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Last Lecture: Image Segmentation

1. How to find semantically meaningful 
regions within an image

2. Algorithms that operate directly on 
image pixel values

3. But we can add some processing steps 
to provide additional image features 
beyond the pixel intensity



Today: Image Filtering

• Goal is to develop a solid understanding of the 
fundamentals leading to insightful intuition about 
imaging algorithms

• What is image filtering?
• Image in, image out

• Why perform filtering?
• Filter out unwanted noise
• Detect desirable features

• Methods:
• Convolution
• Non-linear Convolution-like Methods
• Diffusion Methods



Fourier Analysis



Fourier Series
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Fourier Transform
Aperiodic signals can be decomposed into
a continuum of sine waves
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How do you find the amplitude at each frequency?

f(x,y) F(u,v)

multi-dimensional:



Nyquist-Shannon Sampling Theorem
If a signal s(x) contains no frequencies higher than B, it is completely determined
by sampling with a frequency fs ≥ 2B

wikipedia

Aliasing

Sampling rate too low
One frequency looks like another

svl.nl

temporal aliasing spatial aliasing

In Fourier domain, sampling creates duplicates
spaced fs apart.  They overlap if less than
Nyquist frequency

revisemri.com



Downsampling, Upsampling, & Aliasing

• Downsampling can cause issues if 
the lower sampling rate is below 
the Nyquist rate
• Limit the bandwidth of the signal (low 

pass filter) before sampling
• In deep learning, the integer multiple 

of sampling period is called the stride

Zeiler and Fergus, ECCV 2014

Features after stride 4
pooling layer

• Upsampling (as we saw in visualization) uses 
interpolation
• Low order methods are generally ok



Convolution and Smoothing

How does one “smooth” data
in order to reduce noise?



Noise Reduction by Moving Window Averages
(AKA 1D convolution)

365 Days of Temperature Data (Palo Alto, CA)
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Continuous Domain 1D Convolution
f (t)*g(t) = f (τ )g(t −

−∞

∞

∫ τ )dτ
data kernel

area under the curve

f(t)*g(t) is a modified (or improved) version of f(t)
Kernel is usually compact in its support (i.e., spatial extent)

wikipedia.org



Continuous Domain 2D Convolution

f (x, y)*g(x, y) = f ( !x , !y )g(x − !x , y− !y )d !x
−∞

∞

∫ d !y
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∞

∫
volume under the surface
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Discrete 2D Convolution
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Input Image, I Output Image, O 

3x3 Averaging Kernel, K O = K * I



Discrete 2D Convolution
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Discrete 2D Convolution

5 3 2 7 4 6 8 7 4 4

7 6 4 7 4 8 9 6 3 7

9 4 1 4 8 5 2 1 7 5

2 5 8 6 3 5 8 7 4 2

2 5 7 5 3 4 6 7 7 4

3 6 8 6 3 3 5 7 5 2

2 4 7 9 8 5 4 3 6 7

6 6 9 8 1 3 6 9 8 0

7 5 4 8 2 3 7 5 9 3

5 4 3 9 6 7 3 7 6 2

4.6 4.2

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Input Image, I Output Image, O 

3x3 Averaging Kernel, K O = K * I
How would you handle the edges where 
part of the kernel is outside the image?



Example Boundary Conditions

• Constant
• Pixels outside image are all constant, often 0

• Neumann boundary condition
• Specifies derivative at the boundary, typically 0
• Edge pixel values get extended beyond the image

• Periodic boundary condition
• Edge of the image wraps around to the other side

• Or just let the result be smaller



Smoothing Kernels
(aka low pass filtering, noise reduction)

2D rectangular window
(boxcar or Dirichlet)

Size of the kernel can vary
(usually odd #)

Any dimensionality

Usually symmetric

Steepness of drop-off can vary
(broader kernel = heavier smoothing)

Many variants exist (shown here in 1D):
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Gaussian Smoothing
G(x) = 1

σ 2π
e
−
x2

2σ 2

G(x, y) = 1
σ 2 2π

e
−
x2+y2( )
2σ 2

G(x, y, z) = 1

σ 2π( )
3 e

−
x2+y2+z2( )
2σ 2

• Larger σ leads to wider kernel and more smoothing
• In discrete domain, kernel should extend ±2-3σ in order to capture > 95%

of the area under the Gaussian curve
• Kernel should be normalized to sum to 1
• Kernel is separable so that 3D convolution can be performed as a series of 

1D convolutions (more on this later…)

1D:

2D:

3D:



Gaussian Smoothing

G(x, y, z) = 1

σ 2π( )
3 e

−
x2+y2+z2( )
2σ 2

r2 = x2 + y2 + z2

Kernel is radially
symmetric

Why is this is a desirable property?

Repeated Gaussian smoothing is equivalent
to one Gaussian smoothing with a larger σ

*              = 

We’ll see an interesting application of this later in the lecture

f *g( )*g = f *(g*g) Convolution is associative



Edge Detection Convolution Kernels

How does one find edges between 
distinct image regions?



How are image edges defined?

Kaira et al., KJR 2009

Step edges in an image are steep changes in voxel values

Steepness is defined by spatial derivatives

Image edges (gradients) have direction and magnitude
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Edge Detector Convolution Kernels
Calculating Gradients

1 1 1
0 0 0
-1 -1 -1

-1 0 1
-1 0 1
-1 0 1

Prewitt Operator

1 2 1
0 0 0
-1 -2 -1

-1 0 1
-2 0 2
-1 0 1

Sobel Operator

-1 1 1
-1

Backward Finite Difference

These kernels perform well on very clean images but do not work
as well in the presence of noise (kernels are too small!)

-1 0 1

1

0

-1

Central Finite Difference

-1 1
1
-1

Forward Finite Difference

Prewitt and Sobel compute derivatives in one direction while smoothing in the other direction

!′ # = lim∆)→+
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! # − !(# − ∆#)

∆#
!′ # = lim∆)→+

! # + ∆# − !(# − ∆#)
2∆#



Canny Edge Detector

How does one find edges between image 
regions when noise is a problem?



Canny Edge Detector
Classic Algorithm for Finding Edges in Images

Sharma et al., JMP 2010

Original CT Image Canny Edge Detector Output



Canny Edge Detector
Classic Algorithm for Finding Edges in Images

• Want a kernel to simultaneously maximize SNR and 
localization for a step edge under white Gaussian noise

• Solution by numerical optimization is very close to 
derivative of Gaussian kernel

Numerically Optimized

Derivative of Gaussian

Canny, IEEE TPAMI 1986
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Image gradient approximated
by convolution with
kernel = derivative of Gaussian:



(Partial) Derivative of Gaussian Kernel

2D

1D

1
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Separable Gaussian Kernel
G(x, y, z) =G(x) ⋅G(y) ⋅G(z)

=
1
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σ 2π

Gaussian

Derivative
Of Gaussian

Why does this matter?
Three 1D convolutions is much faster than one 3D convolution



Another Way of Looking at It

Final Steps of Canny Edge Detector:

Hysteresis thresholding
First, global threshold with an upper threshold (on |∇I|)
Then, region grow starting from those regions using a lower threshold

Non-maximum suppression
Eliminate edges that are not local maxima (along the direction of the gradient)
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Convolving with a derivative of Gaussian is the same as convolving with a Gaussian and 
then taking a derivative (but taking the exact derivative of an image is not well defined)

We can think of this as equivalent to first blurring in order to reduce noise, then taking an 
exact derivative

€ 

(∇G)∗ I =∇(G ∗ I)



Canny Edge Detector Example Results

1. Original 2. Gradient

3. Hysteresis Thresholding 4. Non-max Suppression

http://www.cs.unc.edu/~lazebnik/spring09/lec06_edge.pdf

Note the
breaks in
the edges



Laplacian of Gaussian Kernel

What other features can be detected 
with derivatives of Gaussians?



Laplacian of Gaussian (LoG) Kernel
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Think of this as an omnidirectional edge finder as compared to other 
gradient kernels that find edges in a specific orientation

You can think of this as adding up N neighbors
around the brim of the hat and subtracting N times
the center of the hat.  We’ll see this again!



Edge Detection with LoG

http://mipav.cit.nih.gov/



Blob Detection with LoG

Yu et al, IEEE ISBI 2014

Tumors

Laplacian of
Gaussian

After further
filtering



Shape Detection Filtering

How do you identify tube-like and 
sheet-like shapes in an image?



Hessian Matrix
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LoG kernel has no directionality
Eigenanalysis can find an orthonormal basis
that optimizes the filter response

Sheet 2nd derivatives
as oblate spheroids

Tubes 2nd derivatives
as prolate spheroids



Hessian Eigenvalues

Frangi et al, MICCAI 1998

λ1 ≤ λ2 ≤ λ3 bydefinition

λ2 ≈ λ3
λ1 ≈ 0

λ1 << λ2

⎫

⎬
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assumption for
tubular structures

λ < 0 for bright structure
λ > 0 for dark structure

RA =
λ2
λ3

RB =
λ1
λ2λ3

S = λ1
2 +λ2

2 +λ3
2

V =

0 if λ2 > 0 or λ3 > 0 (bright)
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Original Vesselness
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Analysis can be performed across
multiple scales (values of σ)



Non-linear Noise Reduction Filtering

How does one “smooth” away
image noise without

blurring away the real edges?



Smoothing with Alpha-Trimmed Mean

α

Lower Percentile
(light blue)

α α

Middle Percentile
(light blue)

α

Upper Percentile
(light blue)

Middle percentile α=0
Middle percentile α=0.5
Lower percentile α=1
Upper percentile α=1

à Mean
à Median
à Minimum
à Maximum

(Weighted) means are not the only statistics than can be computed
over a moving kernel.  Although it’ll no longer be true convolution.



Results of Median Filtering

http://www-mmdb.iai.uni-bonn.de/lehre/BIT/ss03_DSP_Vorlesung/matlab_demos/index.html
http://reference.wolfram.com/mathematica/ref/MedianFilter.html

Works particularly well against �salt and pepper� outlier noise



Anisotropic Diffusion

What physical processes can be 
emulated in order to achieve edge 

preserving noise reduction?



Edge Preserving Smoothing
Anisotropic Diffusion

Perona and Malik, IEEE PAMI 1990
http://sharp.bu.edu/~fischl/fischl.html



(Plain Old) Isotropic Diffusion

Diffusion in 2D/3D ∂I
∂t

= div c∇I( ) = c∇2I = c ∂ 2I
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∂I
∂t

= c
∂ 2I
∂x 2

Diffusion in 1D

O(x, y, t) =G
σ 2=t
(x, y)∗ I(x, y)

Lindeberg, Encyclopedia of Computer Science and Engineering

Incidentally:

isotropic diffusion = Gaussian smoothing where

length of time of diffusion = Gaussian variance, σ2



Perona-Malik Anisotropic Diffusion

Anisotropic Diffusion:
∂I
∂t

= div c(I )∇I( )

OR
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c(I) =
1

1+ ∇I K( )2

flatedges edges

fast

slow

|∇I|

c(I)

€ 

c(I) = e− ∇I K( )2

flatedges edges

fast

slow

|∇I|

c(I)

Two different diffusion coefficient schemes:

Why anisotropic?
c no longer a constant, it’s a
function of the image

Key idea: slow down diffusion near image edges



Replace outer derivatives
with central differences

Replace gradient in x and y
with central differences

Use definition of div

Perona-Malik Implementation
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Adapted from G Lohmann, Volumetric Image Analysis
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Central Finite Difference
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where c(I ) = g(∇I )
Notational convenience

Approximate gradient
magnitude with projection
of gradient in N,S,E,W dir

(preserves image brightness)

Notational convenience
e.g., ∇N I = I x, y+Δy, t( )− I x, y, t( )

Perona-Malik Implementation

Adapted from G Lohmann, Volumetric Image Analysis
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(neighbor minus center)

(neighbors minus center
with some coefficients)



Perona-Malik Implementation

Adapted from G Lohmann, Volumetric Image Analysis

Anisotropic diffusion is an iterative process that is terminated
when ‘enough’ smoothing has been performed

∂I
∂t

= div c(I )∇I( ) We’ve calculated all the spatial derivatives on the RHS,
now let’s do the time derivative on the LHS

I x, y, t +Δt( ) = I x, y, t( )+Δt
∂I x, y, t( )

∂t

Forward Finite Difference Approximation of Time Derivative

Ii+1 x, y( ) = Ii x, y( )+Δt
∂Ii x, y( )

∂t
= Ii x, y( )+Δt ΦE −ΦW +ΦN −ΦS[ ]



Anisotropic Diffusion Results

Anisotropic
Diffusion
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James Fishbaugh http://www.cs.utah.edu/~jfishbau/advimproc/project2/

(essentially)
Isotropic
Diffusion
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Iterations



What is the take-home message?
• Noise vs. real features (edges) is the key 

struggle
• Application of physics analogies (e.g., diffusion) 

is not uncommon
• The key to working with grayscale images is 

dealing effectively with the noise
• Taking derivatives makes it worse [finite differences]
• You can average it out [convolution, Canny edge detection]
• You can statistically remove outliers [Alpha-trimmed mean]
• You can selectively blur it out [anisotropic diffusion]



What does it mean for me?
• You have a very solid foundation in image filtering 

techniques
• Convolution and Smoothing

• Continuous Convolution
• Discrete Convolution
• Gaussian Smoothing

• Edge Detection
• Canny Edge Detector
• Laplacian of Gaussian Edge Detector

• Non-linear Noise Reduction
• Alpha-Trimmed Mean
• Perona-Malik Anisotropic Diffusion

Next Lecture:   
Geometric Features


