Biomedical Informatics 260

Computational Feature Extraction:

Geometric Features

Lecture 5

David Paik, PhD
Spring 2019

Correction to Last Lecture

- Fourier Transform formulas:

$$
\begin{gathered}
f(x)=\int_{-\infty}^{\infty} \mathrm{F}(u) \cdot e^{i 2 \pi} x d x \\
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{F}(u, v) \cdot e^{i 2 \pi(u x+y)} d x d y \\
\text { WRONG }
\end{gathered}
$$

Image Features

- Can be computed
- Per-pixel
- Per-object
- Boundary
- Region
- Per-image
- Desirable Properties of Image Features
- Translation, rotation, (and sometimes scale) invariance
- Robustness to noise \& acquisition protocol
- Statistical independence from other shape features
- Very important for machine learning

Shape Features

Angle
CAD Score

Thickness

Volume, Area

Perimeter
Surface Area
Medial Axis
Cobb Angle, Anteversion

Mean Curvature
Circularity
Stenosis
Tortuosity
Malignancy
Cartilage
Thickness

Gaussian Curvature

Gradient
Shape Index
Curvedness
Margin

The Shape v Texture View of the World

Local Pointwise Features

Image Partial Derivatives as Features

 $0^{\text {th }}$ derivative:$$
I(x, y)
$$

$1^{\text {st }}$ derivative:

$$
\frac{\partial}{\partial x} I(x, y) \quad|\nabla I(x, y)|
$$

$2^{\text {nd }}$ derivative:

$$
\frac{\partial^{2}}{\partial x^{2}} I(x, y) \quad \frac{\partial^{2}}{\partial x \partial y} I(x, y) \quad \nabla^{2} I(x, y)
$$

These analyses are often done across multiple spatial scales

What causes these arch-like structures?

2D Isocontour Curvature (of a 2D level set of an implicit function)

When ϕ is an implicit function, not necessarily a signed distance function:

$$
\kappa=\operatorname{div} \vec{N}=\nabla \cdot \vec{N}=\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}
$$

$$
=\frac{\partial}{\partial x}\left[\frac{\phi_{x}}{\left(\phi_{x}^{2}+\phi_{y}^{2}\right)^{1 / 2}}\right]+\frac{\partial}{\partial y}\left[\frac{\phi_{y}}{\left(\phi_{x}^{2}+\phi_{y}^{2}\right)^{1 / 2}}\right] \stackrel{\begin{array}{l}
\text { Remember, subscripts are } \\
\text { partial derivatives }
\end{array}}{\substack{\text { Much easier for a signed } \\
\text { distance function } s:}}
$$

$$
=\frac{\phi_{y}^{2} \phi_{x x}-2 \phi_{x} \phi_{y} \phi_{x y}+\phi_{x}^{2} \phi_{y y}}{\left(\phi_{x}^{2}+\phi_{y}^{2}\right)^{3 / 2}}
$$

$$
\begin{aligned}
\kappa & =\nabla^{2} S=\frac{\partial}{\partial x}\left[S_{x}\right]+\frac{\partial}{\partial y}\left[S_{y}\right] \\
& =S_{x x}+S_{y y}
\end{aligned}
$$

How can curvature be clinically useful information?

3D Isosurface Curvature (of a 3D level set of an implicit function)

 $\kappa_{1}+\kappa_{2}=\operatorname{div} \vec{N}=\nabla \cdot \vec{N}=\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$

$$
H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{1}{2 h^{3 / 2}}\left[\begin{array}{c}
\phi_{x}^{2}\left(\phi_{y y}+\phi_{z z}\right)-2 \phi_{y} \phi_{z} \phi_{y z} \\
+\phi_{y}^{2}\left(\phi_{x x}+\phi_{z z}\right)-2 \phi_{x} \phi_{z} \phi_{x z} \\
+\phi_{z}^{2}\left(\phi_{x x}+\phi_{y y}\right)-2 \phi_{x} \phi_{y} \phi_{x y}
\end{array}\right]
$$

Mean

curvature
$K=\kappa_{1} \kappa_{2}=\frac{1}{h^{2}}\left[\begin{array}{c}\phi_{x}^{2}\left(\phi_{y y} \phi_{z z}-\phi_{y z}^{2}\right)+2 \phi_{y} \phi_{z}\left(\phi_{x z} \phi_{x y}-\phi_{x x} \phi_{y z}\right) \\ +\phi_{y}^{2}\left(\phi_{x x} \phi_{z z}-\phi_{x z}^{2}\right)+2 \phi_{x} \phi_{z}\left(\phi_{y z} \phi_{x y}-\phi_{y y} \phi_{x z}\right) \\ +\phi_{z}^{2}\left(\phi_{x x} \phi_{y y}-\phi_{x y}^{2}\right)+2 \phi_{x} \phi_{y}\left(\phi_{x z} \phi_{y z}-\phi_{z z} \phi_{x y}\right)\end{array}\right]$
Gaussian curvature
where $h=\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}$
$\kappa_{1,2}=H \pm \sqrt{H^{2}-K} \quad$ Principal curvatures

3D Isosurface Curvature

(of a 3D level set of a signed distance function)

Again, much easier for a signed distance function S :

$$
\begin{aligned}
& H=\frac{\nabla^{2} S}{2}=\frac{S_{x x}+S_{y y}+S_{z z}}{2} \quad \begin{array}{c}
\text { Mean } \\
\text { curvature }
\end{array} \\
& K=\left|\begin{array}{cc}
S_{x x} & S_{x y} \\
S_{y x} & S_{y y}
\end{array}\right|+\left|\begin{array}{cc}
S_{x x} & S_{x z} \\
S_{z x} & S_{z z}
\end{array}\right|+\left\lvert\, \begin{array}{cc}
S_{y y} & S_{y z} \\
S_{z y} & S_{z z}
\end{array} \quad \begin{array}{c}
\text { Gaussian } \\
\text { curvature }
\end{array}\right. \\
& \kappa_{1,2}=H \pm \sqrt{H^{2}-K} \quad \text { Principal curvatures }
\end{aligned}
$$

Mean vs. Gaussian Curvature

- Zero mean curvature
- Principal curvatures are opposite of each other $\left(\kappa_{1}=-\kappa_{2}\right)$
- Minimal surface (minimal surface area, like a soap film)

Clinical Features Based on Curvature: Shape Index and Curvedness

$$
\begin{array}{ll}
S I=\frac{1}{2}-\frac{1}{\pi} \arctan \frac{\kappa_{1}+\kappa_{2}}{\kappa_{1}-\kappa_{2}} & \left(\kappa_{1} \geq \kappa_{2} \text { and } 0 \leq S I \leq 1\right) \\
C V=\sqrt{\frac{\kappa_{1}^{2}+\kappa_{2}^{2}}{2}} & (0 \leq C V<\infty)
\end{array}
$$

Smoothing Segmented Regions (before feature calculation)

Common Problems with Tessellated Meshes

- As produced by algorithms such as Marching Cubes
- Common for patient-specific anatomy
- Might want to do more than just display these surfaces with shaded surface display
- Analysis of surface shape to provide image features
- Common problems with meshes
- Rough surface
- Too many triangles
- Highly unequal edge lengths, areas, angles
(i.e., sliver triangles)

Mesh Decimation

Vertex Removal $\mathrm{V} \downarrow 1 \mathrm{~T}_{\downarrow}$

Edge Collapse
$\mathrm{V} \downarrow 1 \mathrm{~T} \downarrow 2$

Half Edge Collapse $\mathrm{V} \downarrow 1 \mathrm{~T} \downarrow 2$
($\mathrm{V}=$ vertices $\mathrm{T}=$ triangles)
Goal is to decrease mesh complexity while:

- Preserving overall topology
- Minimizing shape change
-cost functions such as distance-to-plane and curvature

Mesh Decimation Example

Laplacian Mesh Smoothing

(aka isotropic diffusion)
Informally, diffusion is the spreading out of high (or low) concentrations of stuff toward the level of neighbors

$$
\begin{aligned}
& \frac{\partial I}{\partial t}=c \nabla^{2} I=c \sum_{i} \frac{\partial^{2} I}{\partial x_{i}^{2}} \quad \nabla^{2} \text { is the Laplacian operator: }: \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& \text { in 1D: } \quad \frac{\partial^{2}}{\partial x^{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad \text { (finite differences kernel) } \\
& \text { in 2D: } \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right] \text { or }\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Laplacian is the sum of \mathbf{n} neighbors minus $\mathbf{n} \times$ the center pixel Diffusion is iterative stepping toward the mean of the neighbors

Similarity to PM Anisotropic Diffusion

 Anisotropic Diffusion$$
\begin{aligned}
\frac{\partial I(x, y, t)}{\partial t}= & \frac{1}{\Delta x^{2}}\left[g\left(\left|\nabla_{E} I\right|\right)\left(\nabla_{E} I\right)\right]-\frac{1}{\Delta x^{2}}\left[g\left(\left|\nabla_{W} I\right|\right)\left(\nabla_{W} I\right)\right] \begin{array}{|c}
\nabla_{E} I=I(x+\Delta x, y, t)-I(x, y, t) \\
\nabla_{W} I=I(x-\Delta x, y, t)-I(x, y, t) \\
\nabla_{N} I=I(x, y+\Delta y, t)-I(x, y, t) \\
\nabla_{S} I=I(x, y-\Delta y, t)-I(x, y, t)
\end{array} \\
& +\frac{1}{\Delta y^{2}}\left[g\left(\left|\nabla_{N} I\right|\right)\left(\nabla_{N} I\right)\right]-\frac{1}{\Delta y^{2}}\left[g\left(\left|\nabla_{S} I\right|\right)\left(\nabla_{S} I\right)\right]
\end{aligned}
$$

Isotropic Diffusion ($g=1$ and assume $\Delta x=1, \Delta y=1$)

$$
\begin{aligned}
\frac{\partial I(x, y, t)}{\partial t}= & \nabla_{E} I-\nabla_{W} I+\nabla_{N} I-\nabla_{S} I \\
= & I(x-1, y, t)+I(x+1, y, t)+I(x, y-1, t)+I(x, y+1, t)-4 I(x, y, t) \\
= & 4\left[\frac{I(x-1, y, t)+I(x+1, y, t)+I(x, y-1, t)+I(x, y+1, t)}{4}-I(x, y, t)\right] \\
& {\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right] \quad \begin{array}{l}
\text { Laplacian of } \\
\text { Gaussian: }
\end{array} }
\end{aligned}
$$

Laplacian Mesh Smoothing

On an image grid, pixel intensity diffusion looks like this:

$$
\frac{\partial I}{\partial t}=c \nabla^{2} I=c \sum_{i \in\{E, W, N, S\}}\left(I_{i}-I\right)
$$

Diffusion is stepping toward the mean of the neighbors (we are diffusing I, the concentration of stuff)

On graph or mesh structures, vertex diffusion looks like this:

$$
\frac{\partial \vec{v}}{\partial t}=c \frac{1}{n_{v_{i} \in \operatorname{neighbors(v)}}} \sum_{i}\left(\vec{v}_{i}-\vec{v}\right)
$$

Diffusion is stepping toward centroid of neighbors (we are diffusing v, the positions of the mesh vertices)

Laplacian Mesh Smoothing Results

Original

Laplacian Smoothed
Zhou and Shimada, Proc 9th Intl Meshing Roundtable 2000

What are the drawbacks of this isotropic diffusion process? How could we address these drawbacks?

Level Set Mean Curvature Flow

$$
\frac{d \phi}{d t}=c H=c \frac{\Delta \phi}{2}
$$

Mean Curvature Flow is Isotropic Diffusion Equation

Note that curvature regularization terms are built into most level set methods so they are not typically done in an explicit step

However, smoothing after manual editing is an example

Boundary and Region Features

Binarized Region:

Centroid, Area, Volume, Diameter

$$
\begin{aligned}
& \text { centroid }=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \begin{array}{l}
\text { area }=N \cdot \text { area }_{\text {pixel }} \\
\text { volume }=N \cdot \text { volume }_{\text {voxel }}
\end{array} \\
& \text { center of mass }=\frac{\sum_{i=1}^{N} w_{i} \mathbf{x}_{i}}{\sum_{i=1}^{N} w_{i}} d_{\text {areaequiv }}=\sqrt{\frac{4 \cdot \text { area }}{\pi}} \\
& d_{\text {volequiv }}=\sqrt[3]{\frac{6 \cdot \text { volume }}{\pi}} \\
& d_{\text {suf areaequiv }}=\sqrt{\frac{\text { surf area }}{\pi}}
\end{aligned}
$$

Mesh:

Perimeter, Surface Area

For polygonal contours and triangular meshes

$$
\begin{aligned}
& \text { perimeter }=\sum_{i=0}^{N-1} \sqrt{\left(x_{i}-x_{i+1}\right)^{2}+\left(y_{i}-y_{i+1}\right)^{2}} \\
& \text { surface area }=\frac{1}{2} \sum_{i=1}^{N} \sqrt{\left|\begin{array}{ccc}
x_{i, 1} & y_{i, 1} & 1 \\
x_{i, 2} & y_{i, 2} & 1 \\
x_{i, 3} & y_{i, 3} & 1
\end{array}\right|^{2}+\left|\begin{array}{lll}
y_{i, 1} & z_{i, 1} & 1 \\
y_{i, 2} & z_{i, 2} & 1 \\
y_{i, 3} & z_{i, 3} & 1
\end{array}\right|^{2}+\left|\begin{array}{lll}
x_{i, 1} & z_{i, 1} & 1 \\
x_{i, 2} & z_{i, 2} & 1 \\
x_{i, 3} & z_{i, 3} & 1
\end{array}\right|^{2}}
\end{aligned}
$$

First subscript is triangle \# and second subscript is vertex \#

What to do for binary images?

Perimeter of 4-connected or 8-connected path has large errors Surface area as sum of surface voxel faces has large errors

Feret Diameter (aka caliper diameter)

First, compute 2D convex hull as ordered list of points, $\boldsymbol{p}_{\boldsymbol{i}}$

$$
\begin{aligned}
& D_{\max }=\max _{i, j}\left|p_{i}-p_{j}\right| \\
& D_{\min }=\min _{i} \max _{j} \frac{\left|\left(p_{i+1}-p_{i}\right) \times\left(p_{i}-p_{j}\right)\right|}{\left|p_{i+1}-p_{i}\right|} \\
& D_{\text {mean }}=\frac{\text { perimeter }}{\pi}=\frac{1}{\pi} \sum_{i}\left|p_{i+1}-p_{i}\right| \quad \begin{array}{l}
\text { Distance from point } \\
\text { to line }
\end{array} \\
& \begin{array}{l}
\text { Follows from Cauchy's } \\
\text { theorem for 2D convex } \\
\text { bodies }
\end{array}
\end{aligned}
$$

Shoelace Formula for Polygon Area

Signed Area of a Triangle

$$
\begin{aligned}
A_{t r i} & =\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =\frac{1}{2} \quad \begin{array}{l}
\left(x_{1} y_{2}+x_{3} y_{1}+x_{2} y_{3}\right. \\
\left.-x_{2} y_{1}-x_{1} y_{3}-x_{3} y_{2}\right)
\end{array}
\end{aligned}
$$

Signed Area of a Triangle (one vertex at origin)

$$
\begin{aligned}
A_{\text {tri,origin }} & =\frac{1}{2}\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \\
& =\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)
\end{aligned}
$$

$$
\left(x_{3}, y_{3}\right)<{ }_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)}
$$

This does generalize to 3D...
Tetrahedron Volume in 3D

$$
V_{\text {tetrahedron }}=\frac{1}{6}\left|\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right|
$$

Shoelace Formula for Polygon Area

Signed Area of polygon (even concave)

$$
\begin{aligned}
& A=\frac{1}{2} \sum_{i=0}^{N-1}\left(x_{i} y_{i+1}-\underline{x_{i+1} y_{i}}\right) \\
& \left.A=\frac{1}{2} \sum_{i=0}^{N-1} \right\rvert\,{ }_{x_{i+1}}^{x_{i}} \nless{ }_{y_{i+1}}^{y_{i}}
\end{aligned}
$$

Centroid of polygon (even concave)

$$
\begin{aligned}
& \text { centroid }_{x}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(x_{i}+x_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right) \\
& \text { centroid }_{y}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(y_{i}+y_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)
\end{aligned}
$$

How do signed areas help handle concavity correctly?

Level Set Approach to Perimeter/Surface Area and Area/Volume

$$
\begin{aligned}
& H(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases} \\
& \text { Heaviside Step Function }
\end{aligned} \quad \delta(x)=\frac{\partial}{\partial x} H(x)
$$

$$
\begin{aligned}
& \operatorname{area}\{\phi \leq 0\}=\int H(\phi(x, y)) d x d y \\
& \text { (or volume) } \\
& \begin{array}{l}
\text { length }\{\phi=0\}=\int|\nabla H(\phi(x, y))| d x d y=\int \delta(x)|\nabla \phi(x, y)| d x d y \\
\text { (or surface area) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
H_{\sin }(x) & =\left\{\begin{array}{cc}
\frac{1}{2}\left(1+\frac{x}{\varepsilon}+\frac{1}{\pi} \sin \left(\frac{\pi x}{\varepsilon}\right)\right) & \text { if }|x| \leq \varepsilon \\
H(x) & \text { otherwise } \\
H_{\text {atan }}(x) & =\frac{1}{2}\left(1+\frac{2}{\pi} \arctan \left(\frac{x}{\varepsilon}\right)\right) \\
\text { Regularized Heaviside Step Functions }
\end{array}\right.
\end{aligned}
$$

Tumor Mass Shape and Margins

Shapes
(b)

Margins

Measures of Roundness
 $0 \leq$ metric ≤ 1

3D

$$
\begin{aligned}
& \text { sphericity }=\frac{r_{\text {inscribed }}}{r_{\text {circumscribed }}} \\
& \text { sphericity }=\frac{\pi^{1 / 3}\left(6 \cdot \text { volume }^{2 / 3}\right.}{\text { surface area }^{2}} \\
& \text { convexity }=\frac{\text { surface area }_{\text {convex hull }}}{\text { surface area }^{2}} \\
& \text { solidity }=\frac{\text { volume }^{\text {volume }_{\text {convex hull }}}}{}
\end{aligned}
$$

(the names of these metrics vary depending on who you ask)

Shape Parameterization

Surface (2D) Parameterization

Fast marching can be run on a triangulated mesh

Regular Grid

Triangulated Mesh

Initial wavefront can be a point or a line or a region

Fastest gradient descent creates geodesic paths that are perpendicular to isocontours

Surazhky et al, SIGGRAPH 2005

[^0]
Medial Axis Transform

- MAT = set of all points with more than one closest point to the shape boundary
- MAT = set of all points where more than one grassfire front meet

in 3D

Medial Axis Transform

Methods include (1) binary morphological thinning,
(2) ridges in distance transform, (3) Voronoi diagram

Distance Transform

$|\nabla D|=1 \quad$ almost everywhere
Ridges are abrupt directional changes in ∇D
MAT = union of all ridge points on Euclidean distance map

Medial Axis Transform
 Medical Imaging Examples

Colon

Aorta

Lungs

Centerline (1D) Parameterization

- Linear
- Digestive tract
- Spinal cord
- Some bones
- Ear canal/cochlea
- Branching
- Blood vessels
- Bronchi

Frenet-Serret Frame along Paths

$\left[\begin{array}{c}\frac{\partial}{\partial s} \mathbf{T} \\ \frac{\partial}{\partial s} \mathbf{N} \\ \frac{\partial}{\partial s} \mathbf{B}\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right]\left[\begin{array}{c}\mathbf{T} \\ \mathbf{N} \\ \mathbf{B}\end{array}\right]$
T is tangent
\mathbf{N} is normal
\mathbf{B} is binormal ($\mathbf{T} \times \mathbf{N}$)
s is arc length
κ is curvature
(\mathbf{T} and \mathbf{N} define osculating plane) τ is torsion

Path Tortuosity Metrics

- Distance Metric
- Path length / start-to-end length

- Inflection Point Count
- Count local minima in path curvature
- Sum of Angles Metric

- Integrate curvature along path and normalize by length

Cobb Angle of Spine for Scoliosis

Adaptive
ROIs
Threshold

Minimum Bounding Rectangle

Cobb Angle
$\varphi=\max \left\{\left|\tan ^{-1}\left(\frac{m_{i}-m_{j}}{1+m_{i} \times m_{j}}\right)\right|\right\}$,

Maximally Inscribed Spheres

Maximally Inscribed Spheres along Medial Axis to quantify atherosclerosis

Maximally Inscribed Spheres Along Medial Axis to Quantify colon distension

Unfolding Anatomic Surfaces

Vertebra

What does it mean for me?

- Methods:
- Local Pointwise Features
- Morphological Analysis
- Shape Features
- Shape Parameterization
- Many features to describe shape and geometry
- Considering natural parameterization of anatomy can be very useful

Next Lecture:
Texture Analysis

[^0]: Cardiac Depolaraization Times

