
Biomedical Informatics 260

Image Segmentation
Lecture 3

David Paik, PhD
Spring 2019

Last Lecture: Visualization

• Visualization and interpretation of images
• How to create a surface model of an iso-

intensity surface (marching cubes)
• But this rarely works for identifying specific

anatomic structures

Today: Image Segmentation

• We start the first of seven core lectures on image
analysis methodology
• We’ll look at fundamentals as well as applications
• Most applications use a mix of methods so we’ll have

to forward reference some topics in future lectures
• Define image segmentation
• Two approaches to image segmentation
• Pixel-wise Categorical Labels
• Implicit Representations

Definition of Image Segmentation

Image Segmentation
19 50 48 88 11 73 74 77 6 60

64 29 58 47 17 39 99 56 82 41

57 79 30 33 134 145 26 1 92 43

76 8 70 100 184 173 156 176 51 8

62 5 75 118 176 189 189 163 49 74

68 79 8 38 103 127 110 164 7 14

86 35 13 12 198 108 57 61 3 32

72 14 38 29 91 28 39 49 87 3

45 85 23 98 65 84 26 71 32 59

44 85 32 96 53 48 51 76 87 12

0

65535

Segmentation partitions spatial regions of an image into 2 or more regions

It is very useful to think of images generally in continuous functions in Euclidean space
rather than narrowly as an array of sampled points

A possible lesion

Keep in mind:
- Images are 2D, 3D, 4D…
- Pixels typically scalar
- Pixels can be R,G,B
- or come from multimodal images
- Most medical images are 16-bit

Part I:
Pixel-wise Categorical Labels

Pixel-wise Image Segmentation

Pixel-wise labeling is the most common representation (but not the only!)
Categorical labels can range from 0–N
Representation can be of either boundary (less common) or of
region (more common)

19 50 48 88 11 73 74 77 6 60

64 29 58 47 17 39 99 56 82 41

57 79 30 33 134 145 26 1 92 43

76 8 70 100 184 173 156 176 51 8

62 5 75 118 176 189 189 163 49 74

68 79 8 38 103 127 110 164 7 14

86 35 13 12 198 108 57 61 3 32

72 14 38 29 91 28 39 49 87 3

45 85 23 98 65 84 26 71 32 59

44 85 32 96 53 48 51 76 87 12

Foreground

Background

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Intensity Thresholding

Global Thresholding

• Choose a threshold pixel value T
• For every pixel
• if pixel ≥ T, label as foreground
• else label as background

level=T
window=0

Can work as an initial step, almost never sufficient by itself

Thresholding Algorithm

Choosing a Threshold Value
• Otsu’s method
• minimize variance of foreground and background

pixel values weighted by class probabilities

• Maximum entropy
• Maximize sum of each class’ entropy

• Adaptive (local) thresholds
• Local mean, local median, etc.

• Many more…

σ w
2 (t) = pa (t)σ a

2 (t)+ pb(t)σ b
2 (t)

H (t) = − p(ai)log p(ai)
i
∑ − p(bi)log p(bi)

i
∑

Often, no perfect threshold value exists and thresholding leads to
many disconnected components (i.e., “islands”)

Region Growing

Connectivity
Defining Anatomic Regions Based on Contiguity

2D

4-neighbor 8-neighbor

3D

6-neighbor
(share face)

18-neighbor
(share edge)

26-neighbor
(share vertex)

These criteria can apply to either regions or paths

Region Growing

Algorithm to Find a Contiguous Region

• If seed pixel(s) meet criteria

• Add to the region and push to back of queue

• While queue is not empty

• For each neighbor of front of queue

• If neighbor meets criteria and isn’t in the region

• add to the region and push to the back of the queue

• Pop head of the queue

• This is simply breadth first search

• Criteria can be anything (global threshold is simplest example)

• Different neighbor connectivity relationships can be used

• Stack (e.g., using recursion) also works (depth first search)

Region Growing Algorithm

Region Growing
Algorithm to Find a Contiguous Region

Fabijanska et al, 2009

Graph Theoretic Segmentation

Graph Theoretic View of Images

4-Connected Graph 8-Connected Graph

2D

(3D hard to draw but it applies just as easily)

arc

node

Normalized Graph Cuts
A A B

A B B

B B B

wu,v

wu,v

wu,v wu,v

wu,v

wu,v

wu,v

wu,v

wu,v

wu,v

wu,v

wu,v

w is feature similarity between nodes

!"# $, & = (
)∈+,,∈-

.),, Bipartition that minimizes cut
Wu and Leahy 1993

What trivial solution is this biased for?

Minimizing Ncut is NP-complete but
an efficient approximation exists:

D − W 2 = 3D2

D(5) = (
7

.8,7 59 :5;<=>=;? @;#A5B

W(5,j) = .8,7 59 @;#A5BPreprocessing with
Anisotropic
Diffusion Filter

Carballido-Gamio et al 2004

D = $ ∪ &

;99>! $, D = (
)∈+,F∈G

.),F

H!"# $, & =
!"#($, &)
;99>!($, D)

+
!"#($, &)
;99>!(&, D)

Normalize by partition weights
Shi and Malik 2000

Segmentation via Machine Learning

Segmentation via Unsupervised Learning
(aka clustering)

• Pick K feature space cluster centers at random
• While not converged

• Assign each pixel to the nearest cluster
• Recalculate cluster centers as centroid of pixels in that cluster

K-means algorithm

K=3
Blue=CSF
Green=GM
Yellow=WM

T1 weighted T2 weighted Proton Density
MR Input Image with 3 Channels

pixel values are (T1w,T2w,PD) 3-vectors
(later, we’ll see these could easily be computed features)

K-means Output
Freifield et al, Int J Biom Imag 2009

Segmentation via Supervised Learning
(training by painting metaphor)

Tzeng et al, IEEE TVCG 2005

Features
Voxel value
Gradient magnitude
Position
Neighboring values

Labels
Foreground
Background

Classifiers
Neural Net
Support Vector Machine

Results
(each row add training paint strokes)

Distance Maps for Discrete Representations
(what you can do after you have a segmented region)

Distance Transform: Motivation

• Given a binary image, it is often useful to know how far each

pixel is from the object boundary (and in which direction it is)

• Other algorithms will process this distance “map” or “field”

• Applications include

• Navigation through organs without bumping into walls

• Analysis of shape similarity

• Determination of geometrically “special” points

http://homepages.inf.ed.ac.uk/rbf/Cvonline/

Near

Far

Binary Image Distance Map Binary Image Distance Map
Boskamp et al, Radiographics 2004

Distance Transform Definition

€

D( x) =min a

 x −  a | B( a) =1{ }
Input: Binary image Output: ‘Grayscale’ distance map image
Various distance metrics can be used but Euclidean is often desired

Euclidean Distance Transform
D(x)

Binary Image
B(x)

1 1 0 1 2

0 1 1 1.4 2

1 1.4 2 1.4 1

2 2.2 2 1 0

3 3 2 1 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

http://www.cs.ucr.edu/~neal/2004/cs141/

Dijkstra’s Algorithm for Graph Structures
to solve shortest path problem (with non-negative weights)

• Initialize start node with 0, all others as ∞
• For each neighbor, compute the cumulative distance. If lower,

replace. Repeat.

Dijkstra’s Algorithm

wikipedia.org

Dijkstra’s Algorithm not Very Good
as a Distance Transform

• If we consider neighboring pixels to be
connected nodes in a graph, this type of
algorithm is inaccurate since only canonical
directions (e.g., N,S,E,W) are considered

Position
Difference

6-neighbor
Distance

Euclidean
Distance

Error

(1,0,0) 1 1 0%
(1,1,0) 2 1.414 41%
(1,1,1) 3 1.732 73%

Some algorithms attempt to fix this by using more neighbors and/or a fudge factor
on the distance values but clearly, this will never be accurate

Part II:
Implicit Representations

Rethinking Region Boundaries
• We can think of region boundaries as
• a looping sequence of pixel coordinates
• a looping sequence of interpolated coordinates
• a mesh of triangles defined by interpolated coordinates

• i.e., “connect the dots”

Lagrangian vs. Eulerian View

XX

Lagrangian View

Follow motion of point X
(i.e., vertex, spline control point, etc.)

Boundaries defined by interpolating
particle positions

Eulerian View

Position X is fixed over time (e.g., pixel)
Follow change in underlying quantities

Boundaries defined by isocontours
in underlying quantity

X

Implicit Functions

ϕ(x) < 0 inside
ϕ(x) = 0 boundary
ϕ(x) > 0 outside

“Implicit” because exact zero values might not explicitly exist in our array of ϕ values

You infer that zero crossings are in between neighboring positive and negative values

ϕ(x) < 0
inside

ϕ(x) > 0
outside

x

ϕ

In 1D

Image segmentation is an image of floating point values rather than binary values

In 2D

Tracking Topological Changes is
Far, Far Easier with Implicit Functions

Implicit Boundaries
(Eulerian View)

Explicit Boundaries
(Lagrangian View)

Signed Distance Function
(a special case implicit boundary function)

ϕ(x) < 0
inside

ϕ(x) > 0
outside

x

ϕ

In 1D In 2D

ϕ

0

φ(x) =

−min b on boundary
x −

b() if x inside

0 if x on boundary

min b on boundary
x −

b() if x outside

"

#

$
$

%

$
$

b

x

Grad, Div and Laplacian
∇ =

∂
∂x
, ∂
∂y
, ∂
∂z

⎛

⎝
⎜

⎞

⎠
⎟

grad =∇
div =∇⋅
Δ = divgrad=∇⋅∇ =∇2

gradφ =∇φ = ∂
∂x
, ∂
∂y
, ∂
∂z

⎛

⎝
⎜

⎞

⎠
⎟φ = φx,φy,φz()

Δφ =∇⋅∇φ = φxx +φyy +φzz (AKA Laplacian)

*curl not often relevant
for image analysis

The subscript notation here
indicates partial derivatives

φx =
∂φ
∂x

φxy =
∂ 2φ
∂x∂y

Some notational conveniences:

Signed Distance Function Properties

∇φ =1 almost everywhere
!
N =

∇φ
∇φ

=∇φ

κ = div
!
N

κ =∇⋅
!
N =∇⋅∇φ = Δφ = φxx +φyy +φzz

In fact, we can think of this as time-evolving wavefront spread
and generalize to non-constant wavefront speeds

(mean curvature)

Where is not 1? How about for a square?∇φ

(can be defined off the boundary!)

Fast Marching Methods

Fast Marching Methods
∇T F =1 T = 0 on initial boundary F > 0
F(x,y) is (spatially dependent) speed of the wavefront
T(x,y) is arrival time of the wavefront

F can be 500 mph in
deep water and 45 mph
on shore

F=0 far inland

F determines the shape
of the wavefront

F>0 means wavefront
passes by only once

Queue vs. Priority Queue
Possible Implementations

Binary Heap Data Structure

Min heap property:
parent_key ≤ child_key

Front

Queue Priority Queue

Front Back

Linked List

Queue property:
First In First Out (FIFO)

Queues are first come, first served
Priority queue entries can skip ahead in line if they have a better priority

Fast Marching Algorithm

• Initialize T=∞ everywhere
• Push initial values to Trial with T=0
• While Trial not empty
• Let A be the Trial point with the smallest T
• Add A to Known and remove from Trial
• For each neighbor of A that is not in Known
• Compute new value of T as Tnew

• If not in Trial, push to Trial with T=Tnew

• If in Trial, update T value if Tnew<T

Trial is a priority queue where pixels with lowest T are at the
front of the priority queue; Known is a set of pixels

More on this
in a moment

Fast Marching Algorithm
Trial

Known

Adapted from Sethian, Level Set Methods and Fast Marching Methods

Moving wavefront goes from “upwind” to “downwind”,
passes each pixel once and only once

Arrival time fixed Arrival time might
still be lowered

Arrival time ∞

Computing New Values of T in 3D

Ti,j,k

Ti,j,k-1

Ti,j,k+1

Ti+1,j,kTi-1,j,k

Ti,j-1,k

Ti,j+1,k

Solve for Ti,j,k value
6-neighbors have values if in Known or
Trial (or else ∞)

∇T F =1
Partial derivatives calculated carefully by
finite differences to only incorporate
upwind information

∂T
∂x
!

"
#

$

%
&
2

+
∂T
∂y
!

"
#

$

%
&

2

+
∂T
∂z
!

"
#

$

%
&
2!

"
#
#

$

%
&
&F

2 =1
Leads to a quadratic equation in Ti,j,k
The larger root leads to the correct causal
behavior of a traveling wavefront

Known value or infinity

Unknown “trial” pixel at head of
priority queue

Choosing the Correct Finite Difference Method
to Only Incorporate Upwind Information

€

" f x() ≈ f x + Δx() − f x()
Δx

" f x() ≈ f x() − f x − Δx()
Δx

" f x() ≈ f x + Δx() − f x − Δx()
2Δx

When solving for T(·) in higher dimensions, we must be sure to
choose the finite difference that only uses “upwind” values (with
smaller values of T)

The wavefront will travel “downwind” using Huygen’s wavelets
principle to compute first arrival times

Forward difference

Backward difference

Central difference

Comparing Dijkstra’s Algorithm to Fast Marching

Sethian, Level Set Methods and Fast Marching Methods

By considering the precise arrival times at multiple pixels, we can find the exact
direction of a flat wavefront in each square or cube

Dijkstra’s Algorithm Fast Marching

Unknown

Known

Fast Marching Application:
Signed Distance Map

• By seeding Fast Marching algorithm with the shape
boundary (and not the interior), we can create an
unsigned distance map

• Flip the sign of interior pixels to turn into a signed
distance map

x

ϕ

ϕ(x) = 0
boundary

Unsigned Distance Map

ϕ(x) < 0
inside

ϕ(x) > 0
outside

x

ϕ

Signed Distance Map

Other Fast Marching Applications

€

Tno−obstacles x,y() + threshold < Tobstacles x,y()
F = 0 at obstacles

Visibility

Sethian, Level Set Methods and Fast Marching Methods
http://www.cvip.uofl.edu/wwwcvip/

Path Planning

A

B

Steepest descent from B back to A

Note that unlike Euclidean distance maps, these wavefronts can turn corners
and snake around obstacles!

Level Set Methods

Fast Marching vs. Level Set

• Wavefront passes by each
pixel only once

• Arrival time T only ever gets
one value

• At each time step, ϕ will be
periodically maintained to be
a signed distance function

• ϕ evolves over time (time
here not the same as arrival
time)

€

∇T F =1

€

φt + F∇φ = 0

Level Set
Level Set Perspective
(initial value problem)

Fast Marching
Stationary Perspective

(boundary value problem)

Choosing speed function F is a key algorithm design element

Time integration must be done very carefully to ensure numerical stability

Limiting to a narrow band around ϕ=0 improves computational efficiency

Generic Level Set Equation

• α, β, γ are scalar weighting factors
• is advection vector field
• P(x) is propagation term (aka speed term)
• Z(x) is curvature modifier

φt =α
!
A(x) ⋅∇φ +βP(x) ∇φ +γZ(x)κ ∇φ

!
A(x)

Porthole Analogy

• ϕ is like the height of the ocean as seen through a
ship’s porthole

• If you know the slope of the wave, knowing the vertical
speed of the wave tells you about the horizontal speed
of the wave

φt =α
!
A(x) ⋅∇φ +βP(x) ∇φ +γZ(x)κ ∇φ

Advection Field Example

• Edge potential map, g, 0 near edges and 1 far
away

φt =α
!
A(x) ⋅∇φ +βP(x) ∇φ +γZ(x)κ ∇φ

g(x) = 1
1+ ∇I

or g(x) = e−∇I

!
A(x) =∇g

I

|Ñ I|

gÑg

ϕ
Ñϕ

Propagation Term Example

• Threshold based propagation

I

I

P

lower
threshold

upper
threshold

φt =α
!
A(x) ⋅∇φ +βP(x) ∇φ +γZ(x)κ ∇φ

lower threshold

upper threshold
P

Curvature Term Example

• Curvature modifier is usually either
• Constant
• Edge potential to reduce smoothing and increase

adherence at edges
• κ is curvature of the level set
• In 2D, only one curvature
• In 3D can be

• mean (κ1+κ2)/2
• Gaussian κ1κ2
• minimum κ2

φt =α
!
A(x) ⋅∇φ +βP(x) ∇φ +γZ(x)κ ∇φ

κ = Δφ = φxx +φyy +φzz

Level Set Application
Medical Image Segmentation (ITK Snap software)

€

φt + F∇φ = 0
F = αgI + βκgI + γ∇gI ⋅


N

gI =
1

1+ ∇Gσ * I λ

α,β,γ,λ are weights
κ is mean curvature
gI slows the speed at image gradients
∇Gσ is derivative of Gaussian kernel
I is image

Yushkevich et al, NeuroImage 2006

Outward acting force
Internal smoothing force
Image edge attraction force

Deep Learning + Level Sets
1: ROI Detection using ConvNet 2: Initial shape using stacked autoencoder

3: Final shape using Chan and Vese level sets

Avendi et al, Med Im Anal 2016

Inferred shape from step 2Where have we seen this?

Solve by gradient descent

What does it mean for me?
• Methods:

• Thresholding, Region Growing, Graph Theoretic, Connectivity
• Segmentation via Machine Learning
• Fast Marching and Level Sets

• Distance Transform
• There are many, many different image segmentation

algorithms
• No one algorithm is the best; depends on the application

Next Lecture:
Image Filtering

