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Al~traet--In this paper, we propose a new method to obtain the Euclidean distance transformation and the 
Voronoi diagram based on the exact Euclidean metric for an n-dimensional picture. We present four 
algorithms to perform the transformation which are constructed by the serial composition of n-dimensional 
filters. When performed by a general purpose computer, they are faster than the method by H. Yamada for 
a two-dimensional picture. Those algorithms require only one n-dimensional array for storing input/output 
pictures and a single one-dimensional array for a work area, if an input picture needs not be preserved. 

Image processing Distance transformation Euclidean distance Three-dimension Voronoi 
diagram 

1. INTRODUCTION 

The distance transformation (DT) of binary pictures is 
one of basic tools of shape analysis in digital picture 
processing, tl~ DT of a digitized binary picture was 
defined by Rosenfeld et al. using the 4- and the 8- 
neighbor distance functions. C2~ They showed both the 
sequential and the parallel algorithms to calculate DT 
by computer. One important disadvantage of DT using 
the 4- and the 8-neighbor distance metrics is that the 
distance values are often far too different from the 
Euclidean distance values. The absolute difference be- 
tween such distance value and the Euclidean distance 
may become arbitrarily large and cannot be bounded 
by any type of upper limit, t3~ 

A number of improved algorithms have been devel- 
oped to make calculated distance values closer to the 
Euclidean distance values. Major approaches for im- 
provement are classified into two categories. Algor- 
ithms classified into the first category use scalar values 
as the elements of templates or propagated information. 
Other algorithms use multivalued vectors. 

All algorithms in the first category make use of 
templates or weight matrices in the local operations to 
propagate distance values. Tlaose algorithms can be 
divided into three subcategories according to the type 
of templates. The first subcategory of algorithms use a 
single template to calculate DT. DTs of this subcategory 
are called the chamfer DT. The Chamfer 3-4 DT, the 
Chamfer 5-7-11 DT 14-8~ and the quasi-Euclidean DT t9~ 
which uses arbitrary real numbers approximating ir- 

rational numbers such as x//2 and V~ as elements of 
a weight matrix are included in this subcategory. The 
second one employs two or more" kinds of distance 

metrics alternatively of specific orders such as the 
variable neighborhood transformation as represented 
in detail in references (10-13). The octagonal distance 
transformation should be included in the first sub- 
category since it is implemented using a single 5 x 5 
mask. However, it should also be included in the second 
one because it is executed by using the 4-neighbor 
operation and the 8-neighbor operation alternatively. 
The third subcategory recently proposed in refer- 
ence (14) is characterized by the use of a grey-scale 
morphology operation. This method can be imple- 
mented by a kind of local parallel operation with a 
3 × 3 neighborhood and changes the weight of the 
template every step of propagation executed. 

The second category of algorithms utilizes a vector 
with multivalued elements to propagate distance values. 
Danielsson proposed the sequential Euclidean DT 
algorithm Ils'16) of this category which generates the 
Euclidean distance map with no significant errors but 
not totally error-free according to the expression in 
Ragnemalm.t 17, ~ s) Yamada and Ragnemalm developed 
completely error-free algorithms. I~ 7,19~ Yamada's 
algorithm is of a parallel type and employs a 3 x 3 
neighborhood operator, while Ragnemalm's uses con- 
tour scan. 

The important feature of Yamada's algorithm is to 
use two two-dimensional arrays as work spaces 
which are of the same size as an input picture and store 
coordinate values of the 0-pixel that is closest to each 
1-pixel. A fixed-neighborhood operator of 3 x 3 pixels 
is employed to propagate these coordinate values. A 
modification of this algorithm was published in ref- 
erence (20) which decomposes the necessary operations 
to serial execution of two one-dimensional operators 
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in the row direction and the column direction. This 
leads to an efficient implementation of the algorithm 
by the hardware. Although the coordinate value arrays 
in the above method sometimes provide useful infor- 
mation, its execution by general purpose computer 
only to obtain DT is often time-consuming and requires 
too large a memory. This becomes a serious drawback 
in the case of processing three- or higher-dimensional 
pictures. 

Both of the algorithms in references (14, 19) are of 
parallel type in the sense that the output value should 
be calculated using only the values of an input picture. 
Hence, two different two-dimensional arrays are 
required to store the input and the output picture 
separately. Both algorithms are of an iterative type. 
That is, they consist of local operations applied to the 
whole picture iteratively. The iteration finishes once no 
pixel value changes by the operation. Therefore the 
number of iterations strongly depends on an input 
picture and is not bounded by a significant upper limit 
beforehand. Mask parameters must be adjusted in the 
method of reference (14) in accordance with the number 
of iterations. 

Extendability of algorithms to higher-dimensional 
pictures is also an important factor because pictures 
to be processed have extended recently from two- 
dimensional to three-dimensional pictures such as X- 
ray computed tomography (CT) images of human body. 
DT with the 4- and the 8-neighborhood distances is 
extended straightforwardly to a three-dimensional 
digitized picture only if a suitable distance metric is 
selected. 

Three metrics called the 6-, the 18-, and the 26- 
neighbor distances are reported with the corresponding 
sequential algorithms of DT. t21-23) They also suffer 
from the same problem of sifnigicant bias from the 
Euclidean distance in the three-dimensional space. 

Extension of the chamfer distance to the three or 
higher-dimensional picture is described in reference (4) 
with several weight matrices and their upper limits 
of error. Mullikin extended the Euclidean DT of 
Dannielson's type to the three-dimensional space 
and improved the accuracy of distance values, t24) 
Ragnemalm presented a 4-scan algorithm for three- 
dimensional pictures and the smallest possible number 
of scans algorithm for the arbitrary-dimensional pic- 
tures.(251 These algorithms are not the error-free EDT, 
however. 

In this paper, we present new algorithms to calculate 
exactly the DT based upon the Euclidean metric 
(Euclidean DT) for an arbitrary binary picture of arbi- 
trary dimensionality. The presented algorithms for 
n-dimensional (n-D) pictures consist of n one-dimen- 
sional local operations executed serially, each of which 
corresponds to the direction of each coordinate axis. 
We show in the paper two types of algorithms of DT, 
the basic one and the faster version. These algorithms 
are not classified into either of two categories described 
above. They do not use the vector propagation, nor 
the fixed template and still they always give exact 
Euclidean distance. 

Features of the proposed algorithms are summarized 
as follows. 

(1) They always give the exact Euclidean DT for an 
arbitrary binary picture. 

(2) They are applicable to general n-dimensional 
binary pictures without any change. 

(3) They are also applicable with slight modification 
to a digitized picture sampled with the different sam- 
piing interval in each coordinate axis. In the case 
of three-dimensional CT images of human body the 
interval between slices are usually larger than the pixel 
size in a slice. The algorithms proposed here can be 
applied to such types of pictures without any difficulty 

(4) Memory requirements is minimum. Only one 
n-dimensional array of the same size as an input picture 
and a single one-dimensional array for work space are 
needed to execute the n-dimensional Euclidean DT. In 
the n-dimensional array an input picture is stored first 
and the resultant DT picture is stored after finishing 
the calculation. The size of the one-dimensional work 
space array is equal to the maximum length of the sides 
of an input picture. This point is critically important 
in practical applications treating three- or higher- 
dimensional pictures such as medical X-ray CT images. 

(5) The algorithms are iterative. The number of 
times of global scan is 2n for processing an n-dimen- 
sional picture by the faster version of the algorithm. 
Local operations involved are always one-dimensional. 

(6) Computation time is reasonably small. Roughly 
speaking the computation time of the proposed algor- 
ithms is proportional to both the average radius of a 
figure and the total number of voxels in an input 
picture. According to experimental results they are 
significantly faster than the direct implementation of 
the algorithm in reference (19). Sometimes its compu- 
tation time is almost the same as that of the 8-neighbor 
DT (for two-dimensional pictures) and of the 26- 
neighbor DT (for three-dimensional pictures). 

(7) They are suitable for execution by ordinary 
general purpose computer, although not necessarily 
the best for implementation by special purpose hard- 
ware with a local operation function of the fixed 
neighborhood. 

In this paper, after describing the Euclidean DT 
algorithm, we present its application to calculation of 
the Voronoi division. The Voronoi division was first 
defined as a kind of division of the space into a set of 
cells based upon a given set of isolated points. It was 
later extended to a set of connected components on a 
digitized space and called the extended digital Voronoi 
division (EDVD)/26) The Voronoi division of the two- 
dimensional space is understood well by drawing the 
division result as a two-dimensional picture. Such pic- 
torial representation is called the Voronoi diagram 
and the extended digital Voronoi diagram. The Voronoi 
diagram and the extended digital Voronoi diagram are 
closely related to the DT because the division of the 
space is performed by using distance values from an 
arbitrary point of the background to the closest point 
(or the closest connected component) in a given point 
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(component) set. The proposed algorithm of DT can 
also be utilized to derive the EDVD based upon the 
Euclidean distance. 

Finally we present an example of applications to 
practical pictures. The algorithms were successfully 
applied to analysis of three-dimensional microscope 
images obtained from successive tissue sections of 
pathological samples. 

2. NOTATIONS AND DEFINITIONS 

In this paper we consider only digitized pictures 
sampled at rectangular ordered arrays. 

Let us consider a three-dimensional digitized picture 
represented as F = {J)jk}, where fijk is the value of the 
voxel (i, j, k) at the ith row and j th column of the kth 
plane (Fig. 1). For  the sake of simplicity in explanation 
we consider processing of three-dimensional pictures 
devotedly in the paper. Note that results can be extend- 
ed to pictures of arbitrary dimensionality immediately. 
We assume that a picture has L rows, M columns and 
N planes. A picture which is composed of only two 
kinds of voxels having the value 0 or 1 is called a 
binary picture, and each voxel is called a 0-voxel or a 
l-voxel according to its value. A set of 0-voxels is 
called the background, and a set of 1-voxels is called 
a figure. 

Let us denote a distance between two voxels (i, j, k) 
and (p, q, r) by dr(i, j, k), (p, q, r). The Euclidean metric 
is used unless explicitly declared otherwise. 

Definition 1. Let D = {dijk} and S = {Sijk} be the Eucli- 
dean distance transformation (EDT) of a binary picture 
F = {.f~jk} and the squared EDT, respectively. Then the 
value dqk is defined as the minimum distance value 

yL 9 •/~.jk 

Fig. 1. Three-dimensional  digitized picture F = {fijk}" 

from the voxel (i, j, k) to the closest 0-voxel in the input 
picture F, that is, 

sijk= rain {dd(i , j ,k) ,(p,q,r))2; 
(p,q,r) 

fpqr=O, l  <p<_L ,  1 < q < _ M , l  < r < N }  

= min { ( i - p ) e + ( j - q ) 2 + ( k - r ) 2 ;  
(p,q.r) 

f p q r = O , l < _ p < _ L , l < _ q < _ M , l < _ r < _ N } ,  (1) 

dqk = rain Idd(i , j ,k) , (p,q,r));  
(p,q.r) 

.[pqr=O,l  <_p<_L,l < q <  M, 1 < r <  N~. 

N/Zsijk. 

Note that the distance value Sijk at any of 0-voxels 
(background voxels) is 0 because the closest 0-voxel is 
itself. 

We use the term distance transformation (DT) to 
represent both the transformation to calculate the 
picture D from the input picture F and the distance 
picture D itself. 

Metrics different from the Euclidean metric may be 
employed in equation (1) in the above definition. Several 
examples widely used in digital picture processing are 
shown in Table 1. Other examples are presented in 
references (12, 22, 23, 26, 27). Each of the DTs are often 
called by the names which represent metrics used there 
such as the 8-neighbor DT and the 26-neighbor DT. 

3. ALGORITHM OF THREE-DIMENSIONAL EUCIADEAN 
DISTANCE TRANSFORMATION 

3.1. Basic alyorithm 

Before proceeding to the detailed description of the 
EDT algorithm, we will explain briefly the basic idea 
of the proposed method. The point is summarized in 
the following two items. 

(1) To minimize the square of the Euclidean distance 
instead of the exact distance in the process of transfor- 
mations. 

(2) To implement the transformation by decompo- 
sing the procedure into serial execution of the three 
one-dimensional transformation. 

Table 1. Examples of distance metrics for a digitized picture 

d((i, j), (p, q)) or d((i, j, k), (p, q, r)) 

Name Definition 

Two-dimensional 4-neighbor distance 
8-neighbor distance 

l i - p l ÷ l j - q l  
max { li - p[, l j ql} 

Three-dimensional 
6-neighbor distance 
18-neighbor distance 

26-neighbor distance 

li - pl + ] j -  ql + lk - rl 
max {max (]i - Pl, ]J - ql, Ik - rl), 
int ( ( l i -  P l +lJ - ql + Ik - rl + 1)/2)/ 
max{l i -pl ,  l j - q t ,  l k - r l /  

PR 27:11-F 
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The following Algorithm 1 shows the essential part 
of the proposed algorithms in the form of picture to 
picture transformations instead of strict description of 
the practically implemented algorithm. 

Algorithm 1. EDT--express ion as a parallel opera- 
tion. Input picture: F = {fijk}(1 < i < L, 1 < j < M, 
1 < k < N ) .  
Transformation 1. Derive from F a picture G = {gijk} 
defined as follows--(transformation in the/-axis direc- 
tion) (Fig. 2) 

~ijk = min {(i-- x)2; fx jk=O,  1 <_x<_L}. (2) 
x 

Transformation 2. Derive from the.above picture G a 
picture H = {hijk} given by the following e q u a t i o n -  
(transformation in the j-axis direction) (Fig. 3) 

hij k = min {giyk + (J - y)2; 1 < y < M}.  (3) 
Y 

j • j  i 1414111m l ]4[4[ lmmmn 1 

• 14 ] 911612519,511619141 1 Im 
I l l m , l l l |  1 ] 4 I 9 1161161 9 I 4 ] 1 

• t~J,--0 [ ]  t~j,--1 

Fig. 2. Example of Transformation 1 of Algorithm 1. 

j ~ i  

q 
6 

1 "T 9.~ 25 - '  

2 -9" 16 25 I / 
Z 9 1 8  

t 
4 4 
1 26 

g,jl, ~'~ I + 0 m 9 min '~ h,jk 
4 1 5 

T 4 5 
"~  9 9 
G weight  2 

= ( j -y )  

Fig. 3. Example of Transformation 2 of Algorithm 1. To 
calculate the distance value hij k of a certain pixel (i, j, k), (l) 
consider a column including #~,k corresponding to the pixel 
(i, j, k), (2) add the weight ( j  - y)~ to each value in the column, 
and (3) search the minimum value in the results of additions. 
Then we get the value of h~/k as the minimum value found in 

the above process. 

Transformation 3. Obtain from the above picture H a 
picture S = {Sijk} defined by the following e q u a t i o n -  
(transformation in the k-axis direction) 

sij k = min {hij~ + (k - z)2; 1 <_ z < S} .  (4) 
z 

Then, the following property is proved. 
Property 1. The picture S = {s0k } is the squared EDT 
of a picture F =  {fi~k}" That is, a voxel (i , j ,k) in the 
picture S = {Si~k} has a value equal to the square of the 
Euclidean distance from the voxel (i, j, k) to the closest 
0-voxel. 
Proof. From equation (2), 

Oijk= min{( i - -x )2;  f x j k = O , l  < x  < L }  (5) 
x 

= the squared distance to the closest 
0-voxel in the same row as (i, j, k). 

By substituting equation (5) with equation (3), we 
obtain 

hij k = min { min { ( i -  X) 2~ 

f x y k = O , l < x < _ L } + ( j - - y ) 2 ;  1 _<y__NM} 

f 
= min ~ min { ( i -  x) 2 + (j ~ ~ ~ 2 ~ 

x 

f x y k = 0 , 1 < _ x < L } ;  l < _ y < M }  

= min {(i - x) 2 + ( j  - y)2; 
(x,y) 

f x y k = O , l < _ x < _ L , l < _ y < _ m }  (6) 

= the squared distance to the closest 0-voxel in the 
same plane as (i, j, k). 

By substituting the result to equation (4), 

sij k = min ~ min {(i - x) 2 + ( j  - y)2; fxyz = O, 
(tx,y) 

l < x < L , l < y < M } + ( k - z ) 2 ;  l < z < N }  

= min ~ min {(i - x) 2 + ( j  - y)2 + (k - z)2; 
z (. (x,y) 

f x r z = O , l < x < L , l < y < M } ;  l < z < N }  
t" 

= min ~(i - x) 2 + (j - y)2 + (k - Z) 2; 

(x,y,z) 

f x y z = O , l < _ x < _ L , l < _ y < _ M , l < _ z < _ N } .  (7) 

Thus it is shown that the picture S is the squared 
EDT of the picture F. [Q.E.D.] 

3.2. Extension to the case of  cuboid voxel 

Algorithm 1 is extended to the form applicable to a 
picture digitized with sampling intervals different in 
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three axes each other by slightly modifying Trans- 
formations 2 and 3 as shown in the following Trans- 
formations 2' and 3'. Let us assume that the ratio 
among sampling intervals in three axes be 1:~:/3. 
Other notat ion is as in Section 3.1. 

Algorithm 2. EDT for cuboid voxel pictures--paral lel  
operation expression. 
Transformation 2'. Replace equation (3) of the Trans- 
formation 2 by the following equation (3'). Note that 
the weight ~ is multiplied to the second term of the 
equation inside the braces 

hi jk  = min{g,yk+(~( j - -y) )2 ;  1 < y < m } .  (3') 
Y 

Transformation 3'. Use equation (4') below instead of 
equation (4) in Transformation 3 

Sijk = min{hi j~+(/3(k--z) )Z;  1 < z < N } .  (4') 
z 

It is proved in the same way as Property 1 that the 
picture S is the squared EDT of a picture F. 

3.3. Algorithms on the digitized picture space 

The above algorithms represent the proposed EDT 
algorithms in the form of picture to picture transfor- 
mations. Although they suggest the outline of possible 
algorithms, they do not provide fixed algorithms nor 
a way of implementation by practical computers. Here 
we show that algorithms presented above are imple- 
mented in a remarkably efficient way by ordinary 
general purpose computer (or a serial machine with a 
single processor) by considering that the distance be- 
tween adjacent voxels is of unit length and by employing 
operations of the sequential type. Concrete descriptions 
of algorithms are given below (we assume that ct = fl = 1 
for simplicity of description). 

Algorithm 3. EDT (basic type). 

Step 1 (Transformation 1). 
(1.1) Let an input binary picture be F = {fijk}, and 

the output  picture be G' = {g~jk} which is initialized as 
gljk = L(Vj, Vk) and g'ijk = O, otherwise. Perform for each 
values of j and k 

{ gljk*--(~,q(/ l)jk+ 1) 2, 

gljk '-- 0, 

if f i ik :/= O, 

if fijk = O, 

i = 2 , 3  . . . . .  L. (8) 

The suffix i should be changed from 2 to L [left to right 
in each row of each picture plane ( =  horizontal cross 
section of a three-dimensional picture)] sequentially 
(forward scan). 

(1.2) Let an input picture be G' = {gljk} [ = the out- 
put of Step (1.1)], and the output  picture be G = { g~jk } 
which is initialized as gLjk = L (Vi, Vk) and gijk = O, 
otherwise. Perform for each values of j and k 

gi jk  ~ min { (xfg,  +l)jk + 1) 2, g l j k  }.  

i = L - 1 , L - - 2  . . . . .  1. (9) 

The suffix i should be changed from L--  1 to 1 (right 
to left in each row of each picture plane) sequentially 
(backward scan). 

Step 2 (Transformation 2). Let the input picture be 
G = {gijk } [ = the output  of Step (1 2)], and the output 
picture be H = {hijk}. 

Execute the following procedure at each voxel. 

hijk *-- min {gi(j+n)k q- n2}, where r = .v/gij k. (10) 
r ~ n < r  

Here, the min imum value of the right-hand side is 
calculated by searching all values of the term inside the 
braces for n such that ( - r  < n < r) and (1 _<j + n _< M) 
(Fig. 4). Only the second suffix j is changed for each 
value of i and k. 

Step 3 (Transformation 3). Let the input picture be 
H = {Hijk} (=  the output of Step 2), and the output 
picture be S = {Sijk}. 

Execute the following procedure at each voxel. 

Sijk 4--- m i n  {hij(k+n)+n2}, w h e r e  r = N / / h i j k  . (11) 
r ~ n < r  

The method to search the min imum value is the 
same as in Step 2. Only the third suffix k is changed 
for each value of i and j. 

It is important  from the viewpoint of computational 
cost that the search for minimization is always one- 
dimensional in either of the i-, j-, and k-axis directions. 
Bounds of the searching interval + r  [equations (10) 
and (11)] are obtained by denoting that at least one 

0-voxel exists at the distance ~ and x/hljk from the 
current voxel (i, j, k), respectively. Therefore we need 

not use exact values of xfY~jk if we do not like to treat 
non-integer values. The square root calculation in 
equations (8) and (9) is also excluded by considering 
the square of the amounts  appeared in those equations. 
The programs we used in practice are given in the 
Appendix. 

3.4. Fast algorithm 

Computat ion time of the algorithms will be discussed 
in Section 4 in detail. Here we present another im- 
plementation of the above transformations by which 

At least  one of these is a O-voxel. 

Fig. 4. Illustration of the scan area in Transformation 2 of 
Algorithm 3. 
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the computa t ion  time may be significantly reduced for 
some types of input pictures. Major  improvements  are 
achieved by limiting search areas for minimization in 
Steps 2 and 3 and avoiding calculations of square-root 
operations. 

The notat ions are same as in Algori thm 3. 
Algori thm 4. EDT (fast type). 

Step 1 (Transformation 1). Same as Step 1 of Algo- 
ri thm 3. 

Step 2 (Transformation 2) (Fig. 5). 

(2.1) Input  pictt~re: G = {gUk}, output  picture: H'  = 
{h;1k}. Perform the following procedure at each column 
(for each values of i and k) (Fig. 6). 
The value of the suffix j is increased one by one 
from 2 to M (from top to bot tom of each plane ( =  verti- 
cal cross-section) of the picture) (forward scan). 

(a) If gijk is larger than (gi(j-1)k -I- 1). 
then do the following procedure for the values 
of n such that  0 < n < (gUk -- glU- ~)k -- 1)/2 (if 
(J + (gUk -- g , j -  l)k -- 1)/2) is greater than M. then 
O<_n<_M-j).  
(Note here that  n = (gUk- g, j-a~k- 1)/2 is the 
intersection of the curves f ~ (n) = gUk + n2 and 
f2(n) = giU- l~k + (n + 1) 2 in the region n > j . )  

(i) ifg~u_ ~k + (n + 1) 2 is larger than or equal 
to gi(j + n)k, 
then go to the next j.  

(ii) else 
substitute g , j_  ~)k + (n + 1) z to h',j+.)~. 

(b) else 
substitute guk to h~,. 

(2.2) Input  picture: H ' =  {h~j,} [ -= the  ou tput  of 
Step (2.1)]. 

f 

~ ~ "giql)k+n2 "i] o,,j 

J f o r w a r d  s c a n  

Fig. 6. Illustration of forward scan at Algorithm 4, Step 2. 

Output  Picture: H = {huk }. 
Perform the following procedure at each column (for 
each value of i and k). 
The value of the suffix j is decreased one by one from 
M - 1 to 1 rfrom bottom to top of each plane ( =  vertical 
cross-section) of the picture] (backward scan). 

(a) If h;i k is larger than (h'iu+ l~k + 1), 
then execute the following procedure for the 
values ofn such that 0 < n < (h;jk -- h'iu+ 1)k -- 1)/2 
(if ( j  -- (h~jk -- h;u+ l~k - 1)/2 is less than 1, then 
O < n < j -  1). 
(i) if h'~u+ 1)k + (n + 1) 2 is larger than or equal to 

then go to the next j,  
(ii) else 

substitute h',j+ 1)k + (n + 1) 2 to h,j_,)~, 
(b) else 

substitute h;jk to huk. 

0 e'~ I gift 0 0 

Ooo 

0 

0 

0 0 0 
0 

0 

(a)  A p i c t u r e  a f t e r  Step  I i s  p e r f o r m e d .  

~ j  

]1 
f g i ~  +(J-jl) 2 

h'ijk 

J1 f o r w a r d  scan - ' ~  

(b ) .  I l l u s t r a t i o n  o f  t h e  f o r w a r d  s c a n .  

L j  

1 

"m-backward scan 

(c) I l l u s t r a t i o n  o f  t h e  b a c k w a r d  s c a n .  

Fig. 5. Illustration of Step 2 in Algorithm 4 (see also Fig. 4). 

.~ j  
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Step 3 (Transformation 3). Same as Step 2 above 
except that G and H are replaced by H and S, res- 
pectively, and the third suffix k is changed instead of 
the second suffix j. 

An example of the program we used is given in the 
Appendix. 

Concerning memory requirement, two three-dimen- 
sional arrays of the same size are used to store an input 
picture F and a resultant squared DT picture, res- 
pectively. However, if the input picture F is not needed 
to be preserved as a binary picture after the execution 
of the DT, all pictures F, G', G, H', H, S' and S in the 
above algorithm can be assigned to physically the 
same address in computer memory (an input picture 
is still restored easily by replacing all positive values 
by 1 in the obtained squared DT picture). Additionally 
the single one-dimensional array with the size max (M,N) 
is required as a work area. Therefore the minimum 
memory requirement for performing the above EDT 
is a single three-dimensional array and a single one- 
dimensional array for the case of a three-dimensional 
picture. 

3.5. Extension to an n-dimensional picture 

Extension of the above algorithms to pictures of 
lower- and higher-dimensions than three-dimension is 
straightforward. The two-dimensional case is obtained 
by excluding Step 3 of the algorithms. In the case of 
n-dimensional pictures for n > 3, the same type of the 
procedure as Step 3 should be iterated n - 1  times 
(including Steps 2 and 3 of the presented algorithms). 
Estimation of the amount of computation in Section 
5 and memory requirement presented in the previous 
section are also valid for a picture of arbitrary dimen- 
sionality. It should be noted that only one n-dimen- 
sional array and a single one-dimensional array are 
enough to perform the n-dimensional EDT. 

One disadvantage of these algorithms is the use of 
square root operation in the post processing to obtain 
the exact EDT values from the squared EDT obtained 
by the algorithm. However, this is not so serious as far 
as a general purpose computer is used as we see in the 
experimental results in Section 5. 

4. DIGITAL VORONOI DIAGRAM 

4.1. Definitions 

Given a digitized binary picture F = { fi~k } including 
more than two figures (connected components), the 
modified digital Voronoi division (MDVD) of a picture 
F is defined a s  f o l l o w s .  (6 '26)  

Definition 2. Assuming that a binary picture F contains 
n connected components C~, C2 . . . . .  C,, a set of voxels 
T, defined below is called a tile of the connected com- 
ponent C,. 

T~ = {(i,j,k); d((i,j,k),C,)<d((i,j,k),Ck),Vk~r}, 
(12) 

where 

d((i, j ,  k), C,) = the distance between a voxel (i, j, k) 
and a connected component C, 

= min {d((i, j, k), (p, q, r)); (p, q, r) ~ Cr}. 
03) 

A set of all tiles [T,; r = 1, 2, 3 . . . . .  n} and the division 
of the space into such tiles are both called the modified 
digital Voronoi division (MDVD) of a picture F. 

4.2. Algorithm to obtain the MDVD 

Although any distance metric can be adopted for 
equation (13), in principle, only the 4- and the 8- 
neighbor distances were used in the case of digital 
binary pictures in reference (26). Very few reports have 
been published concerning practical applications of 
MDVD in the three-dimensional space/TM Use of the 
Euclidean distance was time-consuming for a set of 
connected components in the higher-dimensional space, 
although a divide-and-conquer algorithm ~29) works 
well for a set of isolated points. 

By modifying the algorithms presented in Section 3, 
the MDVD employing the Euclidean distance can,be 
obtained effectively. The basic idea is to propagate 
labels assigned to connected components beforehand 
synchronously with the process of calculating the EDT. 
An algorithm is derived from Algorithm 3 as follows. 
We simplify the description by referring to Algorithm 3. 

Algorithm 5. Modified digital Voronoi diagram. 

Input picture (label picture): F = {fijk} (1 _< i <  L, 
I < j < M ,  l < k < N ) .  We assign labels such that 

fijk = 0 if(i, j, k) is a background voxel, and otherwise, 
fijk = positive integer showing a label of a connected 
component which the voxel (i, j, k) belongs to. 

Step 1 (Transformation 1). The order to visit voxels 
(scanning mode) is the same as in Algorithm 3. 

(1.1) Let an input picture be F = {fijk} (label picture), 
and the output pictures G ' =  {g'ijk} and V '=  {V~jk}. 
Perform for each values of j and k 

{ g ~ j k ' - - ( ~  l)jk + if fijk = 0 ' (14) 
1) 1 

U'ijk ~ Ui i -  l(jk 

f 91/k~0 i f f l i  k >0.  (15) 
v'ijk *-- 0 

(1.2) Let input pictures be G' = {9~k} and V' = {V'ijk} 
[ =  outputs of the Step (1.1)], and the output pictures 
be G = {Oi~k} and V = {V~jk}. Perform for each values 
of j and k. 

( g i j k * - - ( ~ +  if ( ~ k +  1) z <g'ijk, 
1) 2 

13ijk +--- O(i + 1 )jk 

(16) 

{ gij*~g;jk if ( ~  + 1) 2 >_ 9~jk. (17) 
1)ij k ~ Uij k 

Step 2 (Transformation 2). Perform the following 
procedure at each background voxel (i, j, k). 
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Let input pictures be G = {g,jk} and V = {Vijk} 
[ =  outputs of Step (1.2)], and output pictures be 
H = {h~jk} and V '=  {v~jk}. 
Assuming that {9,j+,~k + n2; --r  < n _< r, where r = 

~ }  is minimized with respect to n at n = n*, 

~ hijk *-- gi(~ + ,*)k + (n*) 2 ( 1 8) 
t 

[ Vij  k ~ Vi(j+n*)k.  

Step 3 (Transformation 3). Perform the following 
procedure at each background voxel (i, j, k). 
Let input pictures be H = {hog } and V' = {V'~jk} ( = out- 
puts of Step 2), and output pictures be S = {S~jk} and 
v =  {v,jk}. 
Assuming that {h~j~k+,) + n2); - -r  ~ n < r, where r = 

~ }  is minimized with respect to n at n = n*, 

siyk *-- hij~k +,*) + (n*) 2 
(19) 

Vij k ~-- Vlj(k+n* ) 

After finishing the procedure, the squared EDT is 
stored in S and the MDVD is obtained in the picture 
V = {Vijk}. That is, a value vijk at each voxel (i, j, k) in 
V gives the label of the connected component closest 
to that voxel. Memory requirement is also the same as 
in Algorithm 3. If the input label picture F needs not 
be preserved after the procedure is terminated, only 
two three-dimensional arrays are necessary, one for 
the pictures F, V, and V', and the other for G', G, H 
and S. Additionally, two one-dimensional arrays are 
required as work areas for keeping {gi~k; 1 <_j <__ M}  
and {v~jk; 1 < j  < M}, respectively, in Step 2. They are 
also used in Step 3. 

Fast version of the EDT, Algorithm 4 can be em- 
ployed in the similar way, but details are omitted here. 

5. COST OF COMPUTATION 

5.1. Theoretical estimation of  the amount o f  computation 

The computation time of the EDT by the algorithms 
presented above depends on the size of an input picture, 
the shape and the size of a figure in an input picture, 
and the implementation method. Here we derive esti- 
mates of the amount of computation, assuming that 
the transformation is implemented on a general pur- 
pose computer (serial machine) with single processor. 

(1) Algorithm 3. Step 1 of Algorithm 3 is performed 
by scanning the whole of an input picture twice, by the 
forward raster scan followed by the backward raster 
scan once for each. In Steps 2 and 3 we need not scan 
any of the whole column and the whole vertical column. 
Instead, the number of voxels to be searched at each 
current voxel (i, j, k) is equal to twice of the square root 
of g~jk o r  hij k in equation (1). Thus, computation time 
(or the amount of computation) of each transformation 
is estimated as follows. 

Step 1: O(Num), 

Step 2: O(Av(xfg~ijk ) x Num), 

Step 3: O(Av(x/h~/jk ) x Num), 

where Num is the number of voxels in the input picture 

and Av(x) represents the average of the value x over 
the corresponding picture. 

Hence, by approximating the total amount of com- 
putation by the sum of the above estimation for each 

step, and approximating A v ( ~ )  and A v ( ~ )  by 

Av(~ x ~ )  or the mean of distance values multiplied 
by a suitable constant ~, we obtain 

Total amount of computation: 

O(mean value of DT x Num) = O(Av(dijk) x Num). 

Thus we find that the computation time of Algorithm 
3 is approximately proportional to both the mean 
value of the DT and the picture size. 

(2) Algorithm 4. The computation time of Algor- 
ithm 4 is more sensitive to the shapes of figures in an 
input picture F than Algorithm 3. We consider here 
the case that the input picture includes only one solid 
sphere. Let us assume that the computation time of 
Step 2 is approximated by twice of the amount of the 
procedure in the forward scan, and that of Step 3 is 
also the same order as Step 2. 

At an each voxel ( i , j ,k) ,  if ,qijk is greater than 
(g, j  l~k + 1) in (2.1)(a) of Step 2, (g i j k -  9 , ~ - t ) k -  1)/2 
times of operations will be executed in the following 
iteration in (a). Otherwise, substitution will be executed 
only once in (b) at the voxel (i, j, k). Then, for a sphere 
with the radius R, computation time of the forward 
scan in Step 2 is approximately proportional to (~R 3 + 
Num) where cc is a suitable constant. Total computation 
time is estimated as four times of it. 

5.2. Experimental  evaluation 

Because there are no other reports of concrete 
algorithms to calculate the EDT for three-dimensional 
pictures, we compared computation time of several 
algorithms developed for transforming two-dimensional 
pictures. Algorithms studied in the experiments are 
Algorithms 3 and 4 in this paper, the EDT of the method 
in reference (19) (implemented as the FORTRAN sub- 
routine DTEU in SPIDER-IITM), and the 8-neighbor 
DT. Algorithms 3 and 4 in the text were modified for 
a two-dimensional picture (Step 3 was omitted). Fur- 
ther, we compared our algorithms with the 26-neighbor 
DT for three-dimensional picturesJ 21'22) 

Two kinds of pictures were prepared for being pro- 
cessed by the algorithms above. One of them was 
generated by scattering a certain number of 0-pixels of 
which locations were selected by using uniform random 
number generator on the background filled with 1- 
pixels. The other consists of a circle or a sphere with 
the radius R locating at the center of the input picture 
(Fig. 7). Picture sizes are 500 x 500 pixels (two-dimen- 
sional pictures) and 120 x 120 × 120 voxels (three- 
dimensional pictures). All programs were written in 
FORTRAN and executed by the general purpose com- 
puter FACOM M-1800 in Nagoya University Com- 
putation Center. 

Figure 8(a) and (b) show that computation times of 
Algorithm 3 and DTEU are approximately propor- 
tional to the square root of the mean value of S ( = mean 
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(a) (b) 

Fig. 7. Samples of input pictures for evaluation of computation time (white: 0-pixel, black: l-pixel). (a) A 
sample of a random dots picture. (b) A sample of a circle picture. 
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Fig. 8. Experimental evaluation of computation time. (a) Comparison among the proposed algorithms, 
DTEU and the 8-neighbor DT for two-dimensional pictures. (i) Random dots picture. (ii) Circle picture of 
radius R. (b) Comparison among the proposed algorithms and the 26-neighbor DT for three-dimensional 

pictures. (i) Random dots picture. (ii) Sphere picture of radius R. 

square distance), while those of Algorithm 4 and the 
8-neighbor DT are almost constant. For a circle picture, 
Algorithm 3 is a little faster than Algorithm 4 for 
smaller values of radius, and the time of Algorithm 4 
is more constant for the change in the radius. 

For  a three-dimensional picture, computat ion times 
of Algorithms 3 and 4 show the tendency similar to the 
above, and are faster than even the 26-neighbor DT 
for the radius of a sphere being small. All of algorithms 
above include only calculation of integer values. The 
computat ion times of Algorithms 3 and 4 mean those 
of calculating the squared EDT. If the exact Euclidean 
distance values are required we need to calculate the 
square root of a resultant picture. The computat ion 
time for it was about 0.2 ms and 1.2 s for the above two- 
dimensional pictures and three-dimensional pictures, 

respectively. It is enough to know relative relation 
between the distance values in many applications such 
as extracting skeletons and feature points. In such 
cases we need not calculate the square root. 

6. A P P L I C A T I O N S  

The presented algorithm was used to analyse micro- 
scope images of successive tissue sections. An input 
picture is a digitized manual trace of border lines of 
portal and hepatic veins in microscope images of suc- 
cessive tissue sections obtained from the human liver. 
Sizes of input pictures and sizes of voxels are shown in 
Table 2. An example of slices and three-dimensional 
reconstructions of hepatic and portal veins are shown 
in Fig. 9(a) (c). The results of the three-dimensional 



560 Table 2. Size of input pictures and intervals between voxels 

Data  1 Data  2 

Size of picture (pixel) 1 slice 420 x 594 420 x 594 
Number  of slices 29 48 

Sampling interval In slice 10 10 
Between voxels ( / ~ m )  Between slices 28 24 

}. 

Portal vein ~ Necrotic zone 
Hepatic vein 

(a) 

(b) 

Fig. 9. Input picture. (a) Source picturc (Data I, slicc No. 15). (b) Three-dimensional reconstruction of 
hcpatic veins. (c) Three-dimensional rcconstruction of portal veins. 
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Fig. 9. (Continuedt 

EDT are shown in Fig. 10. Figure 11 shows a cross- 
section of the Voronoi diagram derived from a set 
of hepatic veins. For  details of this application, see 
reference (30). 

It was speculated, concerning the microstructure of 
the liver tissue, that for an arbitrary point in the tissue 
the length of the shortest path from the portal vein to 

the hepatic vein passing that point is almost constant 
everywhere. This speculation will be confirmed by 
examining the distribution of the sum of two EDT 
values at each point (EDT from the portal veins and 
that from the hepatic veins), and by finding that the 
portal veins lie on or near the borders of the Voronoi 
division derived from the hepatic veins (Fig. 11). 

Fig. 10. Distance transformation pictures. (a) Distance transformation from hepatic veins. (b) Distance 
transformation from portal veins. 
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(b) 

Fig. 10. (Continued) 

g 

Hepatic veins ~ Portal veins Voronoi edges 

Fig. 11. Voronoi division derived from the hepatic veins. 

Experimental results shown here will be utilized to 
confirm the speculation. 

Computation times of EDT from the portal veins 
and that from the hepatic veins were 269 s and 313 s, 
respectively, by a general purpose computer FACOM 
M-1800 in Nagoya University Computation Center. 

7. CONCLUSION 

In this paper we presented new algorithms to calculate 
the exact Euclidean distance transformation and the 
Voronoi diagram for a digitized picture of arbitrary 
dimensionality and studied their performance. Impor- 
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tant  features of the proposed  a lgor i thms are summar-  
ized below. 

1. They ca lcula te  the  exact  Euc l idean  d i s tance  
t r ans format ion  (EDT) of an arbi t rary  digitized binary 
picture. 

2. They are applicable to two-dimensional and three- 
d imensional  pictures as shown in the paper,  and  ex- 
tended to general n-dimensional  b inary  pictures by 
slight modification. 

3. They are faster than  the widely known method  
of the EDT in reference (19) (the p rogram is available 
as the F O R T R A N  subrout ine  D T E U  in SPIDER-I I )  
when implemented on a general purpose computer .  

4. M e m o r y  requi rement  is min imum.  Tha t  is, only 
one n-dimensional  array of the same size as an  input  
picture and  a single one-dimensional  array for work 
space are needed for performing the EDT. 

5. Algor i thms are iterative local operat ions.  They 
are da ta - independen t  in the sense tha t  the n u m b e r  of 
t imes of scanning the whole picture does not  depend 
on an input  picture. Local opera t ions  are always one- 
d imensional  and  their  ne ighborhood  size is variable. 

Deve lopment  of a lgor i thms to extract  skeleton from 
the Eucl idean distance t ransformat ion  and  to perform 
the inverse distance t r ans format ion  remains  to be 
studied in the future. 
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A P P E N D I X  

Eucl idean dis tance  t r ans fo rmat ion  (basic type) by Algor-  
i thm 3 for th ree-d imens iona l  pictures. 

• Inpu t  picture: F = {fok}, fljk = 0 or  1. 
• O u t p u t  picture (distance t ransformat ion) :  F = { fok }. 
• L , M , N : s i z e s o f p i c t u r e s ( n u m b e r s o f r o w s ,  c o l u m n s a n d  

planes). 
• buff(n): one-d imens iona l  work array with the size n. 
• int(x): funct ion to conver t  the da ta  type f rom the real 

type to the integer  type. 
• min(x ,y) :  funct ion to select smaller  o f x  and  y. 
• sqr t  (x): funct ion to calculate the square  root  of x. 

(Step 1) 

f o r ( k =  1 -- ,N) { 
forward scan 

f o r ( j =  1 --*M) { 
d f =  L; 
for (i = 1 --* L) { 

if (f~jk ~O) d f  = d f  + 1; 
else d f  = 0; 
f i jk = d f  2, 

} 
} 

} 

for(k  = 1 --* N) { 
-backward scan 

f o r ( j =  1 - , M )  { 
db - L; 
for (i = L--+ 1) { 

i f ( f i jk¢ :0 )  d b = d b +  l; 
else db = 0; 
fijk = min  (f ,  j,, db2); 

} 
} 

} 
(Step 2) 
f o r ( k =  l - , N ) {  

for (i = 1 --* L) { 
f o r ( j =  1 ---, M) { 

buf f ( j )  = fijk; 
} 
for ( j  = 1 --* M) { 

d = buff(j) ;  
if(d 4= 0) { 

r M a x  = int(sqrt(d)) + 1; 
rStart  = min ( rMax ,  ( j  -- 1)); 
rEnd  = min ( r Max ,  (M - j ) ) ;  
for (n = - rStar t  ---} rEnd)  { 

w = buf f ( j  + n) + ha; 
if(w < d)d = w; 

} 
} 

fi~k = d; 
} 

} 
} 

(Step 3) 

Same  as Step 2 of Algor i thm 3 
(End) 

Eucl idean dis tance  t r ans fo rmat ion  (fast type) by Algor i thm 
4 for three-d imensional  pictures. 

No ta t i ons  are same  as those in Algor i thm 3. 
(Step 1) 

Same as Step 1 of Algor i thm 3. 

(Step 2) 
for (k = 1 --+ N) { 

for (i = 1 --* L) { 
f o r ( j =  1 ---} M) { 

buff (k) = fljk; 
} 

forward s can  
a = 0  
for ( j  = 2 ---} M) { 

if ( a > 0 ) a =  a -  1 
if (buff(j)  > buff( j  - 1) + 1) then 

b = (buff(j) - buff( j  - 1) - 1)/2 
if ( ( j +  b) > m ) b  = m - j  
for (n = a ~ b) 

m = buff ( j  - 1) + (n + 1) 2 
if (buff( j  + n) < m) goto  LI: 
if (m < f i ( j + n ) k f i ( j + n ) k  = m 

} 
LI: a = b  

else 
a = 0  

endif  

L2: 

} 
} 

-backward scar} 
a = 0  
f o r ( j = M -  1-+1){  

if (a > 0 ) a = a - -  1 
if (buff( j )  > buf f ( j  + 1) then  

b = (buff(j)  - buf f ( j  + 1) - 1)/2 
if ( ( j - b ) < l ) b = j - 1  
for (n = a ~ b) 

m = buf f ( j  + 1) + (n + 1) 2 
i f (buff( j  - n) < m) goto  L2: 
if(m < f . i - . Ik)f i( . i - .~k = m 

} 
a = b  

else 
a = 0  

endif  
} 

(Step 3) 
Same as Step 2 of Algor i thm 4. 

(End) 

About  the Author- -TovOFUMI SAITO received the B.S. degree in electronics engineering,  and  the M.S. degree 
and  the Ph.D.  degree in in format ion  engineer ing f rom N a g o y a  Universi ty,  Japan,  in 1986, 1988 and  1993, 
respectively. Since 1991, he has  been a Research Associate at  the D e p a r t m e n t  of  In fo rmat ion  Engineer ing 
at N a g o y a  Universi ty.  

His  research interests  are pictorial  pa t te rn  recogni t ion and  image  processing.  He is a m e m b e r  of the 
Ins t i tu te  of  Electronics,  In fo rma t ion  an d  C o m m u n i c a t i o n  Engineers  of J apan  and  the Japan  Society of 
Medical  Electronics and  Biological Engineering.  



Euclidean distance transformation 1565 

About the Author--JuN-IcHIaO TORIWAK1 received the B.S. and M.S. degrees in electronics engineering and 
the Ph.D. degree in electrical engineering from Nagoya University in 1962, 1964 and 1969. He was a Research 
Fellow during 1967-1969, a Lecturer in 1969-1970, and an Associate Professor from 1970-1974 at the 
Department of Electrical Engineering, Nagoya University. From 1974-1976, he was an Associate Professor 
at the Computation Center. From 1976-1980, he was an Associate Professor in the Department of Electrical 
Engineering, and the Department of Information Science. From 1980 until 1982, he served as a Professor in 
the Department of Information and Computer Sciences, Toyohashi University of Technology. Since 1983, 
he has been a Professor at the Department of Information Engineering at Nagoya University. 

Dr Toriwaki specializes in the areas of pictorial pattern recognition, biomedical image processing, and 
computer graphics with applications. He has been devoted to the theoretical analysis of the algorithms for 
digital picture processing, and three-dimensional digital geometry, associated software development for 
image processors such as SLIP and SPIDER. Other areas of interest include computerized screening systems 
for chest and stomach X-ray images, and display of three-dimensional images, including CT and microscope. 
Most recently, he is involved in three-dimensional medical image analysis, the development of surgical 
simulation studies, and neural network fundamentals. He has published about 250 scientific papers. He 
received Niwa Takayanagi Award (the best author award) of the Institute of Television Engineers of Japan 
in 1991 and the Paper Award of the Institute of Image Electronics Engineers of Japan in 1992. 

Dr Toriwaki is a member of the IEEE, the Institute of Electronics, Information and Communication 
Engineers of Japan, the Information Processing Society of Japan, and the Japan Society of Medical 
Electronics and Biological Engineering. 


