Data Set: The piecewise linear­
discriminant function method was used for identifying the
land-use category of each image block in this data set. The
input variables to the dassifier consisted of the meanvari­
ance of the four textural features (11'/2,13, and19 obtained
from the distance 1 gray-tone spatial-dependence matrices)
and eight spectral features (comprised of the mean variance
of the image gray~tone values) in each of the four spectral
bands. -The 624 samples in the data set were divided- arbi­
trarily into a training set of 314 samples and a test set of
310 samples. The classifier was trained on the 314 samples
in the training set, and each sample in the test set was
assigned to one of seven possible land-use categories. The
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Ny N.

Land L ' respectively.
i~ 1 j~ 1

ApPENDIX I

'TEXTURAL PEATURES

We suggest a set of 28 textural features which can be
extracted from each of the gray-tone spatial-dependence
matrices. Thefollowing equations define these features.

Notation

p(i,j) (i,j)th entry in a normalized gray-tone spatial­
dependence matrix, = PO,})jR.

p,li) ith entry in the marginal-probability matrix
obtained by summing the rows of p(i,}),
= L7f- 1 PO,})·

Ng Number of distinct gray levels in the quantized
image.

k = 0,1,···, N g - 1.

k = 2,3,·· ·,2Ng •

Ny Ny

p",(k) ~ L L p(i,j),
i~l j=!

i+ j=k

Ny Ny

p,_,(k) ~ L L p(i,j),
i~! j~!

1;- ij =k

N,

p,U) ~ L p(i,j).
i~l

its tones are dark and heavy. Most people could easily
make the observation that the texture on the two images is
the same. Fora machine to find that the textures are the
same, either the images must be probability quantized and
the features computed from the probability quantized
images (which are invariant under monotonic gray-tone
transformations), or the features themselves must be in­
variant under monotonic gray-tone transformations. Of the
textural features described in Appendix I, the angular
second-moment, the entropy, the sum entropy, the difference
entropy, the information measure of correlation, and the
maximal-correlation features have the invariance property.
We intend to repeat the experiments reported here using
these kinds of features. We expect that these features will
provide more generalized results.

Additional investigations are necessary to determine the
size of the subimage region and the distances which should
be used in computing the gray~tone dependence matrices.
Too small a subimage region will not have enough textural
information to separate image categories of interest, while
a large subimage region may have objects belonging to
several different categories. Also, a large subimage region
will increase the storage requirements. The distance which
must be used in computing the gray-tone spatial-de-.
pendencies may be obtained from the autOcorrelation func­
tion of the image. The distance at which the normalized
autocorrelation function of the image becomes too small
can serve as an upper bound on the distance which may be
used for computing the gray~tone spatial-dependence
matrices..

contingency table for the classification of the test samples is
given in Table III. The overall accuracy of the classifier
on the test samples was found to be 83.5 percent.

Classification of multispectral data such as the satellite
imagery we have processed is usually carried out using only
the spectral features. We attempted a spectral classification
on the satellite imagery data and achieved a classification
accuracy of 74-77 percent on the test set. This result, com­
pared with the 83.5-percent classification accuracy achieved
using a combination of spectral and textural features, shows
that a significant improvement in the classification accuracy
might result if the textural features are used as additional
inputs to the classifier.

TABLE III
CoNTINGENCY TABLE FOR LAND-USE CLASSIFICATION OF SATELLITE

IMAGERY

IV. CONCLUDING REMARKS

We have described a class of quickly computable textural
features which seem to have general applicability to many
kinds of image data. The textural features are based on
statistics which summarize the relative frequency distribu­
tion (which de.scribes how often one gray tone will appear
in a specified spatial relationship to another gray tone on the
image). We have used these features in category~identifica­

tion tasks of three different kinds of image data. Identifica­
tion accuracy on independent test sets are 89 percent for
the photomicrograph image set (five categories of sand­
stones), 82 percent for the aerial photographs (eight land~

use categories), and 83 percent for the satellite imagery
(seven land-use categories).

These initial experimental results are promising. Much
work needs to be done, however, on gray-tone normaliza­
tion on the imagery and the use of features which are
invariant under monotonic gray-tone transformations. The
reason is that in one important sense, texture is independent
of tone. Two people examining photographs of the same
texture may actually be seeing two different, though related,
kinds of tones in the texture. One photograph may have
been developed such that its tones are 'light and thin, and
the other photograph may have been developed such that

Number of trainihgsainples = 314; number of test samples = 310;
accuracy of classification on training set = 84.0 percent; accuracy' of
classification on test set = 83.5 percent.

ASSIGNED CATEGORY

C""""I Woodl"",,, /lonuol U,b"" """. Small Wote. To,ol
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Textural Features

1) Angular Second Moment:

J, ~ L L {p(i,j))',
i j

2) Contrast:

N,_, IN, N, )
J, ~ J, n' ,~, I~' p(i,j) .

1.-jl=n

3) Correlation:

L L (ij)p(i,j) - p,P,
f3 = "'--'-'-----

where /-lx' /-ly, ux, and uy are the means and standard devi­
ations ofPx and Py.

4) Sum ofSquares: Variance

J, ~ L L (i - p)'p(i,j).
i j

5) Inverse Difference Moment:

J, ~ L t ! + / .)' pe',])·
• J I -]

6) Sum Average:

7) Sum Variance:

'",
f1 = L (i - fs)2px+y(i).

1=2

8} Sum Entropy: 2

'",
fs = - L Px+y(i) log {Px+y(i)}.

1=2

9) Entropy:

J, ~ - L L p(i,]) log (p(i,j».
1 j

10) Difference Variance:

flO = variance of Px-y.

II) Difference Entropy:

12),13) Information Measures of Correlation:

J
_ HXY - HXY!,,-

max {HX,HY}

f13 = (1 ~ exp [ -2.0(HXY2 _ HXy)])I/2

HXY ~ - L L p(i,j) log (p(i,j»
1 j

2. Since some of the probabilities may be zero, and log (0) is not
defined, it is recommended that the term log (p + e) (e an arbitrarily
small positive constant) be used in place of log(p) in entropy com­
putations.
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where HX and HYare entropies of Px and Py, and

HXY! ~ - L L p(i,j) log {pii)p,U))
, J

HXY2 ~ - L L pii)p,Wlog (pii)p,(j)).
, J

14) Maximal Correlation Coefficient:

114 = (Second largest eigenvalue of Q)1/2

where

Q(i,j) ~ L p(i,k)pU,k) .
k p;/i)py(k)

These measures of correlation have some desirable proper­
ties which are not brought out in the rectangular correlation
measuref3. For details, see [23], [24].

Referring to (1) in the text, for a chosen distance d we
have four angular gray-tone spatial-dependency matrices.
Hence we obtain a set of four values for each of the pre­
ceding 14 measures. The mean and range of each of these
14 measures, averaged over the four values, comprise the
set of 28 features which can be used as inputs to the
classifier. In this set of 28 features some of the features are
strongly correlated with each other. A feature-selection
procedure may be applied to select a subset or linear
combinations of the ~8 features.

APPENDIX II

EXAMPLES OF THE SIGNIFICANCE OF SOME TExTURAL

FEATURES

The problem "What do the textural features represent?"
from a human perception point of view can be a subject for
a thorough experiment. There are some intuitive expecta­
tions as to properties represented by some features. For
example, one might expect the entropy feature to take higher
values for more complex images. One might expect to be
able to notice some linear dependencies in images with high
values of the correlation feature. As a beginning for an
investigation of this problem we used an aerial photography
data set that consisted of 12 categories, "6 samples in
each [17].

We ordered the categories in the following manner. We
computed the range and the mode of values that each
feature takes for each category. The categories were then
ordered for each feature according to the modes, and the
ranges were plotted. The prospective of this Appendix is to
comment on the ordering of categories by some of the
features. Figs. 8-10.show plots of the ranges of three of the
features, each accompanied by three pictures. These pic­
tures are of units that have small, medium, and large values
of the respective feature. The order of categories of the
average angular moment feature (ANGMOM) in Fig. 8 is
almost the reverse of the order of categories of the average
entropy (ENTROP) in Fig. 9. The three representative
pictures show that in both figures the units were ordered
according to the complexity of the image. Images with more
gray levels have lower average ANGMOM and higher
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Fig. 8. Range plots and representative pictures for average second Fig. 10. Range plots and representative pictures for average correia-
angular moment. tion.

,.

ApPENDIX III

EQUAL-PROBABILITY QUANTIZING

Let X be a random variabl~ with cumulative probability
function Fx. Let Qt, theK-level equal-probability quantizing
function for X, be defined by

x

Fig. 11. Quantizing algorithm. At kth iteration, F(qk -.1) probability
has already been allocated to k - 1 levels and 1 - F(qk - 1)
probability remains to be allocated. If 1 - F(qk - I) prob­
ability is split up equally among remaining K - k + I quan­
tizing levels to be allocated, each level would get (1 - F(q._l))!
(K - k + 1). Since Fis a step function, there is no guarantee that
a qk can be found and that F(qJ = F(qk_l) + (I -- F(qk_l))!
(K - k + 1). Hence we look for a qk which is closest to satisfying
the equality.
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Fig. 9. Range plots and representative pictures for average entropy.

S~hM~ 1-------1

RA1L lu 1

1111111!111111!1111111111111!11111 Illll11 11111 IllllJllJ llJJ I111 1
I 1 I I

1.~85 ••~19 3.381 ~.644

M.A~SIf

oRCI!R

nSOL~

TWATR

SC~UB

D~OAO

URBAN

SWATl'l

H woo

average ENTROP. The average ratio (RATIO) in Fig. 10
is lower for natural scenes and higher for man-made scenes.
The three representative pictures in Fig. 10 show corre­
spondence between the average RATIO values and the
linear dependency of gray levels in the images. These com­
ments reflect our subjective perception. Much more ex­
perimentation and analysis should be done in this subject.

Q1(X) = k, if and only if

:5: x < lub {WI Fx(w) = ~}

where lub denotes least upper bound.
For any strictly monotonic function g, define the randoin

variable Y by Y = g(X). Let Q2, the K~level equal-prob-
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Fig. 11 illustrates the equal-probability quantizing algorithm.
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ability quantizing function for Y, be defined by

Q2(Y) = k, if and only if

lub {W I Fy(w) = k ~ I} ~ y < lub {w I Fy(w) = ~} .

The following lemma states that the equal-probability
quantization of X produces a random variable which is
identical to the equal-probability quantization of Y.

Lemma: Ql(X) = Q2(Y)'
Proof: Ql(X) = k, if and only if

lilb {x IFx(x) = k ~ I} ~ X < lub {x [Fx(x) = ~}. (9)

Since g is strictly monotonic, (9) holds if and only if

9 (IUb (x 1F,(x) ~ k ~ I)) s g(X)

< g (IUb (x 1F,(x) ~ ~))

(10)

Since 9 is strictly monotonic, we may reverse the order of
9 arid lub so that (10) holds if and only if

(
k - I)Iub g(x) IF,(x) ~ ---rc s g(X)

< Iub (9(X)IF,(x) ~ ~).

(11)
However,

F,(x) ~ P(X ,; x) ~ P(g(X) s g(x))

~ P(Y s g(x)) ~ F,(g(x)).

Hence, (II) holds if and only if

lub (g(x) 1F,(g(x)) ~ k ~ 1) s g(X)

<IUb(9(X)IF'(9(X))~~)

(12)
Finally, (l2lis equivalent to

lub {Y I Fy(Y) = k~ I} ~ Y < lub {YI Fy(Y) = ~}

(13)
so that Q2(Y) = k.

Equal Probability Quantizing Algorithm: Let X be a non­
negative random variable with cumulative probability func­
tion Fx. Let Q, the K-level equal-probability quantizing
function for X, be defined by Q(x) = k if and only if
ql<.-l ::0::;; x < ql<.' We define qo;ql,q2,' ',ql<. in an iterative
manner. Let qo = O. Suppose qk-l has been defined. Then

let ql<. be the smallest number such that

11K-!~(~ ~) + FxCqk~l) - FX(qk) I

~ 11K-_F~(~_~) + FX(qk-l) - F(q)[, for all real q.


