Biomedical Informatics 260

Visualization of Medical Images

Lecture 2
David Paik, PhD
Spring 2019

Disclaimer

- Dr. Paik is Chief Scientific Officer for and has a financial interest in Sirona Medical Inc.
- No topics discussed in this course are intended as an endorsement of any commercial product or service

Today: Visualization

- How do we go from an array of pixel values to a displayed images to human insight about image content?
- Processing images always starts with visualization
- Even at large scale
- Topics covered today:
- Medical Image Data
- 2D Computer Graphics
- 3D Computer Graphics
- Image Fusion
- Psychophysics

Visualization: From Data to Insight

Medical Image Data

DICOM Model of the Real World

As larger scale analyses are becoming more common, leveraging existing data models is increasingly important!

Prior studies may be important for longitudinal analysis

Study UID
Accession \#

Can include: Localizer/scout Scanned doc

Series UID
Series \#

Image 1
Image 2
Image 3

Usually a 2D array
Can be multi-frame 3D array
Instance UID
Instance \#

DICOM Coordinates

- "LPS" anatomic coordinate system
- +X is patient left
- +Y is patient posterior
- +Z is patient superior
- Each image has
- Image Position - (x, y, z) of first voxel transmitted
- Image Orientation - (x, y, z) vectors of first row, first column spatial direction
- Not always axis aligned!
- If Frame of Reference UIDs are shared:
- Images are in the same coordinate system
- Can be visualized/navigated together

DICOM Information Model

- IOD $\in\{$ CR Image, CT Image, Enhanced CT Image, ... $\}$
- IE $\in\{$ Patient, Study, Series, Equipment, Frame of Reference, Image, ... \}
- Module \in \{ Image Plane, Image Pixel, CT Image, ... \}
- Data Element $\in\{(0008,0008)$ Image Type, $(0018,0060)$ KVP, ... \}

- Tag: (Group\#,Element\#)
- VR: data type (can be implicit or explicit)
- Value Length: byte length (can be undefined)
- Value Field: the data (ASCII or binary depending on VR)

Note that one VR type is Sequence (SQ) that allows for nested data elements

DICOM Files

```
Preamble: 128 Bytes, usually all 0
```

Prefix: "DICM"

Meta Information:

```
(0002,0002) UI [1.2.840.10008.5.1.4.1.1.4]
(0002,0003) UI [1.3.6.1.4.1.14519.5.2.1.4792.2001.3694..4]
(0002,0010) UI [1.2.840.10008.1.2.1]
(0002,0012) UI [1.2.40.0.13.1.1]
(0002,0013) SH [dcm4che-1.4.27]
```


Dataset:

```
(0008,0005) CS [ISO_IR 100]
(0008,0008) CS [ORIGINAL\PRIMARY\M_SE\M\SE]
(0008,0014) UI [1.3.6.1.4.1.14519.5.2.1.4792.2001.2086...4]
(0008,0016) UI [1.2.840.10008.5.1.4.1.1.4]
(0008,0018) UI [1.3.6.1.4.1.14519.5.2.1.4792.2001.3694...4]
(0008,0020) DA [20080812]
(0008,0021) DA [20080812]
(0008,0022) DA [20080812]
(0008,0030) TM [081003]
(0008,0031) TM [082114.43000]
(0008,0050) SH [5282018218189626]
(0008,0060) CS [MR]
(0008,0070) LO [XXXXXXX Medical Systems ]
(0008,1032) SQ (Sequence with undefined length)
    (fffe,e000) na (Item with undefined length)
        (0008,0100) SH [MBBWW ]
        (0008,0102) SH [BROKER]
        (0008,0104) LO [MRI Breast Bilateral w and w/o Contrast]
        (0008,010b) CS [N ]
```

 (fffe,e00d)
 (fffe,e0dd)

```
# 26,1 Media Storage SOP Class UID
# 64,1 Media Storage SOP Instance UID
# 20,1 Transfer Syntax UID
# 16,1 Implementation Class UID
# 14,1 Implementation Version Name
# 10,1-n Specific Character Set
# 26,2-n Image Type
# 64,1 Instance Creator UID
# 26,1 SOP Class UID
# 64,1 SOP Instance UID
# 8,1 Study Date
# 8,1 Series Date
# 8,1 Acquisition Date
# 6,1 Study Time
# 12,1 Series Time
# 16,1 Accession Number
# 2,1 Modality
# 24,1 Manufacturer
# u/l,1 Procedure Code Sequence
# 6,1 Code Value
# 6,1 Coding Scheme Designator
# 46,1 Code Meaning
# 2,1 Context Group Extension Flag
```


2D Computer Graphics

Image Viewing Environments

Basic Functionality: Scroll through stacks of 2D images

Typical Research Software

Typical Clinical Workstation

RIS = Radiology Information System (patient info, worklists) PACS = Picture Archiving and Communication System (image DB, viewing)

Multiplanar Reconstruction (MPR)

Appropriate if data is near isotropic

Coronal

View from the front Note R-L flipping!

Sagittal

View from left

Multiplanar Reconstruction (MPR)

Appropriate if data is near isotropic

Multiple Planes

$2 D+3 D$
(often linked to the
axis of an organ)

Multiplanar Reconstruction (MPR)

Axial

Coronal

Sagittal

A

Oblique Plane

This example:
Swinging between coronal and sagittal views

Curved Planar Reformations (CPR)

- For slicing through long curved anatomy
- Centerline is defined
- Manually or automatically
- Sampling along parallel lines
- Various methods for assembling sampled lines into final image
- Pros and Cons
- Single image to show a long region
- Artificial stenosis artifact possible Potential Pitfall of CPR:

Curved Planar Reformations (CPR)

Image Interpolation

Up-sampling, down-sampling, rotation, registration, non-rigid transformations, etc. when you need to re-grid pixels

Down-sampling example: Original Image New Image

NOTE: down-sampling can cause aliasing artifacts if not carefully done! More on this in the convolution lecture

Image Interpolation

For some deep learning methods, a very constrained up-sampling problem is posed where up-sampling rates are integral multiples and there is no rotation. More on this in the deep learning lecture

222		105		211		94
199		188		141		51
201		150		138		222
247		215		186		103

But in this lecture, we will consider the more general case where the sampling rate may not be an integral multiple and there may be rotation/deformation of the grid

Interpolation

Linear Interpolation ("connect the dots")
Higher Order Interpolation (smooth)

2D images are just two dimensional surface plots where height is image intensity

This naturally extends to 3D

Thinking of image intensity as a height will be a recurring theme in this course

Image Interpolation

Nearest Neighbor Interpolation

Linear
Interpolation
$f(\mathbf{x}, \mathbf{y})=f([\mathbf{x}],[\mathbf{y}]) \quad f(\mathbf{x}, \mathbf{y})=\frac{x_{2}-\mathbf{x}}{x_{2}-x_{1}} \cdot \frac{y_{2}-\mathbf{y}}{y_{2}-y_{1}} f\left(x_{1}, y_{1}\right)+\frac{\mathbf{x}-x_{1}}{x_{2}-x_{1}} \cdot \frac{y_{2}-\mathbf{y}}{y_{2}-y_{1}} f\left(x_{2}, y_{1}\right)+$
[] is rounding function

$$
\frac{x_{2}-\mathbf{x}}{x_{2}-x_{1}} \cdot \frac{\mathbf{y}-y_{1}}{y_{2}-y_{1}} f\left(x_{1}, y_{2}\right)+\frac{\mathbf{x}-x_{1}}{x_{2}-x_{1}} \cdot \frac{\mathbf{y}-y_{1}}{y_{2}-y_{1}} f\left(x_{2}, y_{2}\right)
$$

Image Interpolation

Cubic Interpolation

$$
f(\mathbf{x}, \mathbf{y})=\sum_{i=0}^{3} \sum_{j=0}^{3} a_{i j} \mathbf{x}^{i} \mathbf{y}^{j}
$$

Cubic

Runge Phenomenon

Higher Order Polynomial Interpolation

Original function: $f(x)=\frac{1}{1+25 x^{2}}$
$5^{\text {th }}$ order interpolating polynomial Interpolating between
$9^{\text {th }}$ order interpolating polynomial \int evenly spaced samples

Intensity Scale Mapping

"Window Leveling"

Most imaging modalities: 16 bits (65,536 values) Most displays (and human eye): $\mathbf{8}$ bits (256 values) (color mapping is complicated, more on this later)

Window Leveling

3D Computer Graphics

Marching Cubes Algorithm

- The goal is to take a 3D array of scalar values, find an iso-intensity surface, and then make a triangulated mesh surface of it

3D Image Dataset

Triangular Mesh

Marching Cubes Algorithm

- But first, let's look at the simpler case of "Marching Squares" for 2D images

8000 ft iso-contour

Marching Squares (in 2D)

White vertices \geq threshold

- Black vertices < threshold

Case 12

Case 6

Case 14

All 16 possibilities

Examine squares connecting 4 pixel centers
Placement of line segment vertices on the edges done by linear interpolation (note that Case 5 and Case 10 are ambiguous)

Marching Squares Algorithm Details

square_index is a 4-bit number showing which vertices are black (which of the 16 cases)

$$
\text { square_index }=\begin{array}{|l|l|l|l|}
\begin{array}{|l|l|l|}
\text { v3 } & \text { v2 } & \text { v1 }
\end{array} & \text { v0 } \\
\hline \ldots+4+2+1=7
\end{array}=0111_{2}
$$

edge_table is a pre-defined lookup table for all 16 cases and returns a 4-bit number indicating which of the 4 cube edges are intersected by the contour

edge_table[7] = $12=\mathbf{1 1 0 0}_{2}=$| $e 3$ | $e 2$ | e1 | e0 |
| :--- | :--- | :--- | :--- | thus $e 3$ and $e 2$ are intersected by line segments

line_table is a pre-defined lookup table of all 16 cases and returns a list of pairs of intersected edges that make line segments
line_table[7] = $\{3,2,-1,-1,-1\}$
e3-to-e2 is a line segment (2 line segments max;
-1 indicates end of list)

Marching Cubes (in 3D)

Lorensen and Cline, Comp Graph 1987

256 cases total
15 rotationally unique cases shown here
Cases $3,4,6,7,10,12,13$ are ambiguous
cube_index, edge_table and triangle_table are directly analogous to marching squares except:

- there are 256 cube cases (instead of 16 square cases)
- there are 12 cube edges (instead of 4 square edges)
- triangles are triplets of intersected edges (instead of line segments as pairs)
- there is a maximum of 5 possible triangles per cube (instead of max 2 line segments per square)

Basic Mesh Data Structure

Non-manifold Mesh:

Vertex List

$$
\begin{aligned}
\mathrm{v} 0 & =(91.3,32.4,14.8) \\
\mathrm{v} 1 & =(90.1,31.3,14.3) \\
\mathrm{v} 2 & =(91.9,31.2,14.9) \\
\mathrm{v} 3 & =(93.2,31.8,14.7)
\end{aligned}
$$

(Must be careful not to redundantly add vertices)

Triangle List

$$
\begin{aligned}
\mathrm{t} 0 & =(\mathrm{v} 0, \mathrm{v} 1, \mathrm{v} 2) \\
\mathrm{t} 1 & =(\mathrm{v} 0, \mathrm{v} 2, \mathrm{v} 3)
\end{aligned}
$$

(Order of vertices determines inside vs. outside direction)

Normal List

$$
\text { n0 }=(0.11,-0.08,0.91)
$$

$$
n 1=(0.13,-0.03,0.90)
$$

$$
n 2=(-0.03,0.05,0.95)
$$

$$
n 3=(0.01,-0.02,0.99)
$$

(Marching Cubes doesn't tell you how to calculate normals at each vertex; needed for smooth surface shading)

Questions:

What would be an alternative way to triangulate this case? How might you choose one vs. the other? Why might you choose one vs. the other?

Shaded Surface Display

- Triangle mesh made from images
- Marching cubes is the classic method but isn't the only method
- Meshes can be decimated, smoothed, adaptively refined
- Surface mesh can be rendered into an image using standard graphics routines
- Pros and Cons
- Very fast
- Surface geometry visualized well
- Good for visualizing computed models
- Inner structures obscured

Shaded Surface Display

Mean/Max Intensity Projection

- Rays are mathematically cast through the 3D image and the mean/max (interpolated) intensity encountered is put into that 2D output image pixel
- Rays may be divergent for perspective or parallel for an orthographic view
- Viewpoint may be rotated around dataset
- Pros and Cons
- Bright objects well visualized
- May have overlap (e.g., spine \& aorta)
- Simple, fast, pseudo-3D
- Rendered 2D image is semi-quantitative

Mean/Max Intensity Projection

Mean Intensity Projection

Maximum Intensity Projection

Direct Volume Rendering

Opacity Table and Color Table

Object Order Volume Rendering (back-to-front)

Image Order Volume Rendering (front-to-back)

Volume Rendering

Ray Tracing
 (aka Cinematic Rendering)

Norman Gellada, Cedars Sinai

Image Fusion

Image Fusion

- Image fusion is the combination of information from 2 or more images
- Pseudo-coloring used in many scientific and engineering fields
- Assigns 3-component color to 1-component scalar data by using a color lookup table
- Astronomy, geography, fluid simulations, etc.

- What kind of information is to be revealed?
- Metric: quantity at each point
- Form: shape and structure
- Combine anatomic (e.g., CT) and functional (e.g., PET)

Pseudocoloring Artifacts

False Negative
Artifacts

False Positive Artifacts

Alpha Blending

$$
I=\alpha I_{1}+(1-\alpha) I_{2}
$$

Alpha Blending

Chen et al, Circulation 2011
α (opacity or 1-transparency) can be a function of pixel intensity

Typically, functional information shown in color, overlaid on anatomy in grayscale. Low biological activity made fully transparent so you can see background anatomy for context.

RGB Fusion

KPCA_{3} (blue)

KPCA_{2} (green)

KPCA $I_{\text {RGB }}$
Twellmann et al., Biomed Eng Onl 2004

Assigning a color channel (red, green, blue) to each of three images but perception of three channels is intertwined

Color Spaces

RGB

Red Green Blue

Hue Saturation Lightness

HSV

Hue Saturation Value
$M=\max _{R, G, B} \quad m=\min _{R, G, B} C=M-m$
$H=\left\{\begin{array}{lr}60^{\circ} \cdot \frac{G-B}{C} & \text { if } M=R \\ 60^{\circ} \cdot \frac{B-R}{C}+120^{\circ} & \text { if } M=G \\ 60^{\circ} \cdot \frac{R-G}{C}+240^{\circ} & \text { if } M=B\end{array}\right.$
$S_{H S L}=\frac{C}{1-|M+m-1|} \quad L=\frac{M+m}{2}$ $S_{H S V}=\frac{C}{M} \quad \mathrm{~V}=\mathrm{M}$

Lightness/Hue Encoding

- CT rendered in lightness channel
- PET rendered in hue channel

Thomas et al., Mol Im Bio 2003

Assumption: Lightness and hue can be perceived more or less independently (at least better than RGB)

Visual Perception

Metric vs. Form Information

Metric quantities best shown by hue (e.g., spectrum)

Form best shown by luminance (e.g., grayscale)
"How effective was the color sequence?"

A gray color

Perception of Luminosity

Context affects perception

Perception of Luminosity

Weber-Fechner Law

First order approximation but it doesn't hold at low stimulus

DICOM GSDF
(Grayscale Standard Display Function)

$$
\log _{10} L(j)=\frac{a+c \cdot \operatorname{Ln}(j)+e \cdot(L n(j))^{2}+g \cdot(L n(j))^{3}+m \cdot(L n(j))^{4}}{1+b \cdot \operatorname{Ln}(j)+d \cdot(L n(j))^{2}+f \cdot(L n(j))^{3}+h \cdot(L n(j))^{4}+k \cdot(L n(j))^{5}}
$$

$J N D=j=$ Just Noticeable Difference

DICOM GSDF is used to calibrate clinical image displays to transform pixel values to a perceptually uniform gamut of grayscale values

Perception of Color

Context affects perception

Perception of Color

Human trichromat vision

CIE L*a*b* color space approximates perceptual uniformity
(Note: spectral properties of visible light is not inherently limited three degrees of freedom, this is just a limitation of the human visual system)

Bezold-Brücke Effect

ca. 1874

- Perception of lightness and hue are not independent
- Still better than RGB
- As lightness changes (at constant hue), the perception of hue changes
- Very difficult to determine the hue of a nearly black pixel
- e.g., perceived PET value depends on the underlying CT value

Visualization: From Data to Insight

DICOM Intensity Scale Mapping

MPR/CPR
Marching Cubes/SSD
MIP
Volume Rendering

Ray Tracing RGB Encoding
Lightness/Hue

Perception
Metric vs. Form

Weber-Fechner Law
DICOM GSDF
Bezold-Brucke Effect

What does it mean for you?

- Understanding the pipeline from an array of pixel values to human insight
- Visualization covers a wider topics than just computer graphics
- Human perception is an important factor

Next Lecture:
Image Segmentation

