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Correction to Last Lecture

• Fourier Transform formulas:
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Image Features

• Can be computed
• Per-pixel
• Per-object

• Boundary
• Region

• Per-image
• Desirable Properties of Image Features
• Translation, rotation, (and sometimes scale) invariance
• Robustness to noise & acquisition protocol
• Statistical independence from other shape features

• Very important for machine learning



Shape Features

Geometric Clinical

Mean Curvature

Gaussian Curvature
Spiculation

Margin

Volume, Area

Stenosis

Thickness

Cartilage
Thickness

Angle

Cobb Angle, Anteversion

Gradient

Circularity

Perimeter
Surface Area

Tortuosity

Shape Index
Curvedness

CAD Score

Medial Axis Malignancy



The Shape v Texture View of the World



Local Pointwise Features



Image Partial Derivatives as Features
I(x, y)
∂
∂x
I(x, y) ∇I(x, y)

∂2

∂x2
I(x, y) ∂2

∂x∂y
I(x, y) ∇2I(x, y)

0th derivative:

1st derivative:

2nd derivative:

Kniss et al, TVCG 2002

These analyses are often done across multiple spatial scales

What causes these arch-like structures?



2D Isocontour Curvature
(of a 2D level set of an implicit function)
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When ϕ is an implicit function, not 
necessarily a signed distance function:

κ =∇2S = ∂
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Sx[ ]+ ∂
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= Sxx + Syy

Much easier for a signed 
distance function S:

Remember, subscripts are
partial derivatives

How can curvature be clinically useful information?



3D Isosurface Curvature
(of a 3D level set of an implicit function)
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3D Isosurface Curvature
(of a 3D level set of a signed distance function)

H =
∇2S
2

=
Sxx + Syy + Szz

2
Mean

curvature
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Sxx Sxy
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+
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+
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Gaussian
curvature

κ1,2 = H ± H 2 −K Principal curvatures

Again, much easier for a signed distance function S:



Mean vs. Gaussian Curvature

• Zero mean curvature
• Principal curvatures are opposite of 

each other (κ1 = -κ2)
• Minimal surface (minimal surface area, 

like a soap film)

• Zero Gaussian curvature
• One (or both) principal curvatures is 0 

(κ1κ2=0)
• Developable surface (can be flattened 

onto plane without stretching)



Clinical Features Based on Curvature:
Shape Index and Curvedness
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Nappi et al, Med Phys 2003



Smoothing Segmented Regions
(before feature calculation)



Common Problems with Tessellated Meshes

• As produced by algorithms such as Marching Cubes
• Common for patient-specific anatomy
• Might want to do more than just display these surfaces 

with shaded surface display
• Analysis of surface shape to provide image features

• Common problems with meshes
• Rough surface
• Too many triangles
• Highly unequal edge lengths, areas, angles

(i.e., sliver triangles)



Mesh Decimation

Edge Collapse
V↓1  T↓2

Vertex Removal
V↓1  T↓2

Half Edge Collapse
V↓1  T↓2

http://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Simplification.pdf

Goal is to decrease mesh complexity while:
• Preserving overall topology
• Minimizing shape change

-cost functions such as distance-to-plane and curvature

(V=vertices   T=triangles)



Mesh Decimation Example

http://www.wheatchex.com
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Laplacian Mesh Smoothing
(aka isotropic diffusion)

Laplacian is the sum of n neighbors minus n � the center pixel
Diffusion is iterative stepping toward the mean of the neighbors
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in 2D:
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Informally, diffusion is the spreading out of high (or low) 
concentrations of stuff toward the level of neighbors



Similarity to PM Anisotropic Diffusion
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Gaussian:



Laplacian Mesh Smoothing

∂I
∂t

= c∇2I = c Ii − I( )
i∈{E,W ,N ,S}
∑

Diffusion is stepping toward the mean of the neighbors
(we are diffusing I, the concentration of stuff)

On an image grid, pixel intensity diffusion looks like this:

∂
v
∂t

= c 1
n

vi −
v( )

vi∈ neighbors(v)
∑

v

v1 v2

v3

v4
v5

Diffusion is stepping toward centroid of neighbors
(we are diffusing v, the positions of the mesh vertices)

On graph or mesh structures, vertex diffusion looks like this:



Laplacian Mesh Smoothing Results

Original Laplacian Smoothed
Zhou and Shimada, Proc 9th Intl Meshing Roundtable 2000

What are the drawbacks of this isotropic diffusion process?
How could we address these drawbacks?



Level Set Mean Curvature Flow
!"
!# = %& = % ∆"2 Mean Curvature Flow is Isotropic Diffusion Equation

http://www.math.utah.edu/~mayer/math/MCF/dumbbell2_js.html http://www.polthier.info/articles/anisotropic/

Note that curvature regularization terms are built into most level set
methods so they are not typically done in an explicit step

However, smoothing after manual editing is an example



Boundary and Region Features



Binarized Region:
Centroid, Area, Volume, Diameter

area = N ⋅areapixel
volume = N ⋅ volumevoxelcentroid = 1
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π

dvol equiv =
6 ⋅ volume

π
3

dsurf areaequiv =
surf area

π



Mesh:
Perimeter, Surface Area

perimeter = xi − xi+1( )2 + yi − yi+1( )2
i=0

N−1
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2
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For polygonal contours and triangular meshes

What to do for binary images?

Perimeter of 4-connected or 8-connected path has large errors
Surface area as sum of surface voxel faces has large errors

First subscript is triangle # and second subscript is vertex #



Feret Diameter
(aka caliper diameter)

Dmax

Dmin

Dmax =maxi, j
pi − pj

Dmin =mini maxj
pi+1 − pi( )× pi − pj( )

pi+1 − pi

Dmean =
perimeter

π
=
1
π

pi+1 − pi
i
∑

First, compute 2D convex hull as ordered list of points, pi

Distance from point
to line

Follows from Cauchy’s
theorem for 2D convex
bodies



Shoelace Formula for Polygon Area

Atri =
1
2

x1 y1 1
x2 y2 1
x3 y3 1

=
1
2
(x1y2 + x3y1 + x2y3
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0 0 1

=
x1 y1
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Signed Area of a Triangle (one vertex at origin)

(x2,y2)

(x1,y1)

(x3,y3)
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1
6

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

Tetrahedron Volume in 3D

This does generalize to 3D…

CCW for positive signed area



Shoelace Formula for Polygon Area
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Signed Area of polygon (even concave)

(x0,y0)
(xN,yN)

(x1,y1)

(x2,y2) (x3,y3)

(x…,y…)

centroidx =
1
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∑ xiyi+1 − xi+1yi( )

centroidy =
1
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Centroid of polygon (even concave)

x0 y0
x1 y1
x2 y2
x3 y3
x0 y0

Why “shoelace”?

How do signed areas help handle concavity correctly?

(0,0)



Level Set Approach to Perimeter/Surface 
Area and Area/Volume
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Chan and Vese 2001
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Tumor Mass Shape and Margins

Shapes Margins

Singh and Nagarajan, 2011



Measures of Roundness

circularity = rinscribed
rcircumscribed

circularity = 4π ⋅area
perimeter2

convexity =
perimeterconvexhull

perimeter

solidity = area
areaconvexhull

sphericity = rinscribed
rcircumscribed

sphericity =
π 1 3 6 ⋅ volume( )2 3

surfacearea

convexity =
surfaceareaconvexhull

surfacearea

solidity = volume
volumeconvexhull

0 ≤metric ≤1

(the names of these metrics vary depending on who you ask)

2D 3D



Shape Parameterization



Surface (2D) Parameterization
Fast marching can be run

on a triangulated mesh

Regular Grid Triangulated Mesh

Initial wavefront can be a point
or a line or a region

Fastest gradient descent creates geodesic 
paths that are perpendicular to isocontours

Surazhky et al, SIGGRAPH 2005

Talbot et al, Int Foc 2013

Cardiac Depolaraization Times



Medial Axis Transform

• MAT = set of all points with more than one 
closest point to the shape boundary

in 3D

• MAT = set of all points where more than one 
grassfire front meet



Medial Axis Transform

Ridges are abrupt directional changes in

MAT = union of all ridge points on Euclidean distance map

∇D =1 almost everywhere

Methods include (1) binary morphological thinning,
(2) ridges in distance transform, (3) Voronoi diagram

∇D

Latecki et al
Distance Transform Distance Transform Medial Axis Transform



Medial Axis Transform
Medical Imaging Examples

Paik et al., 2002

Colon LungsAorta



Centerline (1D) Parameterization

• Linear
• Digestive tract
• Spinal cord
• Some bones
• Ear canal/cochlea

• Branching
• Blood vessels
• Bronchi



Frenet-Serret Frame along Paths

∂
∂s
T

∂
∂s
N

∂
∂s
B

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

=
0 κ 0
−κ 0 τ
0 −τ 0

"

#

$
$
$

%

&

'
'
'

T
N
B

"

#

$
$
$

%

&

'
'
'

T is tangent
N is normal
B is binormal (T×N)
s is arc length
κ is curvature
τ is torsion(T and N define osculating plane)



Path Tortuosity Metrics
• Distance Metric
• Path length / start-to-end length

• Inflection Point Count
• Count local minima in path curvature

• Sum of Angles Metric
• Integrate curvature along path and normalize by 

length

Bullitt et al, IEEE TMI 2008



Cobb Angle of Spine for Scoliosis

Horng et al 2019

Adaptive
Threshold

L-R conv
Max search Edge

Detection ROIs

X-ray
A-P view

Minimum Bounding Rectangle

Cobb Angle

U-Net Segmentation



Maximally Inscribed Spheres

Hung et al, Radiology 2002
Thomas et al, Stoke 2005

Maximally Inscribed Spheres
along Medial Axis to
quantify atherosclerosis

Maximally Inscribed Spheres
Along Medial Axis to
Quantify colon distension



Unfolding Anatomic Surfaces

Van Essen and Drury, J Neurosci 1997
Wang et al, SPIE Med Imag 2004

Yao et al, MICAI 2012
Zhu et al, IEEE TMI 2005

Paik et al, 2002

Carotid Artery

Colon

Brain Brain

Vertebra



What does it mean for me?

• Methods:
• Local Pointwise Features
• Morphological Analysis
• Shape Features
• Shape Parameterization

• Many features to describe shape and geometry
• Considering natural parameterization of anatomy 

can be very useful

Next Lecture:   
Texture Analysis


