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Abstract—For liver surgical planning, the structure and mor-
phology of the hepatic vessels and their relationship to tumors are
of major interest. To achieve a fast and robust assistance with op-
timal quantitative and visual information, we present methods for
a geometrical and structural analysis of vessel systems. Starting
from the raw image data a sequence of image processing steps has
to be carried out until a three-dimensional representation of the
relevant anatomic and pathologic structures is generated. Based
on computed tomography (CT) scans, the following steps are per-
formed. 1) The volume data is preprocessed and the vessels are
segmented. 2) The skeleton of the vessels is determined and trans-
formed into a graph enabling a geometrical and structural shape
analysis. Using this information the different intrahepatic vessel
systems are identified automatically. 3) Based on the structural
analysis of the branches of the portal vein, their vascular terri-
tories are approximated with different methods. These methods
are compared and validated anatomically by means of corrosion
casts of human livers. 4) Vessels are visualized with graphics prim-
itives fitted to the skeleton to provide smooth visualizations without
aliasing artifacts. The image analysis techniques have been evalu-
ated in the clinical environment and have been used in more than
170 cases so far to plan interventions and transplantations.

Index Terms—Feature extraction, image segmentation, liver
surgery, vessel visualization.

I. INTRODUCTION

A N ACCURATE analysis of vascular systems in volumetric
image data is gaining increasing importance for a variety

of medical applications. Precise knowledge of the morphology
and structure of a vascular system allows for quantitative diag-
nosis, surgical planning, and outcome assessment, as well as for
monitoring of the progression of vascular disease [47].

A. Planning in Liver Surgery

In this paper, we focus on computational methods for the
analysis and visualization of hepatic vascular structures for liver
surgery planning. One of the most challenging problems in liver
surgery is to assess the morphology and branching pattern of
the hepatic vasculature and their supply volume. The large va-
riety of these branching patterns is illustrated in textbooks on
anatomy (see, for example, [31]).
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The development of the methods presented here is motivated
and guided by the following two clinical applications.

1) Living-related liver transplants (LRLT): These operations
are required by the lack of organs needed for transplan-
tation. LRLT is a procedure where a healthy voluntary
donor gives a part of his or her liver to another person.
These transplantations are feasible due to the regenera-
tive power of the liver. A careful analysis of the branching
pattern and morphology of all hepatic vessel systems is a
precondition for LRLT. Additionally, volumetric approx-
imations are carried out to predict the postoperative liver
function. With this analysis, the decision whether a person
is suitable as a donor for LRLT is supported.

2) Oncologic resections: For patients with liver cancer or
liver metastasis, e.g., from colorectal cancer, resectability
is an essential question. Resectability and the extent of
the required resection depend primarily on the location
of tumors and the spatial relations between tumors and
major hepatic vessels.

For the planning of both these operations, it is crucial to
provide the surgeon with a patient-individual three-dimensional
(3-D) representation of the liver along with its vasculature and
lesions. Such a representation allows for an exploration of the
vascular anatomy and the measurement of vessel diameters
and distances, as well as the analysis of the shape and volume
of vascular territories. All of this is based on an accurate
segmentation and analysis of the intrahepatic vessels.

B. Overview

In this paper, we present new methods to analyze the pa-
tient’s intrahepatic vasculature from clinical computed tomog-
raphy (CT) volume data. As a result, a 3-D model of the relevant
structures is generated which enables more precise access to the
individual intrahepatic vasculature and builds a new basis for
preoperative planning. To achieve this, we will discuss the fol-
lowing four steps.

1) Vessel segmentation: The intrahepatic vessels are seg-
mented with a refined region-growing algorithm to
meet the demands of runtime, robustness, and level of
automation for acceptance in clinical routine.

2) Analysis of vessel structures: Algorithms based on graph
theoretical methods are used to analyze the geometry and
the ramification structure of the segmented vessels. For
this purpose, the skeletons of vessels are determined.

3) Model-based approximation of vascular territories: The
territories that are supplied by the main branches of the
portal vein are determined. We present evidence for the
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Fig. 1. 2-D slice of a CT volume dataset. The applied contrast agent provides
a high vessel-to-tissue contrast and reveals the highlighted portal vein and some
branches of the hepatic vein. The two dark spots inside the liver represent liver
metastasis. (Dataset provided by Prof. Galanski, Medical School Hannover.)

accuracy of these methods based on studies of corrosion
casts of eight human livers.

4) Vessel visualization: Based on the skeletons and the infor-
mation concerning the vessel diameter, antialiased vessel
visualizations are generated by fitting graphics primitives
along the skeleton lines.

Finally, an interactive 3-D visualization is provided which al-
lows the user to explore the previously identified and analyzed
structures. The following sections describe these steps.

II. M EDICAL BACKGROUND

Because of the complex vascular anatomy of the liver, sur-
gical interventions are challenging. Four different vessel sys-
tems supply and drain the liver: the portal vein, hepatic vein,
hepatic artery, and bilary ducts. A successful operation requires
enough remaining liver tissue supplied by all four vessel sys-
tems. Since the portal vein, the hepatic artery, and the bile ducts
parallel, the portal vein is regarded as the leading structure for
these three vessel systems.

For a surgeon, it is difficult to mentally construct the 3-D
structure of vessel systems based on planar slices of radiological
data (cf. Fig. 1) and to estimate which part of a vessel system
would be damaged as a consequence of a surgical interven-
tion [22]. In order to enable surgeons to perform liver resec-
tions respecting the vascular anatomy, a schematic model of the
liver was introduced by Couinaud [4]. Following this model, the
human liver can be divided into differentsegmentswhich are
determined according to the branching structure of the portal
vein. A liver segment is defined by the supplied territory of
a third-order branch of the portal vein. Since these segments
are independent from each other, they can be resected without
damaging the supply of the other segments. Applying the wide-
spread scheme of Couinaud directly is questionable from an
anatomical point of view, since the liver segments are highly
variable in shape, size, and number (see Faselet al.[11]). There-
fore, it is desirable to identify the individual liver segments pre-
operatively.

III. M ETHODS

A. Fast and Robust Vessel Segmentation

The segmentation of the intrahepatic vessels is a prerequisite
for a subsequent geometrical and structural analysis. In a pre-
processing step, filter functions for noise reduction (Gaussian,
median filter) and for background compensation (Laplace-like
filters) are applied to the CT data [42]. For background compen-
sation, the size of the filter kernel is chosen such that it is larger
than the thickest vessel inside the liver (default is 1515). The
application of this filter is restricted to an interval which is de-
fined such that the lower interval bound roughly corresponds to
the gray value of the liver parenchyma and the upper bound cor-
responds to the brightest values inside the liver.

As a result, intrahepatic vessels can be identified and delin-
eated by using a threshold-based region-growing method. Usu-
ally, region-growing segmentation must be repeated with modi-
fied thresholds until an appropriate result is found. To accelerate
this procedure, we refined the procedure to automatically sug-
gest a threshold.

Initially, a seed voxel of the portal vein close to its entrance
into the liver is selected interactively. Starting with this seed
voxel, the region-oriented segmentation algorithm iteratively
accumulates the 26 adjacent voxels with an intensity equal to
or greater than the intensity of the seed voxel and keeps
them in a list . Using as new seed voxels,
all adjacent voxels with intensities greater than or equal to

are collected in a list . The threshold is
further decreased until a given threshold is reached which
definitively creates only voxels outside the vessel
systems.

The generation of the voxel lists is performed efficiently be-
cause voxel lists for the segmentation with threshold
have already been constructed when using the threshold. In
total, some 100 lists are generated which takes approximately
3–5 s on modern PC hardware for high-resolution CT datasets
(512 512 matrix with slice distance 3 mm).

The automatic threshold selection is based on the observa-
tion that the number of voxels is approximately linear
decreasing for (Fig. 2). At , the slope
changes considerably because many voxels belonging to the
liver tissue are collected for thresholds below . Thus, a
suggestion for can be found by calculating an optimal
fit of two straight lines for . For this purpose, the two
characteristic parts of the curve are approximated by two
regression lines. The points ,
respectively, are em-
ployed to calculate the correlation coefficients for both lines.
is chosen such that the sum of the two correlation coefficients
is maximal.

We found that the position of the crossing of both re-
gression lines yields a good suggestion for in most
cases. If the suggested threshold is not satisfying, it may be
changed interactively. On the basis of the generated voxel
lists , the vessel system specified by any
threshold can be displayed very fast by simply drawing all
precalculated voxels from the lists .
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Fig. 2. Estimation of an optimal threshold for vessel segmentation. (©Springer
2000, originally published in [43], reprinted with permission.)

B. Graph-Based Analysis of Vasculature

The segmentation result is a set of voxels representing the in-
trahepatic vessel systems. For surgery planning, a further anal-
ysis of these voxels is required. This includes geometric mea-
surements of the branches (radius, length) and the identification
of the ramification pattern (e.g., to determine the main portal
subtrees supplying the liver segments).

Before the analysis of the vessel systems is carried out, a
segmentation problem due to imaging artifacts has to be ap-
proached. Depending on the scanning protocol, usually two or
more different vessel systems of the liver are enhanced with con-
trast agent during the scan. Often the portal and hepatic vein
are affected, which are shown in Fig. 3(a). Therefore, the scan
yields high-intensity voxels for both vessel systems. Due to the
limited spatial resolution of the scanned volume data, voxels of
different vessel systems are often adjacent to each other such
that they are segmented as one object when in reality there is
only proximity between the two. A manual separation of the dif-
ferent vessel systems would be too time consuming for clinical
routine. Therefore, we analyze and separate such “forests” of
connected vessel systems automatically using graph theoretical
methods. In a first step, the voxel-based shape representation of
the vessels is transformed into an abstract graph representation,
utilizing “skeletonization.” The skeleton representation carries
all information about the original shape of the object and, at the
same time, facilitates an algorithmic geometrical and structural
shape analysis. The principal approach is illustrated in Fig. 4.

1) Skeletonization:The skeleton, or medial axis in two di-
mensions (2-D), of an object in continuous 2-D space is defined
as the set of all points which are equidistant from at least two
points on the boundary of the object [3]. In discrete space, this
definition cannot be applied directly. Since the discretization
generally produces jagged surfaces, many irrelevant skeleton
branches would arise. We use “thinning” as a basic technique
for the skeletonization and, thus, successively erode the sur-
face voxels of an object, until the skeleton remains. During this
process, three aspects are crucial to preserve the properties of
continuous skeletons and to yield skeletons which reflect the
original shape of the vessel system.

1) The erosion of the voxels must not change the topology
of the original structure, i.e., the number of connected
objects, cavities, and 3-D holes must remain the same.

(a)

(b)

(c)

Fig. 3. (a) Portal vein (red) and fragments of the hepatic vein (blue) as result
of the vessel segmentation based on an underlying CT examination, in which
both vessel systems are enhanced with contrast agent. Both systems touch at
the encircled points of contact and cannot be segmented separately. (b) Graph
G of two touching vessel systems. (c) Orientation ofG, which consists of
directed acyclic graphsG andG . (©Springer 2000, originally published in
[43], reprinted with permission.)

2) The erosion must be carried out symmetrically to provide
a reliable and accurate central position of the skeleton.

3) Noisy vessel surfaces should not lead to “irrelevant”
skeleton lines, which would be mistakenly interpreted as
side branches.

Although many 2-D skeletonization algorithms have been de-
veloped for applications ranging from optical character recog-
nition to biological cell studies (see, e.g., [21] for a survey), rel-
atively few methods exist for the 3-D case (see Section V-D).

In our skeletonization approach, it is checked for each voxel
whether its deletion preserves the 3-D topology of the object.
Voxels with this feature are calledsimple points[19] and only
these are deleted in the erosion process. Efficient methods to
detect simple points are described, e.g., by Davies and Lee [6],
[23].

To cope with anisotropic voxels, special care of a precise
symmetric erosion was required. Therefore, we combined the
skeletonization with a distance transformation and introduced a
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(a) (b)

(c) (d)

Fig. 4. Transformation of (a) voxel-based shape representation of vessels
into a graph is performed in three steps: (b) skeletonization using thinning
techniques; (c) identification of voxels, which represent ramifications or
endpoints of the vessel system, and (d) creation of a corresponding graph for a
further analysis. (©Springer 2000 originally published in [43], reprinted with
permission.)

three-component distance label [5] which is propagated during
the thinning process. In each thinning step, only those voxels
with the same Euclidean distance to the boundary of the object
are eroded [42].

To deal with the varying quality of the medical datasets, we
control the creation of “irrelevant” skeleton lines which usually
appear due to noise. Fig. 5 illustrates a vessel tree with several
side branches at the right boundary. To distinguish “relevant”
and “irrelevant” side branches, we consider the gradient of the
distance transformation [Fig. 5(c)]. The main branches of the
tree create “mountain ridges” in the distances to the boundary
which have a steepest gradient close to zero. Side branches also
create ridges, but their steepest gradientis larger than zero and
smaller than one. For all other points,is close to one. Based
on a threshold decision on the steepest gradient, we define ir-
relevant side branches. In Fig. 5(b), for example, all skeleton
endpoints with were not eroded during the thinning
process. This yields skeleton lines for all of the side branches
which are, thus, considered to be “relevant” structural informa-
tion. In Fig. 5(c), only skeleton endpoints with were pre-
served from erosion. Fig. 6 shows the skeleton of the segmented
vessel systems from a clinical dataset with different values for
. It turned out that for clinical data, is most appropriate [

Fig. 5(c)] to identify vascular structures and to avoid irrelevant
branches. This threshold means that only voxels with a local
maximum in the distance transform belong to the medial axis.
We fixed for clinical applications in hospitals. The skeletons
which are used for vascular analysis (see the following sections)
also use this value.

2) Graph Analysis:Compared with the voxel-based shape
representation of the segmented vessels, the skeleton repre-
sentation enables a much easier access to the geometry of the
branches (medial axis and radius) and to structural information
(ramifications). For further analysis, the skeleton is interpreted

(a)

(b) (c)

Fig. 5. (a) Distance transformation of the segmented vessel tree illustrated
as a 3-D visualization where the ridges represent the center line. The steepest
gradient can be used as indication for the relevance of a side branch. (b)
Skeleton of a vessel tree with some side branches at the right boundary. The
side branches are interpreted as structural information and are represented by
a skeleton line. For each point of the tree, the distance from the boundary is
coded in a corresponding gray value. (c) In this case, the side branches are
interpreted as noise which are, therefore, not represented by skeleton lines.
(©SPIE 2001, originally published in [44], reprinted with permission.)

(a) (b) (c)

Fig. 6. Skeleton of the segmented vessels. For the skeletonization, a threshold
of (a) 0, (b) 0.8, and (c) 0.9 was chosen for the steepest gradient of the distance
transform. Depending on the threshold, more or fewer skeleton lines appear.
Most of the skeleton lines in (c) are due to noise. (© SPIE 2001, originally
published in [44], reprinted with permission.)

as a graph , whose vertices represent ramifica-
tion points and whose edgesrepresent the parts between the
ramifications. The average radius of the corresponding branch
is assigned to each edge.

Based on this graph representation, the problem of separating
different vessel systems can be described and solved as follows.
Given a graph representationof the connected portal and he-
patic veins, we have to determine an orientation ofthat con-
sists of directed acyclic graphs with the following properties:
The root of each directed graph corresponds to the root of the
portal tree, to the root of the hepatic veins, or to the roots of ac-
cessory or fragmental subtrees of the hepatic veins [as in Figs. 3
and 7(a)]. All directed paths in lead from the root to the pe-
riphery of the corresponding vessel system.

To determine the trees , first, the root of one of the vessel
systems is automatically chosen as root for. A reasonable
candidate for the root can be found at the edge with maximal
radius. At this edge, the vertex most distant from the center of
gravity of the vessel systems is chosen. As an alternative, the
root can be set interactively. Starting with , for
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all adjacent vertices of the connecting edge with the max-
imal radius is added as a forward edge to. This procedure is
repeated iteratively, also considering the new adjacent vertices
of . The definition of new roots of trees or subtrees depends
on a user-defined parameter . If there exists an edge
in that is not already added to and that has a radius which
is more than times greater than the maximal radius of the ad-
jacent edges of , a new root candidate is determined and set
as initial vertex in . The process of adding adjacent edges to

is continued until all edges of have been consid-
ered. The resulting directed graphshave the following prop-
erties.

• Each path in from the root of to is separated at
the edge with minimal radius.

• Each cycle within is resolved at the edge with minimal
radius.

• Following a directed path in from the root to the pe-
riphery, a once reached branch radius can increase only

-fold. If is chosen sufficiently large, only one graph
is created. For , the radius of each created tree
never increases along the paths from root to periphery,

which typically yields a large number of separated trees
for clinical data. The choice of determines the sen-

sitivity of the separation into subtrees. Best results have
been obtained with , although in a few cases, this
value had to increased or decreased slightly.

If the automatic vessel separation does not succeed com-
pletely, interaction facilities can be used to manually set the
root of a vessel system or to identify touching points. Using
the described algorithm for the skeleton shown in Fig. 7(a), the
portal tree (white) and two fragmental subtrees of the hepatic
vein (blue) were detected. Besides this, the graph representa-
tion of the vessels is also the basis for user interactions such
as defining the hierarchical structure of trees, subtrees, and
paths. Furthermore, it allows to measure the radius, length, or
volume of branches. In Fig. 7(b), the hepatic vein was removed
automatically using the above described methods. The main
branches of the portal vein were identified automatically by
determining the eight most voluminous portal subtrees, which
are assumed to supply the various liver segments. The identifi-
cation of these branches is a prerequisite for the approximation
of the patient’s individual liver segments [Fig. 7(c)], described
in the next section.

C. Model-Based Approximation of Liver Segments

For liver surgery, the knowledge of the shape and volume of
the patient’s individual liver segments is essential to estimate the
risk of different resection strategies. Due to the limited spatial
resolution, only the major branches of the portal vein can be
extracted. Referring to the liver, the problem can be described
as follows. Assume that is the set of all voxels in the medical
volume data representing the liver. Let denote the
set of voxels belonging to the extracted portal tree.is the
union of the main branches or subtrees , ,
which supply the portal segments (Section III-A and -B for the
determination of and ).

(a)

(b)

(c)

Fig. 7. (a) Skeleton of the extracted vessels from the dataset shown in Fig. 1.
The hepatic veins (blue) are separated from the portal vein automatically.
(b) Automatic determination of the main branches of the portal vein. (c) Liver
segments supplied by the portal vein branches in (b). (©Springer 2000,
originally published in [43], reprinted with permission.)

To determine the liver segments, we have to find a function
, which assigns to each liver voxel

a segment number, provided is supplied by the branch
. The set of all voxels supplied by this branch represents the

liver segment and is denoted by . To compensate the missing
information about the portal tree and to predict the segmental
anatomy, we suggest model-based approaches to determine,
which consider the patient’s individual anatomy represented by
given and .

The definition of a realistic function must reflect the prob-
ability that the sprouts of the various incomplete subtrees
reach and supply a liver voxel. Measures for this “reacha-
bility” [illustrated by arrows in Fig. 8(b)] can be
expressed by a metric. A voxelthen is assigned to that branch

which has the shortest distance with respect to a suitable
metric. The choice of a metric is difficult since the blood supply
is realized by complex branching structures, whose formation
process is not fully understood (see [16] for a discussion). For
this reason, we describe and evaluate two approaches using two
different metrics: the nearest neighbor segment approximation
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(a)

(b)

Fig. 8. Problem of the segment approximation. (a) Ideal situation: The
detailed and dense branching structure of the mathematically constructed tree
directly indicates the supported territoriess of the four hatched main branches.
(b) Clinical situation: Only the main portal branchesb can be extracted, which
do not directly reveal the liver segments. (©Springer 2000, originally published
in [43], reprinted with permission.)

(NNSA), introduced in Section III-C-2, and the Laplacian seg-
ment approximation (LASA), which exploits a metric derived
by potential functions in Section III-C-3. The use of potential
functions was inspired by recent advances in statistical physics
dealing with growth models for branching structures known as
Laplacian fractals (lightning, viscous fingering, electrochem-
ical deposits, and other deposits driven by diffusion) [1], [8],
[9]. The LASA method is based on a fundamental equation
of physics and offers interesting venues for a scientific un-
derstanding of the prediction method. The NNSA method is
conceptually simple and has rather low computational com-
plexity.

1) Liver Segmentation:To extract the liver , we devel-
oped semiautomatic segmentation tools (based on live-wire
techniques [10], [30], [49]). With live-wire segmentation, the
user starts with selecting a first contour point and moves a
pointing device (for example, a mouse) to roughly sketch the
object’s contour. The algorithm relies on a cost function to
calculate an optimal path between the start point and the current
position of the pointing device in real time. The cost function
is a weighted sum which considers the magnitude and direction
of the gradient and the Laplacian zero crossing. With this
approach, a few user-defined contour points lead to a piecewise
optimal user-steered segmentation. The initial approach has
been carefully refined in order to enhance 3-D segmentation.
For this purpose, live-wire is combined with shape-based
interpolation [38] between interactively segmented contours
and subsequent optimization. This new approach computes the
majority of the contours automatically and, therefore, reduces
the interaction effort. The required time can be shortened by
some 70% (depending on the slice distance, up to 85% for
high-resolution multislice CT data) [40], [41].

(a)

(b)

Fig. 9. NNSA using the Euclidean metric. (a) Euclidean distanced (v) for
the branchB : the darker a liver voxel, the greater is the distanced (v) to
the branchB . The indicated lines are equidistant fromB . (b) The minimum
of the distance functions for all branches reveals the segment boundaries (see
the dotted lines). (©Springer 2000, originally published in [43], reprinted with
permission.)

2) NNSA: For each branch ( ), we define the
Euclidean distance

where (1)

Using this metric, liver voxels are assigned to the
branches as follows:

where (2)

Finally, the set of all liver voxels assigned to is defined as
liver segment

(3)

In other words, is the Euclidean distance of the voxel
to the nearest voxel belonging to [see Fig. 9(a)]. According
to this metric, the closer a liver voxel is to a branch , the
more likely it is for to be supplied by .

The function assigns to each liver voxelthe nearest
branch [cf. Fig. 9(b)]. This figure also shows the minimal
distance for each liver voxel . The
result of the NNSA method is shown in Fig. 7(c), which is based
on the portal branches in Fig. 7(b).

3) LASA: The Laplacian method defines for each branch
( ) the potential function , which solves the
Laplacian equation

when (4)
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(a)

(b)

Fig. 10. LASA using a metric based on potentials. (a) Potential� for the
branchB : The potential is set to 1 (white) for all voxels belonging toB and
to 0 (black) for the other branches and the region outside the liver. The gray
values for the other voxels indicate the potential ranging between 0 and 1. The
lines indicate surfaces of equal potential. (b) The maximum of the potential
functions for all branches reveals the segment boundaries. (©Springer 2000,
originally published in [43], reprinted with permission.)

and satisfies the boundary conditions

when (5)

when (6)

when (7)

The liver voxels are assigned to the branches as follows:

where

(8)

The liver segments are defined as

(9)

The potential for one of the branches is illustrated in
Fig. 10(a). Contrary to the Euclidean distance , the poten-
tial depends for each voxelon everydetail of the com-
pletely known anatomy and .

The function assigns each liver voxelto that branch
which contributes the largest potential to . This as-

signment is indicated in Fig. 10(b), which is a rendering of the
maximal potential for each liver voxel. The local minima of
the potential, which again appear as “dark valleys,” separate the
territories dominated and supplied by the different branches.
The result of this method is shown in Fig. 11(b). Even though
the LASA and NNSA method differ strongly in their formu-
lation and computational complexity, they yield rather similar
results [Fig. 11(c)].

4) Extension of the LASA:Since the Laplacian equation
describes different fundamental laws in physics, the LASA

(a)

(b)

(c)

Fig. 11. Results of the segment approximation methods: (a) NNSA. (b) LASA.
(c) Difference of both methods. The voxels, which are assigned to different
segments are enhanced with dark colors. (©Springer 2000, originally published
in [43], reprinted with permission.)

method of liver segments can be interpreted in several different
ways. One way is to think of a diffusion process. The branches

keep up a constant concentration of blood, which diffuses
into the liver. According to this assumption, the segment
then is that part of the liver to which the branch contributes
the highest concentration of blood, thus, having the highest
probability of being supplied by . This interpretation is
speculative and needs to be validated. But contrary to the
NNSA method, this model of blood supply can be extended in
quite a natural way. Since the hepatic vein drains the blood out
of the liver, one can introduce an additional boundary condition

when hepatic vein (10)

which defines the hepatic vein as a sink for blood particles.
Furthermore, it seems reasonable that the amount of blood

which is delivered by a portal branch depends on the size of the
branch. Instead of using the boundary condition in (5), which
assumes a constant potential 1 for all branches, we introduce
a modified boundary condition

where (11)

and where is the local radius of the branches at the position
. Using this boundary condition, the influence of smaller

branches is reduced in comparison to the larger branches.
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Fig. 12. Smoothing with a binomial filter. The jagged skeleton on the left
is transformed into the smoother skeleton on the right. Small quadrilaterals
represent the voxel centers. Note that the start and end points of the skeleton
are unaffected.

Using these boundary conditions, which incorporate additional
anatomical information, the reliability and accuracy of the
LASA method of the liver segments can be improved.

5) Implementation:The calculation of liver segments with
the NNSA method relies on a distance transformation which is
also employed for the skeletonization (Section III-B-1). This al-
gorithm properly handles anisotropic voxels (thus, a transforma-
tion to isotropic voxels is not required).

For the solution of the Laplace equation, relaxation methods
are used which are described in [36]. For this purpose, the
potential is regarded as a diffusion process with a time vari-
able . Starting with an initial distribution and the current
boundary conditions, the diffusion is iteratively calculated
until it converges. The error bound used as a criterion for
convergence determines the runtime of this procedure. The
approach is accelerated with multigrid techniques; however, it
still takes considerable time with typical clinical data sets (e.g.,
512 512 60 voxels). With the error bound 0.001, it took
approximately 30 min to determine the liver segments on a
typical workstation. With this error bound, 98.2% of the voxels
are assigned to the same segments compared to an error bound
of 0.0001, which is assumed to produce the correct LASA
result.

D. Visualization of Vasculature

The information derived in the skeletonization and graph
analysis (Section III-B-1 and III-B-2) can be used for a
high-quality vessel visualization. High quality here refers to the
ability of a visualization to highlight structural information, in
particular, the branching pattern of vasculature. Our method for
vessel visualization is based on the assumptions that vascular
systems are connected structures and they may be represented
by a circular cross section.

The basis for the visualization of vasculature is the skeleton
together with the information concerning the vessel diameter.
The edges of the resulting skeleton are smoothed with a
one-dimensional binomial filter with length 3 resulting in
continuous skeleton lines (see Fig. 12). For all voxels of the
skeleton with two neighbors, e.g., in the absence of branchings,
the skeleton is strongly improved. However, at branchings the
simple smoothing may cause undesirable effects. For example,
in the case of a small bifurcation, the main branch is pulled
toward the small bifurcation. Therefore, the smoothing process
was modified at branchings in such a way that the voxels in-
volved are weighted as to their relevance. As a measure for the

Fig. 13. Sequential edges of the vascular tree are mapped to different lists as
prerequisite for the visualization via extrusions. Edges with the same gray value
belong to the same list.

relevance of voxel , the size of the subtree which is dependent
on the corresponding node in the bifurcation graph is
employed. Precisely, the total length of all subbranches of node

is used to assess the relevance of.
Due to the limited spatial resolution of CT scanners, the

vessel diameter derived from the skeletonization varies often,
in particular, for small vessels. If the vessel diameter is directly
used for the visualization, annoying artifacts would occur. To
eliminate these aliasing artifacts, the strategy which has been
developed to smooth the skeleton path is reused. A binomial
filter is employed to smooth the vessel diameter along the
skeleton path. Again, emphasis is put upon avoiding new
artifacts arising at branchings by considering the relevance of
all voxels which coincide. As smoothing operations may, in
principle, remove important information, the user can disable
smoothing.

For the visualization of vascular structures, an extension of
OpenGL, the GLExtrusions, is used. With this library, graphics
primitives with a certain shape may be extruded along a path.
For the visualization of vascular structures, a vascular tree is
mapped to a set of lists which comprise sequential edges of
a vascular tree. The edges of each list represent the path used
for the extrusion. As the interpolation of surface normals is ap-
plied to the edges of one path, it is desirable to assign as many
edges as possible to one list. If two possible paths have the same
number of edges, the path with the longest total length is chosen.
The mapping of a vascular tree to the listsstarts at the root of
the tree and searches the longest path to a leaf node. All edges
involved are assigned . This strategy is applied recursively to
each subtree until all edges belong to a list. Fig. 13 illustrates
the process for a simple 2-D tree. For each list, concatenated
graphics primitives are fitted to the path. It turns out that trun-
cated cones are able to represent the constriction of the vessel di-
ameter appropriately. Finally, concatenated truncated cones are
visualized by means of the GLExtrusions library. We refer to
this method as high-quality vessel visualization (HQVV).The
HQVV method and the interaction techniques for exploring vas-
culature are described in detail by Hahnet al. [17].

It must be noted that this visualization method is not suitable
for virtual endoscopy because vertices inside the tubular struc-
tures are created at branchings, which would be annoying when
a virtual camera is moved inside.
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Fig. 14. Selective resection tool is used to interactively attempt the resection.
The vessels are not affected by the virtual resection. Thus, it becomes obvious
which parts of the vessel system are involved in the planned resection.

E. 3-D Visualization and Surgery Planning

After image processing and analysis steps are carried out, all
objects which have been identified and determined by approxi-
mation are integrated in a 3-D visualization. Here, the user can
choose arbitrary viewing directions and has the flexibility of
3-D interaction. The user can assign arbitrary colors and trans-
parency values and, thus, design individual visualizations. Fur-
thermore, annotations which provide information, for example,
about the volume of a structure, can be displayed.

Over and above a flexible 3-D-visualization, the user can pre-
operatively try resection strategies to pre-estimate the conse-
quences of a surgical intervention. For this purpose, two ap-
proaches have been developed: interactive specification of re-
section areas and automatic proposals of how to resect lesions.

For the interactive resection, several tools have been devel-
oped which might be scaled and moved within the data [35].
Resection tools can be applied selectively such that only certain
structures are affected (see Fig. 14).

The traditional method of segment-oriented surgery planning
is to determine the localization of a tumor in one or more liver
segments and resect them entirely. However, this approach may
lead to unnecessarily large resection volumes and suffers from
the problems of determining individual liver segments precisely.
As an alternative approach, resection areas are suggested based
on an analysis of the desired safety margin around a tumor.
Based on the tumor localization and the desired margin, all af-
fected vessels are identified. The methods described in Sec-
tion III-C are used to estimate the area which is supplied by
these vessels (see Fig. 15). As a consequence, the determined
volume should be removed together with the selected tumor.
With this approach, the surgeon concentrates on the tumor and
may easily try different safety margins, where the consequences
(the devascularized territories) are computed, highlighted, and
quantitatively analyzed.

The strategies for resection proposals have been applied to
CT data of several corrosion casts as well as to some clinical
data [34]. In most of the cases, the extent and shape of the re-
section volumes correspond well to clinical practice. In cases
where a tumor is located on the central dorsal part of the liver,
the “suggested” resection volume is not accessiblein situ.

Fig. 15. Sphere as a model for a tumor has been placed in the 3-D model of a
corrosion cast. Different colors indicate which parts of the portal venous system
are affected in the resection of the tumor with different margins (0.5 cm: red; 1.0
cm: orange; 1.5 cm: yellow; 2 cm: green). (©Springer 2000, originally published
in [43], reprinted with permission.)

Fig. 16. Scheme of the validation of the approximation methods. (©Springer
2000, originally published in [43], reprinted with permission.)

IV. V ALIDATION AND EVALUATION

A. Anatomical Validation With Corrosion Casts

The validation of the methods for segment approximation is
based on a study on vascular corrosion casts of the human liver.
The portal and hepatic veins of unembalmed cadavers were in-
jectedin situ with resin. After hardening of the injected liquid,
the liver was removed from the body and corroded, which leaves
the detailed branching structure of the vessel systems.

High-resolution CT scans (slice distance 1 mm) of the eight
casts allow us to extract the portal branches with an accumu-
lated length of about 10–18 m (contrary toin vivo data with a
length of only 1–1.5 m). This yields sufficient branching gener-
ations and allows us to determine very accurately the location
and geometry of the portal segments of the liver.

For this work, we chose the branches defining the
segments according to the widespread scheme of Couinaud
(Fig. 16, upper left). The gaps between the branches were
closed with morphological dilation and erosion operations.
Due to the large number of branching generations extracted,
the resulting solid portal segments provide a very precise
approximation of the true anatomical segments. The derived
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Fig. 17. Rendering of the portal vein obtained from a CT scan of a human
liver cast. The main subtrees in (a) are assigned different colors revealing
the liver segments. The pruned vessels in (c), (e), and (g) simulate the rather
incomplete trees obtained fromin vivoCT scans. Based on these pruning levels,
the liver segments in (d), (f), and (h) are predicted with the LASA method and
compared with the authentic anatomical segments in (b). (©Springer 2000,
originally published in [43], reprinted with permission.)

segments have been compared with liver segments manually
specified by anatomists (Faselet al. [11]). To simulate the
incomplete portal trees obtained fromin vivo radiological
data, we systematically pruned the trees obtained from the
casts (Fig. 16, upper right). Finally, the predictions made for
the pruned casts (Fig. 16, lower right) and the exact segment
anatomy of the cast (Fig. 16, lower left) were compared to
validate the approximation methods.

For the validation study, we distinguish three degrees of
pruning, covering the different “quality levels” of the portal
vein, which are expected to be found in clinical CT data:

: the main branches of the Couinaud subtrees
[Fig. 17(a)]. These were determined by a radiologist,
and are sometimes referred to in the literature as
third-order branches.

TABLE I
RESULTS OF THELASA AND NNSA METHODS.

VOLUME OVERLAP: MEAN (STD) FOR EIGHT CASTS

: one more generation of branches than in
[Fig. 17(b)].

: one more generation of branches than in (Fig. 17).

B. Results

The resulting vascular trees are shown for one of the casts
in Fig. 17(c), (e), and (g). The approximated segments based
on these trees are denoted by , , and . Results for
the LASA method (without extended boundary conditions) are
shown in Fig. 17(d), (f), and (h), and can be compared with the
authentic anatomical segments[Fig. 17(b)] based on the un-
pruned subtrees [Fig. 17(a)].

A quantitative evaluation of the accuracy of the approxima-
tion methods was carried out in different ways: the volumetric
overlap between the approximated and the authentic segments
as well as the distance between the approximated segment bor-
ders and the correct segment borders have been determined [42].
Here, we focus on the volumetric overlap computation. For each
cast, for each pruning level and for each seg-
ment , we computed the volume of
the overlap between the authentic segmentand the approx-
imated segment . Thus, we obtained the percentage amount
of correctly classified voxels
for the whole liver, where is the liver volume.

The results of the approximations naturally improve with the
level of detail available for the portal tree (see Table I). The
standard deviations specified in the Table refer to all segments of
a cast. Larger values have found for each individual segment (in
particular, for smaller segments). The amount of ramifications
in portal trees extracted from clinical CT data lies between the
pruning levels and . Therefore, we expect for clinical data
that the NNSA method will predict the portal segment volumes
with an accuracy between 80% to 90%.

The effect of incorporating the hepatic vein using the
boundary condition in (10) (Section III-C-4) is illustrated in
Fig. 18. Comparing Fig. 18(a) and (b), the segmental bound-
aries are obviously attracted by the hepatic vein (gray spots) in
Fig. 18(b). Since anatomical examinations have shown that the
hepatic vein typically proceeds between the liver segments [this
property is confirmed in Fig. 18(c)], the accuracy of the LASA
method is improved locally when considering the hepatic vein.
In this case, for example, the local volumetric overlap of the
blue segment is improved by 10%. We refer to the LASA
method which considers the hepatic vein as extended LASA.
The improvement which could be achieved with the extended
LASA method is summarized in the last row of Table I. It turns
out that for pruning level , the effect is most noticeable, re-
sulting in an approximation superior to the NNSA method. For



1354 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 11, NOVEMBER 2002

(a)

(b)

(c)

Fig. 18. Effect of the LASA method with consideration of the hepatic vein.
This example shows a 2-D slice of one of the casts with the additional hepatic
vein drawn in gray and colored liver segments. The segments in (a) are based on
the LASA method using the pruned portal tree only, in (b) on the LASA method
with additional consideration of the hepatic vein, and in (c) on the unpruned
portal tree revealing the authentic liver segments. (©Springer 2000, originally
published in [43], reprinted with permission.)

pruning level , even the extended LASA method is slightly
less correct compared with the NNSA method. Considering the
local radius of the branches using the boundary condition in
(11), we found that the results of the LASA method become
more robust against reconstruction artifacts of the portal tree.
The supplied territory of a thick portal branch, for example,
is much less affected if some of its thinner side branches
are cut off. This situation may appear in clinical data, due to
pathological changes of the vessel structure, which impede the
flow of the contrast agent.

C. Clinical Evaluation

In addition to the anatomical validation, our methods have
been evaluated in the clinical environment for more than 170
cases to date (Medical School Hannover, University Hospital
Essen, and the hospitals in Hof and Krefeld). For the planning
of liver resections in patients with liver tumors, the liver,
tumors, arteries, portal vein, and hepatic vein were extracted
from CT data and visualized in 3-D with our software assistant
HepaVision. It has been shown that these visualizations allow
a suitable interactive planning of liver resections and improve
the preparation especially of complex liver resections [18].
The intraoperative findings agree with the 3-D visualizations.

Fig. 19. HQVV of the intrahepatic vascular anatomy (hepatic vein and portal
vein). The vessel diameter is smoothed.

Fig. 20. Patient evaluated as a potential donor for a living transplant. The
HQVV method reveals a trifurcation, a unusual anatomic variant. Because of
this variant, an operation was considered to be too risky.

Fig. 21. Preoperative planning of split-liver resections: The liver can be split
by separating three segments from the rest of the liver. The HQVV method is
used to display the portal vein.

Especially for LRLT, surgeons at the Medical School Hannover
regularly use the 3-D reconstruction and volumetric analysis
which are carried out by radiologists using our system [12].
The vascular anatomy is crucial in the evaluation of potential
donors. There are many different variants of the primary
branching pattern of each of the vascular systems [31]. The
next three images relate to applications in LRLT planning. As a
first example, the vascular anatomy of a potential donor’s liver
is shown (Fig. 19). Two colors are employed to highlight the
portal vein and the hepatic vein. Fig. 20 depicts an anatomic
abnormality of a portal venous system, and Fig. 21 shows
the separation of graft and remaining donor liver. The vessel
visualization methods, which have originally been developed
to visualize vessel trees from corrosion casts, have turned out
to be useful for surgery planning.
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For the acceptance in a clinical setting, the time required to
carry out the image analysis is crucial. Using the feedback pro-
vided by the clinical partners, HepaVision has been improved
significantly over the last four years and migrated from Silicon
Graphics Hardware to Windows-based PCs. In this process, the
graphical user interface, the facilities to generate visualizations
and animation sequences, have been enhanced. With the cur-
rent version, preoperative planning takes an experienced user
an hour on average for oncologic cases and 45 min for planning
of LRLT where tumor segmentation and risk analysis are not
relevant. The following times give an idea how the total time
is spread over individual steps: import DICOM data and select
a region of interest (5 min), liver segmentation (10–15 min),
tumor segmentation (5 min), preprocessing, vascular segmenta-
tion and skeletonization (5 min), vascular analysis (10–15 min),
risk analysis (10–15 min), generation of snapshots and anima-
tion sequences (5–10 min). Risk analysis has been introduced
recently and can be further improved.

V. RELATED WORK

The crucial aspect of the work presented in this paper is the
integration of all aspects of vessel analysis for clinical use. Ro-
bustness, efficiency, and interactive controllability are essential.
We begin this section with a short discussion of related work on
liver surgery planning and then discuss methods to efficiently
and reliably solve individual tasks of vessel analysis.

A. Liver Surgical Planning

Only a few groups worldwide deal with image analysis
for liver surgery planning. A group in France has developed
robust methods for the analysis of clinical data for liver surgery
planning [45]. Liver segmentation as well as the segmentation
of intrahepatic structures are carried out fully automatically
[46]. The underlying idea for the automatic liver segmentation
is to start with the segmentation of more prominent surrounding
structures (skin, bone, lung, kidney), thereby restricting the
search space for the liver location. The intensities of the
parenchyma, lesions, and intrahepatic vasculature are estimated
by fitting a Gaussian to the image histogram. The separation
of vascular systems is based on different geometrical consid-
erations. First, branches which create loops in the skeleton are
removed. The enhanced skeleton is then analyzed with respect
to angles at branchings. Vascular structures are separated in
one of two topological cases, namely, if tangency or crossing
of different vascular structures are encountered and if angles at
these branches are above a threshold.

The methods have been applied to 30 clinical cases.
According to the literature, the methods work reliably in
the majority of the cases for a precise imaging protocol of
high-resolution spiral CT data. The drawback of the automatic
approach, however, is a lack of interactive controllability if the
assumptions are not fulfilled. A group at the German Cancer
Research Institute Heidelberg developed a system for liver
surgery planning [14], [15] and evaluated its use [22]. Both
groups also approximate Couinaud liver segments using the
NNSA method (Section III-C-2).

B. Vessel Segmentation

A variety of methods for the 3-D segmentation of vasculature,
in particular, from intracranial [2], retinal [55], pulmonary, and
abdominal volume data (see [47] for an overview) has been de-
veloped. Region-growing methods similar to our approach (Sec-
tion III-A) are widely used; however, they differ considerably in
their applicability to clinical images due to data preprocessing
and the degree of interactive controllability. For example, in
[51], the assumption that some 5% of the volume data are oc-
cupied by vasculature is employed. An appropriate portion of
the histogram is selected and the corresponding voxels are used
as input for the region-growing. Dokladalet al. [7] describe a
modified region-growing algorithm which considers topolog-
ical properties of vasculature for the extraction of liver blood
vessels. Multiscale methods for vessel segmentation, which ex-
ploit local and global features of vessels for segmentation, have
been proposed by Lorenzet al. [26] and Martinez-Perezet al.
[28].

An alternative approach to explicit vessel segmentation is axis
detection where vessel segmentation and skeletonization are in-
tegrated (see Section V-D).

C. Skeletonization and Graph Analysis

Recently, 3-D skeletonization algorithms have been devel-
oped as part of a vessel analysis pipeline or in order to compute
a path for virtual endoscopy. For virtual endoscopy, a skeleton
without branchings and without loops is required.

For the analysis of vasculature, Masutaniet al.[29] developed
an algorithm based on mathematical morphology. The algorithm
controls irrelevant side branches of skeletons utilizing structure
elements of different sizes. The segmentation method of Sonka
[48] is part of a pipeline for vessel analysis. The tree structure
of vessels is derived by a dilatation along the axis. Structural
features are extracted to separate intracranial vessel systems (ar-
teries and veins).

For vessel segmentation and vessel analysis, the concept of
fuzzy connectedness has also been employed. This theory was
originally applied to magnetic resonance (MR) brain segmen-
tation and lesion detection [50] and later modified for analysis
of vascular structures by Lei, Rice, and Udupa [24], [39]. Local
fuzzy affinity (spatial nearness and region homogeneity) was
combined with a global measure for fuzzy connectedness to per-
form vessel segmentation and the separation of different vas-
cular systems. A more recent paper describes the methods and
their clinical application in detail [25].

D. Combination of Vessel Segmentation and Skeletonization

Methods to obtain a vessel axis from 3-D images have been
reviewed by Wink [52]. These are subdivided intodirect and
indirect approaches, where direct approaches track the vessel
axis in the original data without prior vessel segmentation. In-
direct approaches, on the other hand, often have difficulties
with large variations in the size of the objects tracked (for ex-
ample, in the vicinity of a stenosis). An example for a direct
skeletonization approach is given in [32] where confocal im-
ages are analyzed.
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Wink et al. [51], [52] present a direct approach for medial
axis determination which considers the high variations of vessel
shape and size in CT and MR angiographies (MRAs). The
method relies on the manual determination of two points which
define a first segment of the central axis. In each iteration,
the vessel axis is extended by one point (the candidate point)
and a plane, which is perpendicular to the current segment is
constructed. A center likelihood measure is defined to evaluate
points in the plane and to detect the center of the vessel (the
point with the maximum center likelihood). Based on the
new center point, the next candidate point is determined by
extrapolation along the current medial axis.

The skeletonization method by Yimet al. [53] is particularly
suited for small vessels in MRAs. It is based on an ordered
region-growing (ORG) where an image is represented as an
acyclic graph which may be reduced to a skeleton by specifying
desired vessels end points and by pruning small branches. The
ORG algorithm constructs a graph which represents the connec-
tivity of all voxels based on intensity information. The drawback
of this method is that all leaves of the vessel tree have to be spec-
ified, which is not necessary with the methods described in this
paper. Irrelevant branches are avoided by a threshold criterion
on their length. This criterion, however, is less appropriate than
the suppression of skeleton branches (Section III-B-1). Yimet
al. [54] developed a direct approach to vessel skeletonization
as a basis for the detection and quantification of stenosis from
MRA data. They employ a deformable model which allows for
high variability in the vessel cross section and for high curva-
ture of vessels.

E. Reconstruction of Vessels for Visualization

The benefits of the reconstruction of vascular structures en-
abling a visualization which emphasizes the connectivity and
shape features was recognized early [13]. Vessels have been dis-
played with tubes after the extraction of topological filters [29].
A smooth transition of the tubes at branching points, however, is
not considered. Methods for the visualization of cerebral blood
vessels have been introduced by [37]. The focus in this work is
on shading techniques emphasizing the curvature of vessels as
well as the efficient computation of the resulting surface-based
visualizations.

VI. CONCLUSION

We have presented methods for the analysis and visualization
of hepatic vasculature and for the approximation of vascular ter-
ritories. Our analysis of eight human corrosion casts revealed
the accuracy of the methods for the prediction of vascular terri-
tories. The approximation algorithms are also employed to sug-
gest tumor resections with respect to certain safety margins. In
cases, with several metastases or a tumor in a central location,
these suggestions are helpful because it is not obvious whether
the patient is resectable at all.

The HQVV method for the visualization of vasculature is in-
spired by the visualizations in traditional teaching materials.
We have attempted to create 3-D visualizations of a similar
quality with two additional advantages: the visualizations re-

veal patient-specific branching patterns and can be explored
interactively.

The methods presented here are not bound to classical liver
surgery planning, but may also be relevant for minimally inva-
sive therapies for the ablation of liver tumors. Several organs
within the human body, e.g., the lung, the kidney, and the pan-
creas, are also characterized by hierarchical vessel systems. We
have applied our methods to lung segment approximation and
have evaluated them by comparing the results utilizingin vitro
specimens [20]. Vessel analysis techniques have also been ap-
plied to intracranial arteries and to quantify abdominal aortic
stents [33].

Much effort was spent on the integration of the algorithms in
a software assistant, called HepaVision. This software has been
used at various hospitals to plan some 130 oncologic resections
and 40 LRLTs so far.
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