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Today: Coordinate Systems and Image 
Registration

• You have two images of the same patient (or 
even different patients) that you want to align 
with each other
• Multimodality imaging
• Aligning cohorts of research subjects

• Topics:
• Coordinate Systems
• 3D Rotations
• Image Registration Algorithm



Coordinate Systems and Transformations



Coordinate Systems

• What coordinate systems are most useful in imaging?
• What coordinate systems enable efficient 

transformations of large numbers of vertices?
• How do we perform rotations in 3D?



2D Cartesian Coordinates
Some pragmatic
considerations: 
• ½ pixel offset 
• upper vs lower left origin
• row,col vs x,y
• starting at 0 vs. 1
• pixel dimensions
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3D Cartesian Coordinates

vtk.org

DICOM is L-P-S (positive X-Y-Z = Left-Posterior-Superior)
Some formats are R-A-S (positive X-Y-Z = Right-Anterior-Superior)

BMI 260
is cool!

G Otto, Penn State

Generally, right handed coordinate systems are preferred

What is the danger of not being careful 
about coordinate systems?



Projective Transformations

Perspective

Projective: Preserves incidence, cross ratios

Types of Coordinate System Transformations

Affine Transformations

Scaling

Shearing

Affine: Preserves co-linearity, parallel lines

Rigid Transformations

Rotation

Translation

Rigid: Preserves angles, distances and handedness



Translation

Rotation

Coordinate Transformations



Scaling

Shear

Coordinate Transformations



Coordinate Transformations

Perspective (2D)
(more common in
document processing)

Perspective (3D)



3D Cartesian Coordinates Transforms with Matrices
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Rotation about Y
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Rotation about Z
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addition, not multiplication



Composing Multiple Transforms
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The fly in the ointment… translation is not a matrix multiply

For a given transformation, pre-compute the matrix to apply to thousands or millions of vertices
Take advantage of matrix multiplication associativity
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Homogenous Coordinates



Homogeneous Coordinates to the Rescue

• Go one dimension higher to convert all
transformations into multiplication
• (x,y,z) is now represented as (x,y,z;w)
• Implements translation as a matrix multiply

• To convert to homogeneous:
• (x,y,z) à (x,y,z;1)

• To go back to regular coordinates:
• (x,y,z;w) à (x/w, y/w, z/w)

• The extra degree of freedom adds redundancy
• Non-zero multiples represent the same point
• (1,2,3;1) is the same spatial point as (2,4,6;2)

We’ve seen this trick again and again
(think 2D image as a surface)



Geometric Interpretation
2D Homogeneous Coordinates in 3D Space

(x, y, w) Project all homogeneous points
to w=1 plane through the origin

All represent the same 2D point:
(1,2;1)  (2,4;2)  (3,6;3)x

y

w

(x/w, y/w, 1)
w=1

w=0 is special:
(x,y,z;0) is a point at infinity in the 
direction (x,y,z)

In the limit as w goes to zero, these 2D 
homogeneous points lie on the same x-y 
line pointing away from the origin:

(1,2;1)  (1,2;0.1)  (1,2;0.01)  etc.
(1,2)     (10,20)    (100,200)  etc.

x

y

w

w=1



3D Homogeneous Coordinates Transforms with Matrices
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Projection Matrix in Homogeneous Coordinates
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Composing Transforms
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Now all transformations are matrix multiplies including translation
Again, note the ordering of the matrix multiplications
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Order of Composing Transforms
Example: First, 45� rotation.  Then +X translation.
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Order of transforms matters:

Transformations are done in a fixed global coordinate system and read
right-to-left (i.e., inside-out)

Alternatively, transformations can be thought of in the object’s (or camera’s)
coordinate system if read from left-to-right (i.e., outside-in)

But beware, non-rigid transformations also transform the object’s coordinate axes

  

€ 

TR x ≠ RT x 

When might you want to use the object’s or camera’s coordinate system?

matrix multiplication not  commutative!



3D Rotations with Quaternions



A Closer Look at 3D Rotations

3D rotations have a degeneracy when two rotational axes approach alignment

yaw

pitch

roll

At 90�pitch, yaw and roll are 
now aligned!
(i.e., gimbal lock)

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf

Apollo 11 Robotic Arm Animation

Examples of gimbal lock:



3D Rotation with Quaternions:
An Extension of Complex Numbers from 2D to 4D

±I, ±J, ±K are all different imaginary numbers
I2 = J2 = K2 = IJK = -1
IJ = K   JK = I   KI = J
JI = -K   KJ = -I   IK = -J

€ 

a + bI + cJ + dK = a2 + b2 + c 2 + d2
Unit length quaternions represent rotations in R3

Angle of rotation θ given by:  a=cos(θ/2)
Axis of rotation given by: (b,c,d)

Quaternions form a 4D vector: (a,b,c,d) is a+bI+cJ+dK

This arbitrary axis of rotation is what makes quaternions so useful!



Quaternions:
Composing Multiple Rotations

pq = (paqa – pbqb – pcqc – pdqd,   paqb + pbqa + pcqd – pdqc,
paqc – pbqb + pcqa + pdqb, paqd + pbqc – pcqb + pdqa)

• Just like matrices, quaternions are not commutative:  pq ≠ qp
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R =

a2 + b2 − c 2 − d2 2bc − 2ad 2bd + 2ac 0
2bc + 2ad a2 − b2 + c 2 − d2 2cd − 2ab 0
2bd − 2ac 2cd + 2ab a2 − b2 − c 2 + d2 0

0 0 0 a2 + b2 + c 2 + d2
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A quaternion represented as a 4x4 homogeneous transformation matrix

Successive rotations can be composed as quaternion
multiplications: pqrs

• Right-to-Left can be viewed in global coordinate system
• Left-to-Right can be viewed in object’s coordinate system



Image Registration



Image Registration

argmax
T

similarity(Image1,T{Image2}){ }

“Image registration is the process of aligning images so that the
correspondences between them can be seen more easily.”



Typical Registration Algorithm Architecture
Image 1     Image 2

Pre-processing

Compute Similarity

Optimize Transformation

Feature 
Selection

Sample Images

Feature Extraction

Algorithm Optimization
Run-time Algorithm

Close Enough?

Final Transformation

no
yes



Thin Plate Spline

Multiquadric

Piecewise Linear

Weighted Mean

Curved Transformations

…

Projective Transformations

Perspective

Affine Transformations

Scaling

Shearing

Rigid Transformations

Rotation

Translation

Types of Image Transformations



Need for Different Transformations

• Rigid Transformation
• Hard anatomy (head)
• Bones

• Affine Transformation
• Scaling due to size change
• Shear due to body leaning

• Perspective Transformation
• Pictures from two different perspectives
• 2D/3D Registration



Need for Different Transformations
• Curved Transformation

• Soft Tissue Deformation
• Changes in Body Position
• Surgical Changes
• Growth

• Developmental Growth
• Tumor Growth
• Weight Changes

• Comparison between different subjects
• e.g., to a reference atlas

• Adds a significant computational burden

slicer.org



Optimization Methods
• Objective function (AKA cost function) is our similarity 

metric
• Parameter space defined by transformation parameters
• Examples

• Gradient Descent
• Powell’s method
• Nelder-Meade downhill simplex (amoeba)
• Levenberg Marquardt
• Particle Swarm Optimizer
• Limited memory Broyden Fletcher Goldfarb Shannon

• Multi-resolution approaches are very helpful
• Progressively less blurring of input images
• Adapting optimizer step sizes at each scale



Example Similarity Metric:
Mean Squared Difference

• Amongst the simplest similarity metrics
• I1 = fixed image
• I2 = moving image
• Usually M*N is very large so first compute 

joint histogram, then estimate MSD from joint 
histogram

MSD =
1
MN

I1(i, j)−T I2{ }(i, j)( )
2

j=1

N

∑
i=1

M

∑

What assumptions does this metric make on the intensity scale?
In what types of registration problems are these assumptions violated?



Example Similarity Metric:
Correlation Coefficient

• More generalized than mean squared 
difference

• Also generally computed from joint histogram

ρ =
E I1 −µ1( ) T{I2}−µ2( )⎡⎣ ⎤⎦

σ1σ 2

How is this more general purpose than mean squared difference?



Example Similarity Metric:
Kappa Statistic

• Useful for comparing segmented images
• e.g., pixels are categorical variables

• po is observed rate of agreement
• pe is expected rate of agreement by chance

κ =
po − pe
1− pe

I1

1 0

T{I2}
1 a b

0 c d

N = a+ b+ c+ d

po =
a+ d
N

pe =
a+ c
N

a+ b
N

+
b+ d
N

c+ d
N



Example Similarity Metric:
Mutual Information

• Extremely useful for comparisons between 
image intensity scales that may be very 
different (not even monotonic transforms of 
each other)

• Has become a very popular similarity metric 
for image registration



A Brief Diversion into Information Theory
Message Entropy

H = log sn = n log s

A measure of complexity (or uncertainty) for all possible messages (e.g., tweets)
that increases linearly with n would be:

H = pi log
i
∑ 1

pi
= − pi log pi

i
∑ (Shannon Entropy)

Complexity of a specific message (e.g., tweet) can be determined by examining the 
histogram of symbol (e.g., letter) occurrences:

A set of messages (e.g., tweets) consisting of a string of n symbols (e.g., 280 chars)
where each symbol has s different values has sn possible variations (e.g., 26280

possible tweets)

Maximized when all probabilities are equal (flat histogram)

Coin flip



Information Content of a Tweet

Letter Frequency in the Oxford Dictionary

But of course real language doesn’t use letters in equal frequencies

Real language has
low entropy
(not flat)



How does this relate to thermodynamic entropy?

Low Entropy (1 possible arrangement)
A             B             C              D              E              F              G               H             I      …

High Entropy (many possible arrangements)
A             B             C              D              E              F              G               H             I      …

Imagine a long glass tube full of gas molecules that is considered in segments
Partitioned tube is like a histogram; molecules are like counts in the histogram



Image Entropy
Message = Image (instead of tweet)        Symbol = Pixel Value (instead of letter)

Probability values come from histogram of pixel values

Entropy is a measure of pixel histogram dispersion

0     N

A uniform image of 1 pixel value (peaky histogram) contains
little information; low entropy 

An image of highly distributed pixel values (broad histogram)
has high information; high entropy
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Now we allow molecules to vary along two axes

Low Joint Entropy

Now imagine gas molecules moving around in plane

High Joint Entropy
If we observed tightly clustered molecules,

information about one axis would tell us quite a bit of information about the other axis.
(note that they don’t have to cluster on the diagonal to have low joint entropy)



Joint Entropy of Aligned Images

Viola and Wells, MIT, 1997
Pluim et al, IEEE TMI 2003

Histogram pixel values come from image pixel joint histogram of aligned images

(pi,qi) is the pair of pixel values at the same coordinates in image P and image Q

Low Joint Entropy High Joint Entropy



Entropy and Mutual Information

I(A,B) = p(ai,bj )log
p(ai,bj )
p(ai )p(bj )j

∑
i
∑

= H (A)+H (B)−H (A,B)
= H (A)−H (A | B)
= H (B)−H (B | A)

Mutual Information:

H (A) = − p(ai )log p(ai )
i
∑

H (A,B) = − p(ai,bj )log p(ai,bj )
j
∑

i
∑

H (A | B) = − p(ai | bj )log p(ai | bj )
j
∑

i
∑

Joint Entropy

Entropy:

Marginal Entropy

Conditional Entropy

H(A) H(B)

I(A,B) H(B|A)H(A|B)

H(A,B)
- Difference between marginal entropies (assumes independence) and joint entropy
- How much does knowing one variable reduces the uncertainty about the other



Entropy and Mutual Information

A B

I(A,B)

A B

H(A|B)

Marginal Entropy Joint Entropy

Conditional Entropy Mutual Information

H(A)

A B A B

H(A,B)



Maximization of Mutual Information

Pluim et al, IEEE TMI 2003

0� 2� 5� 10�

Joint
Histograms:

Rotation:

Joint histogram of image with itself rotated at various angles



Mixed Modality Registration

CT MR Joint Histogram

Non-monotonic transform between intensity scales is OK!
(low joint entropy doesn’t have to be on the diagonals)

Unlike cross-correlation, sum of squared differences, ratio image uniformity
that depend on numerically similar pixel values between images

In the joint histogram, which modality is on the horizontal 
axis and which modality is on the vertical axis?



PET/MR Joint Distribution Example

Hallpike and Hawkes, Imaging 2002

Translational
Misalignment:  0 mm                     2 mm                             5 mm

Where do you see the most notable
difference in mutual information?

It can even do well with low resolution functional imaging with fewer spatial details



What does it mean for me?
• Today’s Topics

• Coordinate Systems
• 2D
• 3D including homogeneous coordinates

• 3D Rotations
• Quaternions

• Image Registration Algorithm
• Transforms
• Optimizers
• Similarity Metrics

• Mutual Information

• Dealing with translation and rotation may be more subtle than 
they first seam

Next Lecture:   
Radiomics


