
Pergamon
PatternRecoanition, Vol. 27, No. l l , pp. 1551 1565, 1994

Elsevier Science Ltd
Copyright © 1994 Pattern Recognition Society

Printed in Great Britain. All rights reserved
0031 3203/94 $7.00+.00

0031-3203(94)00057-3

NEW ALGORITHMS FOR EUCLIDEAN DISTANCE
TRANSFORMATION OF AN n-DIMENSIONAL DIGITIZED

PICTURE WITH APPLICATIONS

TOYOFUMI SAITO and JUN-ICHIRO TORIWAKI
Department of Information Engineering, Faculty of Engineering, Nagoya University, Furo-cho,

Chikusa-ku, Nagoya-shi, 46401 Japan

(Received 1 April 1993; in revised form 25 April 1994; received for publication 7 May 1994)

Al~traet--In this paper, we propose a new method to obtain the Euclidean distance transformation and the
Voronoi diagram based on the exact Euclidean metric for an n-dimensional picture. We present four
algorithms to perform the transformation which are constructed by the serial composition of n-dimensional
filters. When performed by a general purpose computer, they are faster than the method by H. Yamada for
a two-dimensional picture. Those algorithms require only one n-dimensional array for storing input/output
pictures and a single one-dimensional array for a work area, if an input picture needs not be preserved.

Image processing Distance transformation Euclidean distance Three-dimension Voronoi
diagram

1. INTRODUCTION

The distance transformation (DT) of binary pictures is
one of basic tools of shape analysis in digital picture
processing, tl~ DT of a digitized binary picture was
defined by Rosenfeld et al. using the 4- and the 8-
neighbor distance functions. C2~ They showed both the
sequential and the parallel algorithms to calculate DT
by computer. One important disadvantage of DT using
the 4- and the 8-neighbor distance metrics is that the
distance values are often far too different from the
Euclidean distance values. The absolute difference be-
tween such distance value and the Euclidean distance
may become arbitrarily large and cannot be bounded
by any type of upper limit, t3~

A number of improved algorithms have been devel-
oped to make calculated distance values closer to the
Euclidean distance values. Major approaches for im-
provement are classified into two categories. Algor-
ithms classified into the first category use scalar values
as the elements of templates or propagated information.
Other algorithms use multivalued vectors.

All algorithms in the first category make use of
templates or weight matrices in the local operations to
propagate distance values. Tlaose algorithms can be
divided into three subcategories according to the type
of templates. The first subcategory of algorithms use a
single template to calculate DT. DTs of this subcategory
are called the chamfer DT. The Chamfer 3-4 DT, the
Chamfer 5-7-11 DT 14-8~ and the quasi-Euclidean DT t9~
which uses arbitrary real numbers approximating ir-

rational numbers such as x//2 and V~ as elements of
a weight matrix are included in this subcategory. The
second one employs two or more" kinds of distance

metrics alternatively of specific orders such as the
variable neighborhood transformation as represented
in detail in references (10-13). The octagonal distance
transformation should be included in the first sub-
category since it is implemented using a single 5 x 5
mask. However, it should also be included in the second
one because it is executed by using the 4-neighbor
operation and the 8-neighbor operation alternatively.
The third subcategory recently proposed in refer-
ence (14) is characterized by the use of a grey-scale
morphology operation. This method can be imple-
mented by a kind of local parallel operation with a
3 × 3 neighborhood and changes the weight of the
template every step of propagation executed.

The second category of algorithms utilizes a vector
with multivalued elements to propagate distance values.
Danielsson proposed the sequential Euclidean DT
algorithm Ils'16) of this category which generates the
Euclidean distance map with no significant errors but
not totally error-free according to the expression in
Ragnemalm.t 17, ~ s) Yamada and Ragnemalm developed
completely error-free algorithms. I~ 7,19~ Yamada's
algorithm is of a parallel type and employs a 3 x 3
neighborhood operator, while Ragnemalm's uses con-
tour scan.

The important feature of Yamada's algorithm is to
use two two-dimensional arrays as work spaces
which are of the same size as an input picture and store
coordinate values of the 0-pixel that is closest to each
1-pixel. A fixed-neighborhood operator of 3 x 3 pixels
is employed to propagate these coordinate values. A
modification of this algorithm was published in ref-
erence (20) which decomposes the necessary operations
to serial execution of two one-dimensional operators

1551

1552 T. SAITO and J.-I. TORIWAKI

in the row direction and the column direction. This
leads to an efficient implementation of the algorithm
by the hardware. Although the coordinate value arrays
in the above method sometimes provide useful infor-
mation, its execution by general purpose computer
only to obtain DT is often time-consuming and requires
too large a memory. This becomes a serious drawback
in the case of processing three- or higher-dimensional
pictures.

Both of the algorithms in references (14, 19) are of
parallel type in the sense that the output value should
be calculated using only the values of an input picture.
Hence, two different two-dimensional arrays are
required to store the input and the output picture
separately. Both algorithms are of an iterative type.
That is, they consist of local operations applied to the
whole picture iteratively. The iteration finishes once no
pixel value changes by the operation. Therefore the
number of iterations strongly depends on an input
picture and is not bounded by a significant upper limit
beforehand. Mask parameters must be adjusted in the
method of reference (14) in accordance with the number
of iterations.

Extendability of algorithms to higher-dimensional
pictures is also an important factor because pictures
to be processed have extended recently from two-
dimensional to three-dimensional pictures such as X-
ray computed tomography (CT) images of human body.
DT with the 4- and the 8-neighborhood distances is
extended straightforwardly to a three-dimensional
digitized picture only if a suitable distance metric is
selected.

Three metrics called the 6-, the 18-, and the 26-
neighbor distances are reported with the corresponding
sequential algorithms of DT. t21-23) They also suffer
from the same problem of sifnigicant bias from the
Euclidean distance in the three-dimensional space.

Extension of the chamfer distance to the three or
higher-dimensional picture is described in reference (4)
with several weight matrices and their upper limits
of error. Mullikin extended the Euclidean DT of
Dannielson's type to the three-dimensional space
and improved the accuracy of distance values, t24)
Ragnemalm presented a 4-scan algorithm for three-
dimensional pictures and the smallest possible number
of scans algorithm for the arbitrary-dimensional pic-
tures.(251 These algorithms are not the error-free EDT,
however.

In this paper, we present new algorithms to calculate
exactly the DT based upon the Euclidean metric
(Euclidean DT) for an arbitrary binary picture of arbi-
trary dimensionality. The presented algorithms for
n-dimensional (n-D) pictures consist of n one-dimen-
sional local operations executed serially, each of which
corresponds to the direction of each coordinate axis.
We show in the paper two types of algorithms of DT,
the basic one and the faster version. These algorithms
are not classified into either of two categories described
above. They do not use the vector propagation, nor
the fixed template and still they always give exact
Euclidean distance.

Features of the proposed algorithms are summarized
as follows.

(1) They always give the exact Euclidean DT for an
arbitrary binary picture.

(2) They are applicable to general n-dimensional
binary pictures without any change.

(3) They are also applicable with slight modification
to a digitized picture sampled with the different sam-
piing interval in each coordinate axis. In the case
of three-dimensional CT images of human body the
interval between slices are usually larger than the pixel
size in a slice. The algorithms proposed here can be
applied to such types of pictures without any difficulty

(4) Memory requirements is minimum. Only one
n-dimensional array of the same size as an input picture
and a single one-dimensional array for work space are
needed to execute the n-dimensional Euclidean DT. In
the n-dimensional array an input picture is stored first
and the resultant DT picture is stored after finishing
the calculation. The size of the one-dimensional work
space array is equal to the maximum length of the sides
of an input picture. This point is critically important
in practical applications treating three- or higher-
dimensional pictures such as medical X-ray CT images.

(5) The algorithms are iterative. The number of
times of global scan is 2n for processing an n-dimen-
sional picture by the faster version of the algorithm.
Local operations involved are always one-dimensional.

(6) Computation time is reasonably small. Roughly
speaking the computation time of the proposed algor-
ithms is proportional to both the average radius of a
figure and the total number of voxels in an input
picture. According to experimental results they are
significantly faster than the direct implementation of
the algorithm in reference (19). Sometimes its compu-
tation time is almost the same as that of the 8-neighbor
DT (for two-dimensional pictures) and of the 26-
neighbor DT (for three-dimensional pictures).

(7) They are suitable for execution by ordinary
general purpose computer, although not necessarily
the best for implementation by special purpose hard-
ware with a local operation function of the fixed
neighborhood.

In this paper, after describing the Euclidean DT
algorithm, we present its application to calculation of
the Voronoi division. The Voronoi division was first
defined as a kind of division of the space into a set of
cells based upon a given set of isolated points. It was
later extended to a set of connected components on a
digitized space and called the extended digital Voronoi
division (EDVD)/26) The Voronoi division of the two-
dimensional space is understood well by drawing the
division result as a two-dimensional picture. Such pic-
torial representation is called the Voronoi diagram
and the extended digital Voronoi diagram. The Voronoi
diagram and the extended digital Voronoi diagram are
closely related to the DT because the division of the
space is performed by using distance values from an
arbitrary point of the background to the closest point
(or the closest connected component) in a given point

Euclidean distance transformation 1553

(component) set. The proposed algorithm of DT can
also be utilized to derive the EDVD based upon the
Euclidean distance.

Finally we present an example of applications to
practical pictures. The algorithms were successfully
applied to analysis of three-dimensional microscope
images obtained from successive tissue sections of
pathological samples.

2. NOTATIONS AND DEFINITIONS

In this paper we consider only digitized pictures
sampled at rectangular ordered arrays.

Let us consider a three-dimensional digitized picture
represented as F = {J)jk}, where fijk is the value of the
voxel (i, j, k) at the ith row and j th column of the kth
plane (Fig. 1). For the sake of simplicity in explanation
we consider processing of three-dimensional pictures
devotedly in the paper. Note that results can be extend-
ed to pictures of arbitrary dimensionality immediately.
We assume that a picture has L rows, M columns and
N planes. A picture which is composed of only two
kinds of voxels having the value 0 or 1 is called a
binary picture, and each voxel is called a 0-voxel or a
l-voxel according to its value. A set of 0-voxels is
called the background, and a set of 1-voxels is called
a figure.

Let us denote a distance between two voxels (i, j, k)
and (p, q, r) by dr(i, j, k), (p, q, r). The Euclidean metric
is used unless explicitly declared otherwise.

Definition 1. Let D = {dijk} and S = {Sijk} be the Eucli-
dean distance transformation (EDT) of a binary picture
F = {.f~jk} and the squared EDT, respectively. Then the
value dqk is defined as the minimum distance value

yL 9 •/~.jk

Fig. 1. Three-dimensional digitized picture F = {fijk}"

from the voxel (i, j, k) to the closest 0-voxel in the input
picture F, that is,

sijk= rain {dd(i , j ,k) ,(p,q,r))2;
(p,q,r)

fpqr=O, l <p<_L , 1 < q < _ M , l < r < N }

= min { (i - p) e + (j - q) 2 + (k - r) 2 ;
(p,q.r)

f p q r = O , l < _ p < _ L , l < _ q < _ M , l < _ r < _ N } , (1)

dqk = rain Idd(i , j ,k) , (p,q,r));
(p,q.r)

.[pqr=O,l <_p<_L,l < q < M, 1 < r < N~.

N/Zsijk.

Note that the distance value Sijk at any of 0-voxels
(background voxels) is 0 because the closest 0-voxel is
itself.

We use the term distance transformation (DT) to
represent both the transformation to calculate the
picture D from the input picture F and the distance
picture D itself.

Metrics different from the Euclidean metric may be
employed in equation (1) in the above definition. Several
examples widely used in digital picture processing are
shown in Table 1. Other examples are presented in
references (12, 22, 23, 26, 27). Each of the DTs are often
called by the names which represent metrics used there
such as the 8-neighbor DT and the 26-neighbor DT.

3. ALGORITHM OF THREE-DIMENSIONAL EUCIADEAN
DISTANCE TRANSFORMATION

3.1. Basic alyorithm

Before proceeding to the detailed description of the
EDT algorithm, we will explain briefly the basic idea
of the proposed method. The point is summarized in
the following two items.

(1) To minimize the square of the Euclidean distance
instead of the exact distance in the process of transfor-
mations.

(2) To implement the transformation by decompo-
sing the procedure into serial execution of the three
one-dimensional transformation.

Table 1. Examples of distance metrics for a digitized picture

d((i, j), (p, q)) or d((i, j, k), (p, q, r))

Name Definition

Two-dimensional 4-neighbor distance
8-neighbor distance

l i - p l ÷ l j - q l
max { li - p[, l j ql}

Three-dimensional
6-neighbor distance
18-neighbor distance

26-neighbor distance

li - pl +] j - ql + lk - rl
max {max (]i - Pl,]J - ql, Ik - rl),
int ((l i - P l +lJ - ql + Ik - rl + 1)/2)/
max{l i -pl , l j - q t , l k - r l /

PR 27:11-F

1554 T. SAITO and J.-I. TORIWAKI

The following Algorithm 1 shows the essential part
of the proposed algorithms in the form of picture to
picture transformations instead of strict description of
the practically implemented algorithm.

Algorithm 1. EDT--express ion as a parallel opera-
tion. Input picture: F = {fijk}(1 < i < L, 1 < j < M,
1 < k < N) .
Transformation 1. Derive from F a picture G = {gijk}
defined as follows--(transformation in the/-axis direc-
tion) (Fig. 2)

~ijk = min {(i-- x)2; fx jk=O, 1 <_x<_L}. (2)
x

Transformation 2. Derive from the.above picture G a
picture H = {hijk} given by the following e q u a t i o n -
(transformation in the j-axis direction) (Fig. 3)

hij k = min {giyk + (J - y)2; 1 < y < M}. (3)
Y

j • j i 1414111m l]4[4[lmmmn 1

• 14] 911612519,511619141 1 Im
I l l m , l l l | 1] 4 I 9 1161161 9 I 4] 1

• t~J,--0 [] t~j,--1

Fig. 2. Example of Transformation 1 of Algorithm 1.

j ~ i

q
6

1 "T 9.~ 25 - '

2 -9" 16 25 I /
Z 9 1 8

t
4 4
1 26

g,jl, ~'~ I + 0 m 9 min '~ h,jk
4 1 5

T 4 5
"~ 9 9
G weight 2

= (j -y)

Fig. 3. Example of Transformation 2 of Algorithm 1. To
calculate the distance value hij k of a certain pixel (i, j, k), (l)
consider a column including #~,k corresponding to the pixel
(i, j, k), (2) add the weight (j - y)~ to each value in the column,
and (3) search the minimum value in the results of additions.
Then we get the value of h~/k as the minimum value found in

the above process.

Transformation 3. Obtain from the above picture H a
picture S = {Sijk} defined by the following e q u a t i o n -
(transformation in the k-axis direction)

sij k = min {hij~ + (k - z)2; 1 <_ z < S} . (4)
z

Then, the following property is proved.
Property 1. The picture S = {s0k } is the squared EDT
of a picture F = {fi~k}" That is, a voxel (i , j ,k) in the
picture S = {Si~k} has a value equal to the square of the
Euclidean distance from the voxel (i, j, k) to the closest
0-voxel.
Proof. From equation (2),

Oijk= min{(i - -x)2; f x j k = O , l < x < L } (5)
x

= the squared distance to the closest
0-voxel in the same row as (i, j, k).

By substituting equation (5) with equation (3), we
obtain

hij k = min { min { (i - X) 2~

f x y k = O , l < x < _ L } + (j - - y) 2 ; 1 _<y__NM}

f
= min ~ min { (i - x) 2 + (j ~ ~ ~ 2 ~

x

f x y k = 0 , 1 < _ x < L } ; l < _ y < M }

= min {(i - x) 2 + (j - y)2;
(x,y)

f x y k = O , l < _ x < _ L , l < _ y < _ m } (6)

= the squared distance to the closest 0-voxel in the
same plane as (i, j, k).

By substituting the result to equation (4),

sij k = min ~ min {(i - x) 2 + (j - y)2; fxyz = O,
(tx,y)

l < x < L , l < y < M } + (k - z) 2 ; l < z < N }

= min ~ min {(i - x) 2 + (j - y)2 + (k - z)2;
z (. (x,y)

f x r z = O , l < x < L , l < y < M } ; l < z < N }
t"

= min ~(i - x) 2 + (j - y)2 + (k - Z) 2;

(x,y,z)

f x y z = O , l < _ x < _ L , l < _ y < _ M , l < _ z < _ N } . (7)

Thus it is shown that the picture S is the squared
EDT of the picture F. [Q.E.D.]

3.2. Extension to the case of cuboid voxel

Algorithm 1 is extended to the form applicable to a
picture digitized with sampling intervals different in

Euclidean distance transformation 1555

three axes each other by slightly modifying Trans-
formations 2 and 3 as shown in the following Trans-
formations 2' and 3'. Let us assume that the ratio
among sampling intervals in three axes be 1:~:/3.
Other notat ion is as in Section 3.1.

Algorithm 2. EDT for cuboid voxel pictures--paral lel
operation expression.
Transformation 2'. Replace equation (3) of the Trans-
formation 2 by the following equation (3'). Note that
the weight ~ is multiplied to the second term of the
equation inside the braces

hi jk = min{g,yk+(~(j - -y))2 ; 1 < y < m } . (3')
Y

Transformation 3'. Use equation (4') below instead of
equation (4) in Transformation 3

Sijk = min{hi j~+(/3(k--z))Z; 1 < z < N } . (4')
z

It is proved in the same way as Property 1 that the
picture S is the squared EDT of a picture F.

3.3. Algorithms on the digitized picture space

The above algorithms represent the proposed EDT
algorithms in the form of picture to picture transfor-
mations. Although they suggest the outline of possible
algorithms, they do not provide fixed algorithms nor
a way of implementation by practical computers. Here
we show that algorithms presented above are imple-
mented in a remarkably efficient way by ordinary
general purpose computer (or a serial machine with a
single processor) by considering that the distance be-
tween adjacent voxels is of unit length and by employing
operations of the sequential type. Concrete descriptions
of algorithms are given below (we assume that ct = fl = 1
for simplicity of description).

Algorithm 3. EDT (basic type).

Step 1 (Transformation 1).
(1.1) Let an input binary picture be F = {fijk}, and

the output picture be G' = {g~jk} which is initialized as
gljk = L(Vj, Vk) and g'ijk = O, otherwise. Perform for each
values of j and k

{ gljk*--(~,q(/ l)jk+ 1) 2,

gljk '-- 0,

if f i ik :/= O,

if fijk = O,

i = 2 , 3 L. (8)

The suffix i should be changed from 2 to L [left to right
in each row of each picture plane (= horizontal cross
section of a three-dimensional picture)] sequentially
(forward scan).

(1.2) Let an input picture be G' = {gljk} [= the out-
put of Step (1.1)], and the output picture be G = { g~jk }
which is initialized as gLjk = L (Vi, Vk) and gijk = O,
otherwise. Perform for each values of j and k

gi jk ~ min { (xfg, +l)jk + 1) 2, g l j k }.

i = L - 1 , L - - 2 1. (9)

The suffix i should be changed from L-- 1 to 1 (right
to left in each row of each picture plane) sequentially
(backward scan).

Step 2 (Transformation 2). Let the input picture be
G = {gijk } [= the output of Step (1 2)], and the output
picture be H = {hijk}.

Execute the following procedure at each voxel.

hijk *-- min {gi(j+n)k q- n2}, where r = .v/gij k. (10)
r ~ n < r

Here, the min imum value of the right-hand side is
calculated by searching all values of the term inside the
braces for n such that (- r < n < r) and (1 _<j + n _< M)
(Fig. 4). Only the second suffix j is changed for each
value of i and k.

Step 3 (Transformation 3). Let the input picture be
H = {Hijk} (= the output of Step 2), and the output
picture be S = {Sijk}.

Execute the following procedure at each voxel.

Sijk 4--- m i n {hij(k+n)+n2}, w h e r e r = N / / h i j k . (11)
r ~ n < r

The method to search the min imum value is the
same as in Step 2. Only the third suffix k is changed
for each value of i and j.

It is important from the viewpoint of computational
cost that the search for minimization is always one-
dimensional in either of the i-, j-, and k-axis directions.
Bounds of the searching interval + r [equations (10)
and (11)] are obtained by denoting that at least one

0-voxel exists at the distance ~ and x/hljk from the
current voxel (i, j, k), respectively. Therefore we need

not use exact values of xfY~jk if we do not like to treat
non-integer values. The square root calculation in
equations (8) and (9) is also excluded by considering
the square of the amounts appeared in those equations.
The programs we used in practice are given in the
Appendix.

3.4. Fast algorithm

Computat ion time of the algorithms will be discussed
in Section 4 in detail. Here we present another im-
plementation of the above transformations by which

At least one of these is a O-voxel.

Fig. 4. Illustration of the scan area in Transformation 2 of
Algorithm 3.

1556 T. SAITO and J.-I. TORIWAKI

the computa t ion time may be significantly reduced for
some types of input pictures. Major improvements are
achieved by limiting search areas for minimization in
Steps 2 and 3 and avoiding calculations of square-root
operations.

The notat ions are same as in Algori thm 3.
Algori thm 4. EDT (fast type).

Step 1 (Transformation 1). Same as Step 1 of Algo-
ri thm 3.

Step 2 (Transformation 2) (Fig. 5).

(2.1) Input pictt~re: G = {gUk}, output picture: H' =
{h;1k}. Perform the following procedure at each column
(for each values of i and k) (Fig. 6).
The value of the suffix j is increased one by one
from 2 to M (from top to bot tom of each plane (= verti-
cal cross-section) of the picture) (forward scan).

(a) If gijk is larger than (gi(j-1)k -I- 1).
then do the following procedure for the values
of n such that 0 < n < (gUk -- glU- ~)k -- 1)/2 (if
(J + (gUk -- g , j - l)k -- 1)/2) is greater than M. then
O<_n<_M-j).
(Note here that n = (gUk- g, j-a~k- 1)/2 is the
intersection of the curves f ~ (n) = gUk + n2 and
f2(n) = giU- l~k + (n + 1) 2 in the region n > j .)

(i) ifg~u_ ~k + (n + 1) 2 is larger than or equal
to gi(j + n)k,
then go to the next j.

(ii) else
substitute g , j_ ~)k + (n + 1) z to h',j+.)~.

(b) else
substitute guk to h~,.

(2.2) Input picture: H ' = {h~j,} [-= the ou tput of
Step (2.1)].

f

~ ~ "giql)k+n2 "i] o,,j

J f o r w a r d s c a n

Fig. 6. Illustration of forward scan at Algorithm 4, Step 2.

Output Picture: H = {huk }.
Perform the following procedure at each column (for
each value of i and k).
The value of the suffix j is decreased one by one from
M - 1 to 1 rfrom bottom to top of each plane (= vertical
cross-section) of the picture] (backward scan).

(a) If h;i k is larger than (h'iu+ l~k + 1),
then execute the following procedure for the
values ofn such that 0 < n < (h;jk -- h'iu+ 1)k -- 1)/2
(if (j -- (h~jk -- h;u+ l~k - 1)/2 is less than 1, then
O < n < j - 1).
(i) if h'~u+ 1)k + (n + 1) 2 is larger than or equal to

then go to the next j,
(ii) else

substitute h',j+ 1)k + (n + 1) 2 to h,j_,)~,
(b) else

substitute h;jk to huk.

0 e'~ I gift 0 0

Ooo

0

0

0 0 0
0

0

(a) A p i c t u r e a f t e r Step I i s p e r f o r m e d .

~ j

]1
f g i ~ +(J-jl) 2

h'ijk

J1 f o r w a r d scan - ' ~

(b) . I l l u s t r a t i o n o f t h e f o r w a r d s c a n .

L j

1

"m-backward scan

(c) I l l u s t r a t i o n o f t h e b a c k w a r d s c a n .

Fig. 5. Illustration of Step 2 in Algorithm 4 (see also Fig. 4).

.~ j

Euclidean distance transformation 1557

Step 3 (Transformation 3). Same as Step 2 above
except that G and H are replaced by H and S, res-
pectively, and the third suffix k is changed instead of
the second suffix j.

An example of the program we used is given in the
Appendix.

Concerning memory requirement, two three-dimen-
sional arrays of the same size are used to store an input
picture F and a resultant squared DT picture, res-
pectively. However, if the input picture F is not needed
to be preserved as a binary picture after the execution
of the DT, all pictures F, G', G, H', H, S' and S in the
above algorithm can be assigned to physically the
same address in computer memory (an input picture
is still restored easily by replacing all positive values
by 1 in the obtained squared DT picture). Additionally
the single one-dimensional array with the size max (M,N)
is required as a work area. Therefore the minimum
memory requirement for performing the above EDT
is a single three-dimensional array and a single one-
dimensional array for the case of a three-dimensional
picture.

3.5. Extension to an n-dimensional picture

Extension of the above algorithms to pictures of
lower- and higher-dimensions than three-dimension is
straightforward. The two-dimensional case is obtained
by excluding Step 3 of the algorithms. In the case of
n-dimensional pictures for n > 3, the same type of the
procedure as Step 3 should be iterated n - 1 times
(including Steps 2 and 3 of the presented algorithms).
Estimation of the amount of computation in Section
5 and memory requirement presented in the previous
section are also valid for a picture of arbitrary dimen-
sionality. It should be noted that only one n-dimen-
sional array and a single one-dimensional array are
enough to perform the n-dimensional EDT.

One disadvantage of these algorithms is the use of
square root operation in the post processing to obtain
the exact EDT values from the squared EDT obtained
by the algorithm. However, this is not so serious as far
as a general purpose computer is used as we see in the
experimental results in Section 5.

4. DIGITAL VORONOI DIAGRAM

4.1. Definitions

Given a digitized binary picture F = { fi~k } including
more than two figures (connected components), the
modified digital Voronoi division (MDVD) of a picture
F is defined a s f o l l o w s . (6 '26)

Definition 2. Assuming that a binary picture F contains
n connected components C~, C2 C,, a set of voxels
T, defined below is called a tile of the connected com-
ponent C,.

T~ = {(i,j,k); d((i,j,k),C,)<d((i,j,k),Ck),Vk~r},
(12)

where

d((i, j , k), C,) = the distance between a voxel (i, j, k)
and a connected component C,

= min {d((i, j, k), (p, q, r)); (p, q, r) ~ Cr}.
03)

A set of all tiles [T,; r = 1, 2, 3 n} and the division
of the space into such tiles are both called the modified
digital Voronoi division (MDVD) of a picture F.

4.2. Algorithm to obtain the MDVD

Although any distance metric can be adopted for
equation (13), in principle, only the 4- and the 8-
neighbor distances were used in the case of digital
binary pictures in reference (26). Very few reports have
been published concerning practical applications of
MDVD in the three-dimensional space/TM Use of the
Euclidean distance was time-consuming for a set of
connected components in the higher-dimensional space,
although a divide-and-conquer algorithm ~29) works
well for a set of isolated points.

By modifying the algorithms presented in Section 3,
the MDVD employing the Euclidean distance can,be
obtained effectively. The basic idea is to propagate
labels assigned to connected components beforehand
synchronously with the process of calculating the EDT.
An algorithm is derived from Algorithm 3 as follows.
We simplify the description by referring to Algorithm 3.

Algorithm 5. Modified digital Voronoi diagram.

Input picture (label picture): F = {fijk} (1 _< i < L,
I < j < M , l < k < N) . We assign labels such that

fijk = 0 if(i, j, k) is a background voxel, and otherwise,
fijk = positive integer showing a label of a connected
component which the voxel (i, j, k) belongs to.

Step 1 (Transformation 1). The order to visit voxels
(scanning mode) is the same as in Algorithm 3.

(1.1) Let an input picture be F = {fijk} (label picture),
and the output pictures G ' = {g'ijk} and V '= {V~jk}.
Perform for each values of j and k

{ g ~ j k ' - - (~ l)jk + if fijk = 0 ' (14)
1) 1

U'ijk ~ Ui i - l(jk

f 91/k~0 i f f l i k >0. (15)
v'ijk *-- 0

(1.2) Let input pictures be G' = {9~k} and V' = {V'ijk}
[= outputs of the Step (1.1)], and the output pictures
be G = {Oi~k} and V = {V~jk}. Perform for each values
of j and k.

(g i j k * - - (~ + if (~ k + 1) z <g'ijk,
1) 2

13ijk +--- O(i + 1)jk

(16)

{ gij*~g;jk if (~ + 1) 2 >_ 9~jk. (17)
1)ij k ~ Uij k

Step 2 (Transformation 2). Perform the following
procedure at each background voxel (i, j, k).

1558 T. SAITO and J.-I. TORIWAKI

Let input pictures be G = {g,jk} and V = {Vijk}
[= outputs of Step (1.2)], and output pictures be
H = {h~jk} and V '= {v~jk}.
Assuming that {9,j+,~k + n2; --r < n _< r, where r =

~ } is minimized with respect to n at n = n*,

~ hijk *-- gi(~ + ,*)k + (n*) 2 (1 8)
t

[Vij k ~ Vi(j+n*)k.

Step 3 (Transformation 3). Perform the following
procedure at each background voxel (i, j, k).
Let input pictures be H = {hog } and V' = {V'~jk} (= out-
puts of Step 2), and output pictures be S = {S~jk} and
v = {v,jk}.
Assuming that {h~j~k+,) + n2); - -r ~ n < r, where r =

~ } is minimized with respect to n at n = n*,

siyk *-- hij~k +,*) + (n*) 2
(19)

Vij k ~-- Vlj(k+n*)

After finishing the procedure, the squared EDT is
stored in S and the MDVD is obtained in the picture
V = {Vijk}. That is, a value vijk at each voxel (i, j, k) in
V gives the label of the connected component closest
to that voxel. Memory requirement is also the same as
in Algorithm 3. If the input label picture F needs not
be preserved after the procedure is terminated, only
two three-dimensional arrays are necessary, one for
the pictures F, V, and V', and the other for G', G, H
and S. Additionally, two one-dimensional arrays are
required as work areas for keeping {gi~k; 1 <_j <__ M}
and {v~jk; 1 < j < M}, respectively, in Step 2. They are
also used in Step 3.

Fast version of the EDT, Algorithm 4 can be em-
ployed in the similar way, but details are omitted here.

5. COST OF COMPUTATION

5.1. Theoretical estimation of the amount o f computation

The computation time of the EDT by the algorithms
presented above depends on the size of an input picture,
the shape and the size of a figure in an input picture,
and the implementation method. Here we derive esti-
mates of the amount of computation, assuming that
the transformation is implemented on a general pur-
pose computer (serial machine) with single processor.

(1) Algorithm 3. Step 1 of Algorithm 3 is performed
by scanning the whole of an input picture twice, by the
forward raster scan followed by the backward raster
scan once for each. In Steps 2 and 3 we need not scan
any of the whole column and the whole vertical column.
Instead, the number of voxels to be searched at each
current voxel (i, j, k) is equal to twice of the square root
of g~jk o r hij k in equation (1). Thus, computation time
(or the amount of computation) of each transformation
is estimated as follows.

Step 1: O(Num),

Step 2: O(Av(xfg~ijk) x Num),

Step 3: O(Av(x/h~/jk) x Num),

where Num is the number of voxels in the input picture

and Av(x) represents the average of the value x over
the corresponding picture.

Hence, by approximating the total amount of com-
putation by the sum of the above estimation for each

step, and approximating A v (~) and A v (~) by

Av(~ x ~) or the mean of distance values multiplied
by a suitable constant ~, we obtain

Total amount of computation:

O(mean value of DT x Num) = O(Av(dijk) x Num).

Thus we find that the computation time of Algorithm
3 is approximately proportional to both the mean
value of the DT and the picture size.

(2) Algorithm 4. The computation time of Algor-
ithm 4 is more sensitive to the shapes of figures in an
input picture F than Algorithm 3. We consider here
the case that the input picture includes only one solid
sphere. Let us assume that the computation time of
Step 2 is approximated by twice of the amount of the
procedure in the forward scan, and that of Step 3 is
also the same order as Step 2.

At an each voxel (i , j ,k) , if ,qijk is greater than
(g, j l~k + 1) in (2.1)(a) of Step 2, (g i j k - 9 , ~ - t) k - 1)/2
times of operations will be executed in the following
iteration in (a). Otherwise, substitution will be executed
only once in (b) at the voxel (i, j, k). Then, for a sphere
with the radius R, computation time of the forward
scan in Step 2 is approximately proportional to (~R 3 +
Num) where cc is a suitable constant. Total computation
time is estimated as four times of it.

5.2. Experimental evaluation

Because there are no other reports of concrete
algorithms to calculate the EDT for three-dimensional
pictures, we compared computation time of several
algorithms developed for transforming two-dimensional
pictures. Algorithms studied in the experiments are
Algorithms 3 and 4 in this paper, the EDT of the method
in reference (19) (implemented as the FORTRAN sub-
routine DTEU in SPIDER-IITM), and the 8-neighbor
DT. Algorithms 3 and 4 in the text were modified for
a two-dimensional picture (Step 3 was omitted). Fur-
ther, we compared our algorithms with the 26-neighbor
DT for three-dimensional picturesJ 21'22)

Two kinds of pictures were prepared for being pro-
cessed by the algorithms above. One of them was
generated by scattering a certain number of 0-pixels of
which locations were selected by using uniform random
number generator on the background filled with 1-
pixels. The other consists of a circle or a sphere with
the radius R locating at the center of the input picture
(Fig. 7). Picture sizes are 500 x 500 pixels (two-dimen-
sional pictures) and 120 x 120 × 120 voxels (three-
dimensional pictures). All programs were written in
FORTRAN and executed by the general purpose com-
puter FACOM M-1800 in Nagoya University Com-
putation Center.

Figure 8(a) and (b) show that computation times of
Algorithm 3 and DTEU are approximately propor-
tional to the square root of the mean value of S (= mean

Euclidean distance transformation 1559

(a) (b)

Fig. 7. Samples of input pictures for evaluation of computation time (white: 0-pixel, black: l-pixel). (a) A
sample of a random dots picture. (b) A sample of a circle picture.

. p i c tu re size , - u - e J g o r a m m # I .
10 4 -[:3- A lgor i thm 4 ~ 0 0 .

8-.~ - ~ " 8 ne ighbor DT

(i) O ' - - - :': :':':':" = x x :.:. ~ ' (i)
0 5 10

Mean distance (pixel)

pic tu re size is 120×120x120.
~ 5 o ~] .

4 0

30"

i I --12.- Algorithm 4 |
20 ['""'""l "~26 neighbor DT |

1 0 i i i .

0 I i I
5 10 15 2O

Mean distance (voxel)

(i)

100-

50-

~ o.6-

0.4-

0 .2-

0

- O - Algor i thm 3 | , .
• , . - - , I p ic tu re size -x..w e, a g o n m m ~ I
DTEU ~ 0 x 5 0 0 .

40 80 120 160 200
Radius (pixel)

(ii)

pic ture size is 120x120x120.
7 - i i ~ i i

[~ Algor i thm-3 1 i~ -~ 6-.-] -{:3-Algorithm 4 / ~

..... 1 -1~- 26 n i i g h b i r D ~ I g 5

4 -

3-

2-

1

0 i i i i i
10 20 30 40 50 60

Radius (voxel)

(a) (b)

Fig. 8. Experimental evaluation of computation time. (a) Comparison among the proposed algorithms,
DTEU and the 8-neighbor DT for two-dimensional pictures. (i) Random dots picture. (ii) Circle picture of
radius R. (b) Comparison among the proposed algorithms and the 26-neighbor DT for three-dimensional

pictures. (i) Random dots picture. (ii) Sphere picture of radius R.

square distance), while those of Algorithm 4 and the
8-neighbor DT are almost constant. For a circle picture,
Algorithm 3 is a little faster than Algorithm 4 for
smaller values of radius, and the time of Algorithm 4
is more constant for the change in the radius.

For a three-dimensional picture, computat ion times
of Algorithms 3 and 4 show the tendency similar to the
above, and are faster than even the 26-neighbor DT
for the radius of a sphere being small. All of algorithms
above include only calculation of integer values. The
computat ion times of Algorithms 3 and 4 mean those
of calculating the squared EDT. If the exact Euclidean
distance values are required we need to calculate the
square root of a resultant picture. The computat ion
time for it was about 0.2 ms and 1.2 s for the above two-
dimensional pictures and three-dimensional pictures,

respectively. It is enough to know relative relation
between the distance values in many applications such
as extracting skeletons and feature points. In such
cases we need not calculate the square root.

6. A P P L I C A T I O N S

The presented algorithm was used to analyse micro-
scope images of successive tissue sections. An input
picture is a digitized manual trace of border lines of
portal and hepatic veins in microscope images of suc-
cessive tissue sections obtained from the human liver.
Sizes of input pictures and sizes of voxels are shown in
Table 2. An example of slices and three-dimensional
reconstructions of hepatic and portal veins are shown
in Fig. 9(a) (c). The results of the three-dimensional

560 Table 2. Size of input pictures and intervals between voxels

Data 1 Data 2

Size of picture (pixel) 1 slice 420 x 594 420 x 594
Number of slices 29 48

Sampling interval In slice 10 10
Between voxels (/ ~ m) Between slices 28 24

}.

Portal vein ~ Necrotic zone
Hepatic vein

(a)

(b)

Fig. 9. Input picture. (a) Source picturc (Data I, slicc No. 15). (b) Three-dimensional reconstruction of
hcpatic veins. (c) Three-dimensional rcconstruction of portal veins.

Euclidean distance transformation 1561

Fig. 9. (Continuedt

EDT are shown in Fig. 10. Figure 11 shows a cross-
section of the Voronoi diagram derived from a set
of hepatic veins. For details of this application, see
reference (30).

It was speculated, concerning the microstructure of
the liver tissue, that for an arbitrary point in the tissue
the length of the shortest path from the portal vein to

the hepatic vein passing that point is almost constant
everywhere. This speculation will be confirmed by
examining the distribution of the sum of two EDT
values at each point (EDT from the portal veins and
that from the hepatic veins), and by finding that the
portal veins lie on or near the borders of the Voronoi
division derived from the hepatic veins (Fig. 11).

Fig. 10. Distance transformation pictures. (a) Distance transformation from hepatic veins. (b) Distance
transformation from portal veins.

1562 T. SAITO and J.-I. TORIWAKI

(b)

Fig. 10. (Continued)

g

Hepatic veins ~ Portal veins Voronoi edges

Fig. 11. Voronoi division derived from the hepatic veins.

Experimental results shown here will be utilized to
confirm the speculation.

Computation times of EDT from the portal veins
and that from the hepatic veins were 269 s and 313 s,
respectively, by a general purpose computer FACOM
M-1800 in Nagoya University Computation Center.

7. CONCLUSION

In this paper we presented new algorithms to calculate
the exact Euclidean distance transformation and the
Voronoi diagram for a digitized picture of arbitrary
dimensionality and studied their performance. Impor-

Euclidean distance transformation 1563

tant features of the proposed a lgor i thms are summar-
ized below.

1. They ca lcula te the exact Euc l idean d i s tance
t r ans format ion (EDT) of an arbi t rary digitized binary
picture.

2. They are applicable to two-dimensional and three-
d imensional pictures as shown in the paper, and ex-
tended to general n-dimensional b inary pictures by
slight modification.

3. They are faster than the widely known method
of the EDT in reference (19) (the p rogram is available
as the F O R T R A N subrout ine D T E U in SPIDER-I I)
when implemented on a general purpose computer .

4. M e m o r y requi rement is min imum. Tha t is, only
one n-dimensional array of the same size as an input
picture and a single one-dimensional array for work
space are needed for performing the EDT.

5. Algor i thms are iterative local operat ions. They
are da ta - independen t in the sense tha t the n u m b e r of
t imes of scanning the whole picture does not depend
on an input picture. Local opera t ions are always one-
d imensional and their ne ighborhood size is variable.

Deve lopment of a lgor i thms to extract skeleton from
the Eucl idean distance t ransformat ion and to perform
the inverse distance t r ans format ion remains to be
studied in the future.

Acknowledgements--Authors wish to thank Dr S. Yokoi and
colleagues in their laboratory for helpful discussion. We owe
helpful suggestions and microscope pictures in the experiment
in 6 to Dr T. Takahashi (Tohoku University). We also thank
Dr K. Abe (Shizuoka University) and Dr H. Yamada (Electro-
Technical Laboratory) for helpful suggestion of references.
Parts of the work were supported by the Grant-in-Aid for
Scientific Research, Ministry of Education and the Grant-in
Aid for Cancer Research, Ministry of Health and Welfare

REFERENCES

1. J. Toriwaki, M. Okada and T. Saito, Distance transfor-
mation and skeletons for shape feature analysis, in C.
Arcelli, L. P. Cordella and G.S. di Baja (Eds) Visual
Form: Analysis and Recognition (Proc. of the International
Workshop on Visual Form, 1991.5.27 30), pp. 547-563.
Plenum Press, New York (1992).

2. A. Rosenfeld and J. L. Pfaltz, Sequential operations in
digital picture processing, J. Ass. Comput. Mach. 13,
471-494 (1966).

3. M. Yamashita and T. Ibaraki, Distances defined by
neighborhood sequences, Pattern Recognition 19, 237 246
(1986).

4. G. Borgefors, Distance transformations in arbitrary
dimensions, CVGIP 27, 321 345 (1984).

5. G. Borgefors, A new distance transformation approxi-
mating the Euclidean distance, Proc. 8th 1CPR, pp. 336
339 (1986).

6. G. Borgefors, Distance transformations in digital images,
CVGIP 34, 344-371 (1986).

7. E. Thiel and A. Montanvert, Chamfer masks: discrete
distance functions, geometrical properties and optimi-
zation, Proc. 11th ICPR, Vol. 3, pp. 244 247 (1992).

8. F. Leymarie and M. D. Levine, Fast raster scan distance
propagation on the discrete rectangular lattice, CVGIP:
Image Understanding 55, 84 94 (1992).

9. U. Montanari, A method for obtaining skeletons using a

quasi-Euclidean distance, J. Ass. Comput. Mach. 15,
600-624 (1968).

I0. J. Toriwaki and S. Yokoi, Distance transformation and
skeletons of digitized pictures with applications, in A.
Rosenfeld and L. Kanal (eds.) Progress in Pattern Recog-
nition, Vol. 1, pp. 187 264. North Holland, Amsterdam
(1981).

11. S. Yokoi, J. Toriwaki and T. Fukumura, On generalized
distance transformation of digitized pictures. IEEE Trans.
PAMI PAMI-3, 424-443 (1981).

12. A Rosenfeld and J. L. Pfalts, Distance functions on digital
pictures, Pattern Recognition 1, 33 6l (1968).

13. S. Yokoi, J. Toriwaki and T. Fukumura, Distance trans-
formation and fusion of digitized binary pictures using a
variable neighborhoods sequence, Trans. IECE, J63-D,
386-393 (1980) (in Japanese).

14. C. T. Huangand O. R. Mitchell, Rapid Euclidean distance
transformation using grey scale morphology decomposi-
tion, Proc. CVPR'91, pp. 695-697 (1991).

15. P. E. Danielsson, Euclidean distance mapping. Comput.
Graphics Image Process. 14, 227-248 (1980).

16. I. Ragnemalm, Generation of Euclidean distance maps,
Link6ping Studies in Science and Technology Thesis
No. 206, Link6ping, Sweden (1990).

17. I. Ragnemalm, Contour processing distance transforms,
in Cantoni et al. (eds.), Progress in Image Analysis and
Processing, pp. 202 212. World Scientific, Singapore
(1990).

18. I. Ragnemalm, Neighborhoods for distance transfor-
mations using ordered propagation. CVGIP: Image
Understanding 56, 399 409 (1992).

19. H. Yamada, Complete Euclidean distance transformation
by parallel operation, in Proc. 7th Int. Con~ on Pattern
Recognition Montreal, Canada, pp. 69-71 (1984).

20. D.W. Paglieroni, Distance transforms: properties and
machine vision applications, Graph. ModeLs Image Process.
54, 56-74 (1992).

21. A. Kuwabara, S. Yokoi, J. Toriwaki and T. Fukumura,
Distance function and distance transformation on 3-D
digital image data, Trans. IECE, J65-D, 8, pp. 967 974
(1982) (in Japanese).

22. N. Okabe, J. Toriwaki and T. Fukumura, Fundamental
properties of distance functions on the three-dimensional
digitized image data, Trans. IECE, J66-D, 3, pp. 259-266
(1983) (in Japanese).

23. N. Okabe, J. Toriwaki and T. Fukumura, Paths and
distance function on three-dimensional digitized pictures,
Pattern Recognition Lett. l, 205 212 (1993).

24. J. C. Mullikin, The vector distance transform in two and
three dimensions, CVGIP 54, 526-535 (1992).

25. I. Ragnemalm, The Euclidean distance transform in arbi-
trary dimensions, Pattern Recognition Lett. 14, 883 888
(1993).

26. J. Toriwaki and S. Yokoi, Voronoi and related neighbors
on digitized two-dimensional ~pace with applications to
texture analysis, in Toussaint G. T. (ed.) Computational
Morphology, pp. 207-228. Elsevier Science, North Holland
(1988).

27. F. Phodes, Discrete Euclidean metrics. Pattern Recog-
nition Lett. 13, 623 628 (1992).

28. E. Bertin and J. M. Chassery, 3-D Voronoi diagram:
application to segmentation, Proc. l lth ICPR, 3,
pp. 197-200 (1990).

29. K. Sugihara, Y. Ooishi and T. Imai, Topology-oriented
approach to robustness and its applications to several
Voronoi-diagram algorithms, in J. Urrutia (ed.) Proc. of
the Seasonal Canadian Conference in Computational
Geometry, Ottawa, pp. 36-39 (1990).

30. T. Saito and J. Toriwaki, Algorithms of three-dimensional
Euclidean distance transformation and extended digital
Voronoi diagram, and analysis of human liver section
images. J. Inst. Image Electronics Engrs Japan 21,468-474
(1992) (in Japanese).

1564 T. SAITO and J.-l. TORIWAK!

A P P E N D I X

Eucl idean dis tance t r ans fo rmat ion (basic type) by Algor-
i thm 3 for th ree-d imens iona l pictures.

• Inpu t picture: F = {fok}, fljk = 0 or 1.
• O u t p u t picture (distance t ransformat ion) : F = { fok }.
• L , M , N : s i z e s o f p i c t u r e s (n u m b e r s o f r o w s , c o l u m n s a n d

planes).
• buff(n): one-d imens iona l work array with the size n.
• int(x): funct ion to conver t the da ta type f rom the real

type to the integer type.
• min(x ,y) : funct ion to select smaller o f x and y.
• sqr t (x): funct ion to calculate the square root of x.

(Step 1)

f o r (k = 1 -- ,N) {
forward scan

f o r (j = 1 --*M) {
d f = L;
for (i = 1 --* L) {

if (f~jk ~O) d f = d f + 1;
else d f = 0;
f i jk = d f 2,

}
}

}

for(k = 1 --* N) {
-backward scan

f o r (j = 1 - , M) {
db - L;
for (i = L--+ 1) {

i f (f i jk¢ :0) d b = d b + l;
else db = 0;
fijk = min (f , j,, db2);

}
}

}
(Step 2)
f o r (k = l - , N) {

for (i = 1 --* L) {
f o r (j = 1 ---, M) {

buf f (j) = fijk;
}
for (j = 1 --* M) {

d = buff(j) ;
if(d 4= 0) {

r M a x = int(sqrt(d)) + 1;
rStart = min (rMax , (j -- 1));
rEnd = min (r Max , (M - j)) ;
for (n = - rStar t ---} rEnd) {

w = buf f (j + n) + ha;
if(w < d)d = w;

}
}

fi~k = d;
}

}
}

(Step 3)

Same as Step 2 of Algor i thm 3
(End)

Eucl idean dis tance t r ans fo rmat ion (fast type) by Algor i thm
4 for three-d imensional pictures.

No ta t i ons are same as those in Algor i thm 3.
(Step 1)

Same as Step 1 of Algor i thm 3.

(Step 2)
for (k = 1 --+ N) {

for (i = 1 --* L) {
f o r (j = 1 ---} M) {

buff (k) = fljk;
}

forward s can
a = 0
for (j = 2 ---} M) {

if (a > 0) a = a - 1
if (buff(j) > buff(j - 1) + 1) then

b = (buff(j) - buff(j - 1) - 1)/2
if ((j + b) > m) b = m - j
for (n = a ~ b)

m = buff (j - 1) + (n + 1) 2
if (buff(j + n) < m) goto LI:
if (m < f i (j + n) k f i (j + n) k = m

}
LI: a = b

else
a = 0

endif

L2:

}
}

-backward scar}
a = 0
f o r (j = M - 1-+1){

if (a > 0) a = a - - 1
if (buff(j) > buf f (j + 1) then

b = (buff(j) - buf f (j + 1) - 1)/2
if ((j - b) < l) b = j - 1
for (n = a ~ b)

m = buf f (j + 1) + (n + 1) 2
i f (buff(j - n) < m) goto L2:
if(m < f . i - . Ik)f i(. i - .~k = m

}
a = b

else
a = 0

endif
}

(Step 3)
Same as Step 2 of Algor i thm 4.

(End)

About the Author- -TovOFUMI SAITO received the B.S. degree in electronics engineering, and the M.S. degree
and the Ph.D. degree in in format ion engineer ing f rom N a g o y a Universi ty, Japan, in 1986, 1988 and 1993,
respectively. Since 1991, he has been a Research Associate at the D e p a r t m e n t of In fo rmat ion Engineer ing
at N a g o y a Universi ty.

His research interests are pictorial pa t te rn recogni t ion and image processing. He is a m e m b e r of the
Ins t i tu te of Electronics, In fo rma t ion an d C o m m u n i c a t i o n Engineers of J apan and the Japan Society of
Medical Electronics and Biological Engineering.

Euclidean distance transformation 1565

About the Author--JuN-IcHIaO TORIWAK1 received the B.S. and M.S. degrees in electronics engineering and
the Ph.D. degree in electrical engineering from Nagoya University in 1962, 1964 and 1969. He was a Research
Fellow during 1967-1969, a Lecturer in 1969-1970, and an Associate Professor from 1970-1974 at the
Department of Electrical Engineering, Nagoya University. From 1974-1976, he was an Associate Professor
at the Computation Center. From 1976-1980, he was an Associate Professor in the Department of Electrical
Engineering, and the Department of Information Science. From 1980 until 1982, he served as a Professor in
the Department of Information and Computer Sciences, Toyohashi University of Technology. Since 1983,
he has been a Professor at the Department of Information Engineering at Nagoya University.

Dr Toriwaki specializes in the areas of pictorial pattern recognition, biomedical image processing, and
computer graphics with applications. He has been devoted to the theoretical analysis of the algorithms for
digital picture processing, and three-dimensional digital geometry, associated software development for
image processors such as SLIP and SPIDER. Other areas of interest include computerized screening systems
for chest and stomach X-ray images, and display of three-dimensional images, including CT and microscope.
Most recently, he is involved in three-dimensional medical image analysis, the development of surgical
simulation studies, and neural network fundamentals. He has published about 250 scientific papers. He
received Niwa Takayanagi Award (the best author award) of the Institute of Television Engineers of Japan
in 1991 and the Paper Award of the Institute of Image Electronics Engineers of Japan in 1992.

Dr Toriwaki is a member of the IEEE, the Institute of Electronics, Information and Communication
Engineers of Japan, the Information Processing Society of Japan, and the Japan Society of Medical
Electronics and Biological Engineering.

