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Last Lecture:
Computational Feature Extraction: 

Geometric Features
1. Methods:

1. Local Pointwise Features
2. Morphological Analysis
3. Shape Features
4. Shape Parameterization

2. Many features to describe shape and geometry
3. Considering natural parameterization of 

anatomy can be very useful



Today:
Computational Feature Extraction: 

Texture Features
• Texture is the “grain” that falls somewhere in 

between shapes and individual pixel values
• In many clinical imaging applications, the overall 

shape is less important the detailed features 
inside

• Topics:
• Defining Texture
• 1st and 2nd Order Statistical Features
• Transforms
• Fractal Analysis
• Applications
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The Shape v Texture View of the World



What is texture?



What different textures can you identify?



Could you tell the difference between these two 
rough surfaces with your finger tips?

What are the ways in which you
could quantify these textures?



Texture is Challenging to Define

How do you mathematically describe the difference between these sub-images?
Can we classify different tissues based on their fine detail appearances?



First Order Statistical Texture
Histogram Analysis



Histogram Analysis

• Mean
• Standard Deviation
• Skewness
• Kurtosis
• Entropy
• Quartiles
• Min/Max

Chen et al 2017

Clear cell renal cell carcinoma

Renal oncocytoma

Often useful to mask 
regions of interest first



Second Order Statistical Texture
Haralick Texture Features / GLCM



Gray Level Co-occurrence Matrix (GLCM)
Joint Probability Distribution of Pixels with a Specific Spatial Relationship

GLCMΔi,Δj g1,g2( ) =
1 if I(i, j) = g1 and I(i+Δi, j +Δj) = g2
0 otherwise
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Directions of Adjacency

We don’t care about the ordering of the two pixels being considered
GLCM can be made symmetric by summing with transpose

2 or 4 canonical directions in 2D (corresponding to 4- or 8-neighbors)
3, 9, or 13 canonical directions in 3D (corresponding to 6-, 18-, 26-neighbors)

GLCMΔi,Δj g1,g2( ) =
1 if I(i, j) = g1 and I(i+Δi, j +Δj) = g2
0 otherwise
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(but not limited to just these directions)

(in 2D)



Some Useful Shorthand Notation
P(g1,g2 ) =

GLCMΔi,Δj (g1,g2 )

GLCMΔi,Δj (G1,G2 )
G2=0

gmax

∑
G1=0

gmax

∑
Joint Probability Distribution
(convert counts to probabilities)

Marginal Probabilities

Probability Distribution of the
Sum of Two Gray Levels

Probability Distribution of the
Difference of Two Gray Levels

Note: x and y represent gray levels, not spatial coordinates

Px (g) = P(g,g2 )
g2=0

gmax

∑

Py (g) = P(g1,g)
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∑

Px+y (g) = P(g1,g2 )
g2=0
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g1+g2=g

g∈ [0,1,.., 2gmax ]

Px−y (g) = P(g1,g2 )
g2=0

gmax

∑
g1=0

gmax

∑
g1−g2 =g

g∈ [0,1,..,gmax ]



Haralick Texture Features
Measures of Variation

Angular Second Moment :

f1 = P(g1,g2 )
2

g2

∑
g1

∑ Image Homogeneity
(noisy image has many small entries)

Variation between neighboring pixels
(larger differences get square law weights)

How correlated are pairs of pixel values?
Pearson Correlation Coefficient

€ 

ρXY =
E[XY ] − E[X]E[Y ]

σXσY

Haralick, IEEE Trans Sys Man and Cybernetics 1973

Correlation :

f3 =
g1g2P(g1,g2 )−µPx

µPy
g2

∑
g1

∑

σ Px
σ Py

Contrast :

f2 = g2Px−y (g)
g=0

gmax

∑



Haralick Texture Features
Difference Moments

�Homogeneity�
Maximized when neighboring pixels
have the same value

Haralick, IEEE Trans Sys Man and Cybernetics 1973

Inverse Difference Moment :

f5 =
1

1+ g1 − g2( )2
P(g1,g2 )

g2

∑
g1

∑

Sum of Squares (Variance) :

f4 = g1 −µPxy( )
2
P(g1,g2 )

g2

∑
g1

∑
Increasing weight given to greater
gray value differences



Haralick Texture Features
Sum and Difference of Neighboring Pixels

Sum Average :

f6 = gPx+y (g)
g=0

2gmax

∑ Average sum of gray levels

Variance of sum of gray levels
(typo in original paper)

Variance of difference of gray levels

Haralick, IEEE Trans Sys Man and Cybernetics 1973

DifferenceVariance :
f10 = variance Px−y (g){ }

SumVariance :

f7 = g− f6( )2 Px+y (g)
g=0

2gmax

∑



Haralick Texture Features
Entropy (Uncertainty) Measures

Sum Entropy :

f8 = − Px+y (g)log Px+y (g){ }
g=0

2gmax

∑

Uniform (flat) distribution of difference
of gray levels has maximum entropy

Uniform (flat) joint distribution of
gray levels has maximum joint entropy

Uniform (flat) distribution of sum of
gray levels has maximum entropy

Haralick, IEEE Trans Sys Man and Cybernetics 1973

Entropy :

f9 = − P(g1,g2 ) log P(g1,g2 ){ }
g2

∑
g1

∑

Difference Entropy :

f11 = − Px−y (g)log Px−y (g){ }
g=0

2gmax

∑



Haralick Texture Features
Information Theoretic Measures

Difference between joint entropy
and joint entropy assuming
independence

Normalized mutual information

Haralick, IEEE Trans Sys Man and Cybernetics 1973



Haralick Texture Features
Markov Chain

Q g1,g2( ) = P(g1,g)
Px (g1)g

∑ ⋅
P(g2,g)
Py (g)

= P(g g1)
g
∑ ⋅P(g2 g)

Q is a transition matrix for a Markov
chain of neighboring pixel gray levels

Relates to how fast the Markov chain
converges

Haralick, IEEE Trans Sys Man and Cybernetics 1973

Maximal Correlation Coefficient :

f14 = 2nd largest eignevalue of Q

What are the pros and cons of these 14 texture features?



Texture Classification

Pao et al, SIIM 2011

63 patients w/chronic hepatitis B/C à adaptive filtering of speckle, nonlinear attenuation
à cirrhosis stage correlated with texture entropy; earliest stages hardest to detect



Transform Analysis
Gabor, Wavelets, etc.



Global vs. Local Image Transforms
• Transforms in general:

• Global Transform:

• Local Transform

• Heisenberg-Gabor Limit:

F(u,v) = f (x, y)g(x, y,u,v)
y=0

N

∑
x=0

N

∑ F(u,v) = f (x, y)g(x, y,u,v)dxdy∫∫

f( ) is the function of interest       g( ) is the kernel specific to the transform

f( ) can be decomposed as a sum of
waves of infinite extent

f( ) can be decomposed as a sum of
waves of finite extent 
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Global vs. Local Image Transforms
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Gabor Filters
as an Approximation to Biological Vision

• Gabor kernel closely matches receptive field 
profiles in cat striate cortex
• Stimulus alternates excitatory/inhibitory effect

Daugman, J Opt Soc Am 1985



Gabor Kernel

g(x, y) = e
i 2π !x

λ
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eix = cos x + isin xx and y are spatial coordinates
x' and y' are rotated spatial coordinates

λ is wavelength
ψ is phase

σx,, σy are sizes of Gaussian envelope

where !x = xcosθ − ysinθ and !y = xsinθ + ycosθ

Different formula than 1st and 2nd

derivatives of Gaussian but it can have a 
similar shape



Gabor kernels are localized “chirps” of 
frequency at various angles



θ

σx σy

ψ

Variable Filter Parameters

• Scale (σx,σy)
• Orientation (θ)
• Phase: (ψ)
• even vs. odd symmetry 

• Aspect Ratio (σx/σy)



Quadrature Phase

Input

Output (cosine)
real component

Output (sine)
imaginary component

Output
complex magnitude

Movellan, Tutorial on Gabor filters



Revisiting Some Filter Kernels
Gaussian
(in all directions)

1st Derivative of Gaussian
(Gaussian in other directions)

2nd Derivative of Gaussian
(Gaussian in other direction)

Laplacian of Gaussian
(sum of 2nd derivatives in
all directions)



Filter Bank Composition

• Radially symmetric filters
• Difference of Gaussian
• Laplacian of Gaussian
• Gaussian

• Oriented odd-symmetric filters
• Derivative of Gaussian
• Gabor sine component

• Oriented even-symmetric filters
• Second derivative of Gaussian
• Gabor cosine component



Example Filter Bank
3 

sc
al

es

2 phases

6 orientations of 2nd derivative of Gaussian

8 Laplacian of Gaussian 4 Gaussian

Total 48 filters Leung and Malik, IJCV 2001



Textons: Elementary Units of Texture

p
625 pixel 

image patch (25x25)

linearized into a

column vector

r
48 dimensional output

F
48 x 625 matrix

48 oriented filters
(6 orientations x 3 scales x 2 phases

+ 8 Laplacian + 4 Gaussian)

=

r = Fp
Over an image (or set of images), the vector of filter bank outputs, r,
can be clustered by K-means

We can use the pseudoinverse of F (in a least squares sense) to go

from k cluster centers to prototypical image patches, which are called

textons (analogous to phonemes in speech)



Examples of Textons

Top 25 textonsOriginal image



Texture Segmentation

True
Structure

Stage I
Results

Pitiot et al, WCCI-IJCNN 2002

Stage II
Results

Caudate
Nucleus Hippocampus Corpus

Callosum
T1-weighted MR à Haralick,Gabor,etc. à neural net à ~90% accuracy



Structural Analysis
Fractals



Fractal Dimension and Lacunarity

! = #$%&

ln! = −* ln $ + ln#

Fractal Dimension

,$ = lacunarity
-. = st dev of # foreground pixels
/. = mean of # foreground pixels
m = slope of lacunarity
b = intercept

,0 =
-0
/0

1

Lacunarity

ln ,0 = 2 ln $ + 3

N = number of non-empty boxes
$ = size of boxes
K = constant
D = fractal dimension



Fractal Dimension of Arterial Tree
Pulmonary Hypertension

Haitao et al 2011

!
!

Pulmonary Artery
Pulmonary Hypertension (PH)

ln !

ln $

D=1.6765

Binary View of
Coronal Projection

PH:       D = 1.64 ± 0.04
No PH: D = 1.54 ± 0.04



Fractal Dimension and Vessel Complexity

TOF MRI K-means Medial Axis

Arteriovenous
Malformation

Healthy Control

Reishofer et al, 2012



Applications



Texture Synthesis

Prastawa et al, Med Image Anal 2009

Texture model: Markov Random Field



Caveat Emptor

• Factors that affect texture that are not related 
to pathology
• Image reconstruction algorithm
• Scanner manufacturer
• Contrast
• Low-dose acquisition
• Motion
• Other imaging acquisition artifacts

Solomon et al 2016



How does Texture Fit in with Other Image Features?

• Point-wise Image Features
• Intensity, Location

• Texture Features
• Histogram Analysis
• Haralick/GDCM
• Gabor
• Fractal

• Shape Features
• Geometric Measures, Medial Axis

• Global Features
• Histogram, Fourier Transform

Image features reduce the dimensionality of a full image (millions of pixels) 
down to a feature vector (tens to hundreds)

Local

Global

Image
Processing

Machine
ClassifierImage Features Decision

millions tens to hundreds one



What does it mean for me?

• Topics:
• Defining Texture
• 1st and 2nd Order Statistical Features
• Transforms
• Fractal Analysis
• Applications

• Textures are a rich set of features useful for tissue 
classification and other clinical tasks

• Fill a niche between pixels and shapes

Next Lecture:   
Image Registration


