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Last Lecture: Image Segmentation

1. How to find semantically meaningful
regions within an image

2. Algorithms that operate directly on
image pixel values

3. But we can add some processing steps
to provide additional image features

beyond the pixel intensity




Today: Image Filtering

* Goalis to develop a solid understanding of the
fundamentals leading to insightful intuition about
imaging algorithms

 What is image filtering?

* Image in, image out
 Why perform filtering?

* Filter out unwanted noise

* Detect desirable features

e Methods:

e Convolution
e Non-linear Convolution-like Methods
e Diffusion Methods







Fourier Series
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Fourier Transform

Aperiodic signals can be decomposed into
a continuum of sine waves

f(x) = foo F(u) - et?™Xdx

multi-dimensional:

flx,y) = j j F(u,v) - e2TWX+vY) gy dy

How do you find the amplitude at each frequency?
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Nyquist-Shannon Sampling Theorem

If a signal s(x) contains no frequencies higher than B, it is completely determined

by sampling with a frequency f, > 2B
AX(f)

Aliasing A X(f)
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One frequency looks like another In Fourier domain, sampling creates duplicates
spaced f; apart. They overlap if less than

Nyquist frequency

temporal aliasing spatial aliasing wikipedia
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Downsampling, Upsampling, & Aliasing

* Upsampling (as we saw in visualization) uses

interpolation
* Low order methods are generally ok

Features after stride 4
pooling layer

* Downsampling can cause issues if
the lower sampling rate is below
the Nyquist rate

* Limit the bandwidth of the signal (low
pass filter) before sampling

* |In deep learning, the integer multiple
of sampling period is called the stride

Zeiler and Fergus, ECCV 2014




How does one “smooth” data
in order to reduce noise?




Noise Reduction by Moving Window Averages
(AKA 1D convolution)

365 Days of Temperature Data (Palo Alto, CA)
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Continuous Domain 1D Convolution

f@)*gt) = [ f(v)g(t—r)dr

g data [ kernel |

area under the curve

Kernel is usually compact in its support (i.e., spatial extent)
AH)*g(¢) is a modified (or improved) version of £(¢)
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Continuous Domain 2D Convolution

fee*gey) = [ [ f(y)g(x=x,y=y)dx'dy
e  data | kernel

volume under the surface




Discrete 2D Convolution

3x3 Averaging Kernel, K 0 = K * I
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Discrete 2D Convolution

3x3 Averaging Kernel, K 0 = K * I
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Discrete 2D Convolution

3x3 Averaging Kernel, K 0 = K * I

How would you handle the edges where
part of the kernel is outside the image?
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Example Boundary Conditions

* Constant

* Pixels outside image are all constant, often O

* Neumann boundary condition

* Specifies derivative at the boundary, typically O

* Edge pixel values get extended beyond the image
* Periodic boundary condition

* Edge of the image wraps around to the other side

* Or just let the result be smaller




Smoothing Kernels
(aka low pass filtering, noise reduction)

Size of the kernel can vary
(usually odd #)

Any dimensionality

Usually symmetric

2D rectangular window

(boxcar or Dirichlet) Steepness of drop-off can vary

(broader kernel = heavier smoothing)

Many variants exist (shown here in 1D):

Rectangular window Triangu|ar window Hamming window (Q = 053836) Gaussian window (0 = 04)
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Gaussian Smoothing

L
1D: G(x)= oy e 20
2D: 1 (27”
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* Larger o leads to wider kernel and more smoothing

* |n discrete domain, kernel should extend £2-30 in order to capture > 95%
of the area under the Gaussian curve

e Kernel should be normalized to sumto 1

* Kernel is separable so that 3D convolution can be performed as a series of
1D convolutions (more on this later...)




Gaussian Smoothing

( f* g) *g=f*(g*g) Convolution is associative

Repeated Gaussian smoothing is equivalent
to one Gaussian smoothing with a larger o

We’ll see an interesting application of this later in the lecture

. G(.X, y’ Z) = 3 € 2
Kernel is radially (g\/Zn;)
symmetric

rr=x"+y +7

Why is this is a desirable property?




How does one find edges between
distinct image regions?




How are image edges defined?

Step edges in an image are steep changes in voxel values

Steepness is defined by spatial derivatives — and —
ox Jy

Image edges (gradients) have direction and magnitude

and — in3D
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Kaira et al., KIR 2009




Edge Detector Convolution Kernels

Calculating Gradients
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Prewitt Operator Sobel Operator

Prewitt and Sobel compute derivatives in one direction while smoothing in the other direction

These kernels perform well on very clean images but do not work
as well in the presence of noise (kernels are too small!)




How does one find edges between image
regions when noise is a problem?




Canny Edge Detector

Classic Algorithm for Finding Edges in Images

Original CT Image Canny Edge Detector Output

Sharma et al., JMP 2010




Canny Edge Detector

Classic Algorithm for Finding Edges in Images

* Want a kernel to simultaneously maximize SNR and
localization for a step edge under white Gaussian noise

* Solution by numerical optimization is very close to
derivative of Gaussian kernel

Numerically Optimized

Derivative of Gaussian

a~a . . . . T T T T

Canny, IEEE TPAMI 1986

Image gradient approximated
by convolution with Vi=VG=*I = ﬁ>x<1,£>x<l,£>x<l
kernel = derivative of Gaussian: x dy X%




(Partial) Derivative of Gaussian Kernel
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Separable Gaussian Kernel

T G(x,y,2)=G(x)-G(y)-G(2)
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Why does this matter?
Three 1D convolutions is much faster than one 3D convolution




Another Way of Looking at It

oG JdG  JG 0 0 0
— %] —%]—%]|=|—G*][—G*][,—G=*]
ox dy 0z 0x dy 0z

(VG) =1 =V(G*1)

Convolving with a derivative of Gaussian is the same as convolving with a Gaussian and
then taking a derivative (but taking the exact derivative of an image is not well defined)

We can think of this as equivalent to first blurring in order to reduce noise, then taking an
exact derivative

Final Steps of Canny Edge Detector:

Hysteresis thresholding
First, global threshold with an upper threshold (on |V1])
Then, region grow starting from those regions using a lower threshold

Non-maximum suppression
Eliminate edges that are not local maxima (along the direction of the gradient)




Canny Edge Detector Example Results

l/" ! i h 87 i /

2. Gradient

Note the
breaks in
the edges

3. Hysteresis Thresholding 4. Non-max Suppression

http://www.cs.unc.edu/~lazebnik/spring09/lec06_edge.pdf




What other features can be detected
with derivatives of Gaussians?




Laplacian of Gaussian (LoG) Kernel
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You can think of this as adding up N neighbors "2, 0o °
around the brim of the hat and subtracting N times 2 4 P v
the center of the hat. We’ll see this again! X

Think of this as an omnidirectional edge finder as compared to other
gradient kernels that find edges in a specific orientation




Edge Detection with LoG

(C) Extraction of the 2ero crossing of the

(B) Laplacian results
Laplacian (object edges)

(A) Original MR image
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Blob Detection with LoG

Laplacian of
Gaussian

After further
filtering

Yu et al, IEEE ISBI 2014




How do you identify tube-like and
sheet-like shapes in an image?
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o} Tubes 2" derivatives
as prolate spheroids
* ] Sheet 2"d derivatives
as oblate spheroids
LoG kernel has no directionality
Eigenanalysis can find an orthonormal basis

that optimizes the filter response




Hessian Eigenvalues

Al=|A|=|A|  bydefinition Hessian Vesselness

3

A=A
? ’ assumption for R = )L2 R = ‘A'l‘
MmO AL T
tubular structures 3 /Y
A << Mz ) 2 42 . a2
. S=JAZ+ A2+ A
A <0 for bright structure

A > 0 for dark structure

0 if A,>00r A, >0 (bright)

Analysis can be performed across
multiple scales (values of o)

Frangi et al, MICCAI 1998

Original Vesselness




How does one “smooth” away
image noise without
blurring away the real edges?




Smoothing with Alpha-Trimmed Mean

(Weighted) means are not the only statistics than can be computed
over a moving kernel. Although it’ll no longer be true convolution.

A Middle percentile a=0 - Mean
, Middle percentile a=0.5 > Median
. Lower percentile a=1 - Minimum
- > Upper percentile a=1 - Maximum
[ —

\‘;//

Lower Percentile Middle Percentile Upper Percentile
(light blue) (light blue) (light blue)




Results of Median Filtering
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Works particularly well against “salt and pepper” outlier noise

http://www-mmdb.iai.uni-bonn.de/lehre/BIT/ss03_DSP_Vorlesung/matlab_demos/index.html
http://reference.wolfram.com/mathematica/ref/MedianFilter.html




What physical processes can be
emulated in order to achieve edge
preserving noise reduction?




Edge Preserving Smoothing
Anisotropic Diffusion

(a)

Banner .500.30

223.
200
170.
140.
110.

80.0
54.0

.0

Perona and Malik, IEEE PAMI 1990
(b) http://sharp.bu.edu/~fischl/fischl.html




(Plain Old) Isotropic Diffusion

Diffusion in 1D é)_l _ C e vjf\(
ot

2 2 2
Diffusion in 2D/3D é)_l = diV(CVI) =cV?] =c J i + J g + J g
ot ox” Jdy” 0z

Incidentally:
isotropic diffusion = Gaussian smoothing where

length of time of diffusion = Gaussian variance, o2

0(x9y9t) = G02=t(x9y)*l(x’y)

Lindeberg, Encyclopedia of Computer Science and Engineerin




Perona-Malik Anisotropic Diffusion

Key idea: slow down diffusion near image edges

(c(D)VI)

Why anisotropic?
c no longer a constant, it’s a
function of the image

Two different diffusion coefficient schemes:

. e Jal .
Anisotropic Diffusion: — =div
ot
2
—\|VI|/K
e(l) = 1K)
fast 1
c(l)
slow o
-10 -5 0 5 10
edges flat edges
\

OR
c(l)

slow 0

fast 1

c(l) = :
1+ (VIl/K)
-10 -5 0 5 10
edges flat edges
2




Perona-Malik Implementation

Definition of divergence Central Finite Difference
G 1
diV(Gxi+Gyj)=07Gx+ 2 i=_ f(x+£)—f(x—g)
Jdx  dy ox Ax 2 2
ol (x y D _ div(c(I(x.y,0)VI)
%
[ (I(x, y,t))—}+—[6(1 (x, ¥, t))—]
dy dy
= 7 c(I(x,y,t))L 1 x+£,y,t -1 x—g,y,t )]
ox Ax 2 2 .
- Replace outer derivatives
L9 c(I(x,y,t))L 7 x,y+&,t 7 m_g’t )] with central differences
dy| Ay 2 2
1 Ax ' Ax
= v~ c(I(x+7,y,t))( (x+Ax Y, t) I(x y,t)) [c(l(x—;,y,t))( (x,y,t)—l(x—Ax,y,t))]
1| Ay 1 1 Ay
+A—y2 c(I(x,y+7,t))( (x v+ Ay, t) I(x y,t)) -— C(I(x,y—j,t))(l(x,y,t)—I(x,y—Ay,t))

Adapted from G Lohmann, Volumetric Image Analysis



Perona-Malik Implementation

= Aicz _c(I(x+%,y,t))(I(x+Ax,y,t)—l(x,y,t))_ — Ajc2 _c(l(x—%,y,t))(l(x,y,t)—I(x—Ax,y,t))]
+ A;z _c(I(x,y + %,t))(l(x,y + Ay,t) - I(x,y,t))_ - A1y2 _c(I(x,y - %,t})(l(x,y,t) - I(x,y — Ay,t))]
Notational convenience
e.g.,Vyl = I(x,y+ Ay,t) —I(x,y,t)
] ] _ (neighbor minus center)
1 Ax 1 Ax
= A _C(I(x+7,y,t))(VE1)_ ayve _C(I(x—T,y,l‘))(VWI)} Approximate gradient

magnitude with projection

. 12 c(I(x,y+g,t))(VNI) _ 12 c([(x,y—&,t))(vsl)} of gradient in N,S,E,W dir
Ay~ | 2 1 Ay 2 (preserves image brightness)
- BV (V)] VD (9, 1) . .
Ax*t ‘ . Ax? v v Notational convenience
1 1 h I =g(VI
t-— g(VNI)(VNI)]__2[g(|VSI|)(VSI)] where c() g(| |)
Ay™* Ay . .
(neighbors minus center
=D, -D, +D, - D, with some coefficients)

Adapted from G Lohmann, Volumetric Image Analysis




Perona-Malik Implementation

ol . We’ve calculated all the spatial derivatives on the RHS,
5 B le(C(l)VI) now let’s do the time derivative on the LHS

Forward Finite Difference Approximation of Time Derivative

o"I(x,y,t)
ot

I(x,y,t+At)=1I(x,y,t)+At

Jl (x,
L. (xy)=1(xy)+At l(;; ))

=Il.(x,y)+At[(I)E -0, +D, —(I)S]

Anisotropic diffusion is an iterative process that is terminated
when ‘enough’ smoothing has been performed

Adapted from G Lohmann, Volumetric Image Analysis




Anisotropic Diffusion Results

Diffusion

Anisotropic
Diffusion

%)
)
o0

©

L

Diffusion

(essentially)

Isotropic
Diffusion

Ilterations

James Fishbaugh http://www.cs.utah.edu/~jfishbau/advimproc/project2/




What is the take-home message?

* Noise vs. real features (edges) is the key
struggle

* Application of physics analogies (e.g., diffusion)
IS not uncommon

* The key to working with grayscale images is

dealing effectively with the noise

* Taking derivatives makes it worse [finite differences]
* You can average it out [convolution, Canny edge detection]
* You can statistically remove outliers [Alpha-trimmed mean]
* You can selectively blur it out [anisotropic diffusion]




What does it mean for me?

* You have a very solid foundation in image filtering
techniques

* Convolution and Smoothing
* Continuous Convolution
* Discrete Convolution
* Gaussian Smoothing

* Edge Detection

* Canny Edge Detector

* Laplacian of Gaussian Edge Detector
* Non-linear Noise Reduction

* Alpha-Trimmed Mean

* Perona-Malik Anisotropic Diffusion

Next Lecture:
Geometric Features




