Biomedical Informatics 260

Radiomics Lecture 8 David Paik, PhD Spring 2019

Today: Radiomics

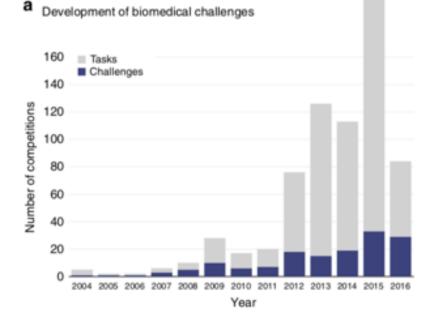
- Medical Imaging Datasets
- Content Based Image Retrieval (CBIR)
- Imaging Biomarkers
- Radiomics and Radiogenomics
- Quantitative Imaging
- Radiomics Applications
- Prelude to Deep Learning: Biological Neural Networks

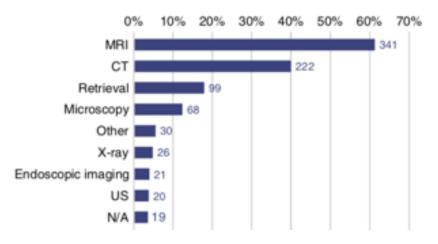
Medical Image Datasets

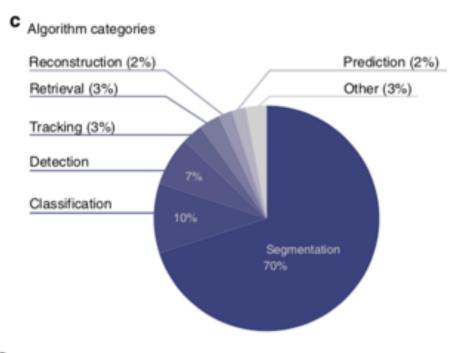
Large-scale Medical Image Datasets

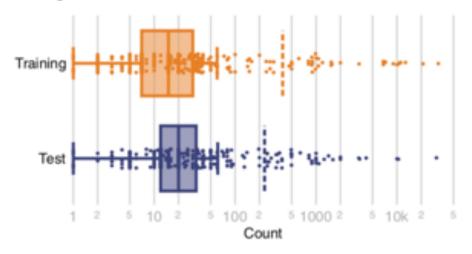
- Challenges and Competitions
 - Kaggle: numerous competitions
 - Grand-Challenge.org: numerous competitions
- Collections and Directories
 - NBIA/NCIA: numerous datasets
 - XNAT: numerous datasets
 - ACR DSI Dataset Directory
 - Aylward open access medical image repository list
- Individual Datasets
 - Osteoarthritis Initiative: 431k X-ray & MR studies
 - CheXpert: 224k CXR
 - NIH CXR: 112k CXR
 - MURA: 40k MSK X-rays
 - DeepLesion: 33k bookmarked CT images
 - DDSM: 2.5k mammography studies
 - fastMRI: 1.5k knee MRI
 - MRNet: 1.3k knee MRI
- And many more...

Biomedical Image Analysis Challenges









Maier-Hein et al, Nat Comm 2018

Biomedical Image Analysis Challenges

- Praise:
 - Heightens interest in medical imaging research
 - Makes research more accessible
 - Stimulates algorithm development and performance
- Critique:
 - Maier-Hein et al, Nat Comm 2018
 - Analysis of 150 challenges up to 2016
 - No commonly respected quality control exists
 - Half of relevant information not reported
 - How winner was determined
 - If training data could be supplemented
 - How reference standard annotation was done
 - Large variability in design
 - Radically different results with different metric, different annotator, different data

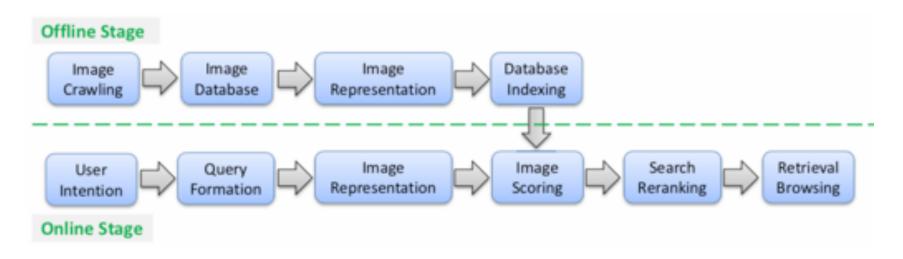
Content-Based Image Retrieval (CBIR)

Content Based Image Retrieval

 Intention Gap: difficulty for user to express the expected visual content

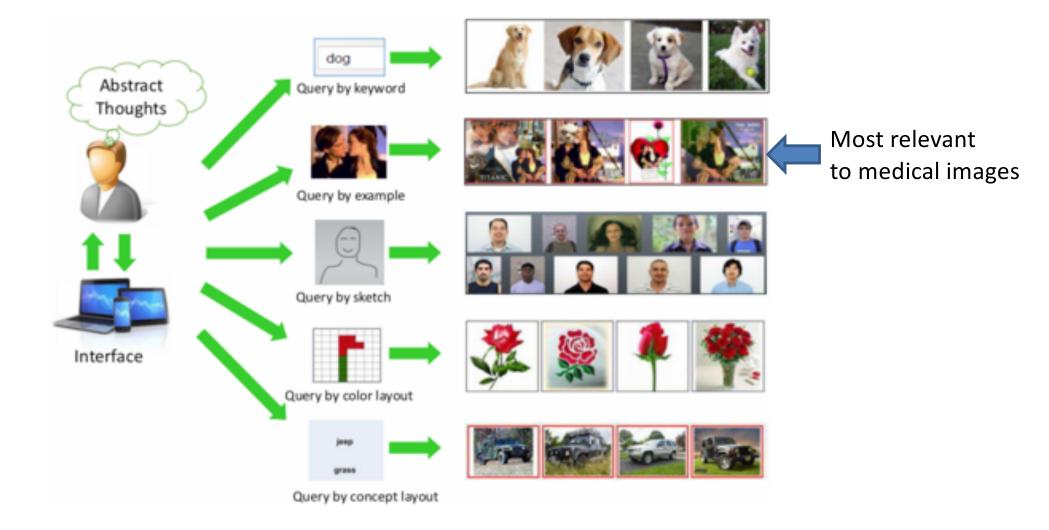
 Semantic Gap: difference between low-level visual information and high-level semantic information as perceived by humans

Flowchart and Key Issues



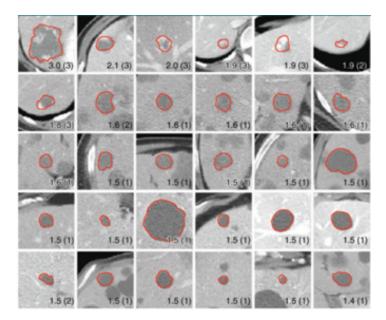
- Three key issues
 - Image representation
 - Define feature space
 - Image organization
 - Database indexing
 - Image similarity
 - Similarity should reflect relevance in semantics

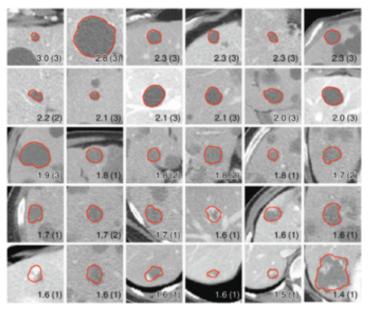
Image Query Formation



Retrieval of Similar Liver Lesion CTs

- 30 portal venous phase CT images of liver
- 3 types of liver lesions (cysts, hemangiomas, mets)
- 161 semantic features, 46 texture features, 2 boundary features
- Similarity as inverse weighted sum of differences





Napel et al, Radiology 2010

SIFT: Hand Crafted Feature Extraction

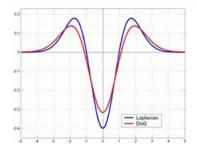
Scale Invariant Feature Transform

 $L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$

Convolution with Gaussian

$$D(x, y, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma)$$

Difference of Gaussians (DoG) (approximates Laplacian)



<u>Keypoints</u> are local extrema of DoG (compare to 26 neighbors)

$$D(\mathbf{x}) = D + \frac{\partial D^{T}}{\partial \mathbf{x}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \mathbf{x}$$
$$\hat{\mathbf{x}} = -\frac{\partial^{2} D^{-1}}{\partial \mathbf{x}^{2}} \frac{\partial D}{\partial \mathbf{x}}$$

Interpolate keypoints

if $D(\mathbf{x}) < 3\%$ max pixel value

$$H = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$$

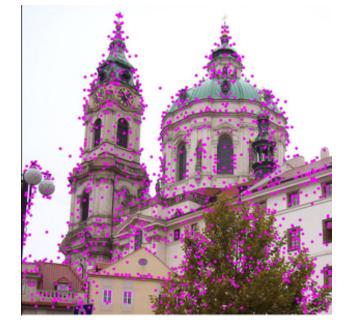
Discard low-contrast keypoints

Eliminate edge responses using Hessian matrix (eigenvalue ratio above threshold)

Lowe, IJCV 2004

SIFT: Keypoint Detection

DoG extrema



Discard low contrast

Eliminate edge responses

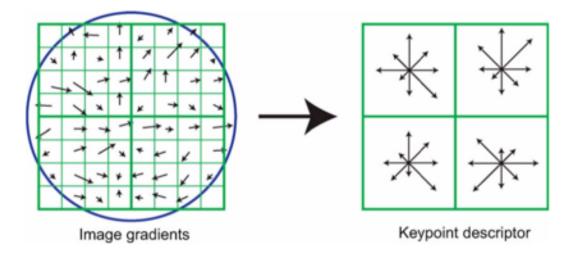
Lowe, IJCV 2004

SIFT: Descriptor Representation

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = atan2(L(x,y+1) - L(x,y-1), L(x+1,y) - L(x-1,y))$$

Orientation histogram computed weighted by m(x,y) and by circular Gaussian window



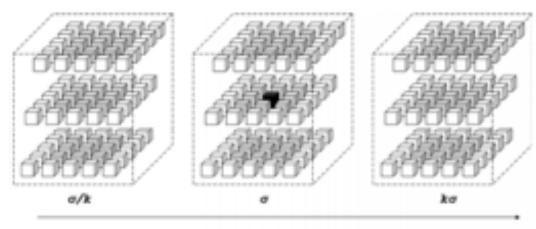
Gradient orientations rotated relative to keypoint orientation

2x2x8 element feature vector (4x4x8 in real practice)

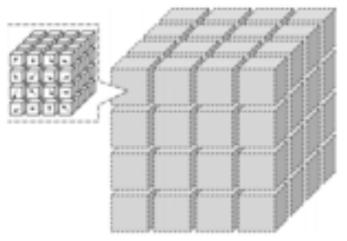
Normalize 128-vector

Approximate nearest neighbor matching against database (uses ratio of distance to best vs to 2nd best match)

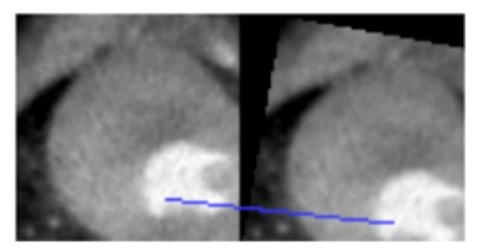
SIFT on 3D Medical Images



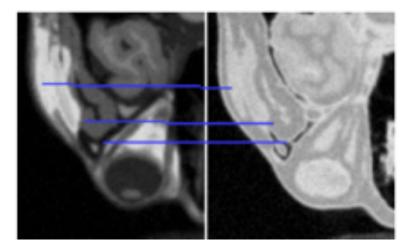
Difference of Gaussian Image Scale 3D DoG



3D Keypoint Descriptor

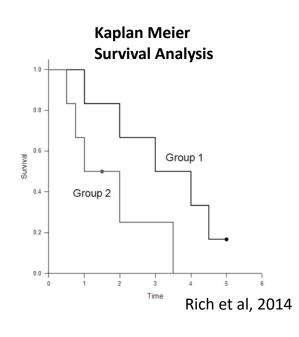


4D CT (85-90% correct matches)



T1w vs PD matching (80-90% correct)

- Clinical Endpoint: "A characteristic or variable that reflects how a patient feels, functions, or survives"
 - Can take a long time to measure and can have numerous confounders
 - Survival: overall survival, disease free survival, progression free survival
 - RECIST: complete response, partial response, stable disease, progressive disease
 - Quality of Life: patient reported outcome
 - NIH PROMIS: mental health, physical health, social health, etc.



- Biomarker: "A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention"
 - e.g., cardiac troponins (cardiotoxicity), plasmodium rRNA (malaria), LDL cholesterol (cardiovascular risk)
 - Some dramatic failures of conventional wisdom:
 - suppression ventricular arrhythmia != reduced sudden death after MI

- Imaging Biomarker:
 - Biomarkers measured from imaging (aka high-level image features)
 - "...consist of both <u>qualitative biomarkers</u>, which require expert interpretation, and <u>quantitative</u> <u>biomarkers</u> which are based on mathematical definitions"
 - e.g., tumor volume, ^{99m}Tc-sestamibi (myocardium)

• Surrogate Endpoint:

- In context of clinical trials, for toxicity or efficacy
- "A biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm or lack of benefit or harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence"
- Stand-in for an endpoint (not "surrogate marker")

FDA Qualified Imaging Biomarkers

- Groups Researching and Promoting Biomarkers
 - Academic Medical Centers & Consortia
 - Industry
 - Critical Path Institute (C-Path), International Life Sciences Institute (ILSI), Health and Environmental Sciences Institute (HESI), Foundation for NIH (FNIH), Radiologic Society of North America (RSNA) QIBA, NCI Quantitative Imaging Network (QIN), etc.

FDA Qualified Imaging Biomarkers

- Accepted
 - Total Kidney Volume by MR, CT, US (2016)
 - Ileum/Large Bowel Features by MR (2017)
- Under review
 - PET SUV
 - Tumor Volume and Tumor Volume Change by CT
 - Hippocampal Volume by MR
 - Lung Structure/Function Parameters by CT
 - Cartilage Thickness by MR
 - BMD by DXA
 - Liver Tissue by Iron Corrected T1 MR
- Not accepted
 - Lower Lung Lobe Volume by CT

Radiomics and Radiogenomics

Radiomics

• Radiomics:

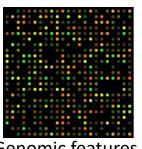
- "high-throughput extraction of quantitative features that result in the conversion of images into mineable data and the subsequent analysis of these data for decision support"
- Epitomizes precision medicine (right treatment for the right patient at the right time)
- Utilizes large-scale image databases
- Data mining, hypothesis generation
- Main focus on oncology
 - tumor heterogeneity, therapeutic resistance

Radiogenomics

Radiogenomics

- "mining of radiomic data to detect correlations with genomic patterns"
- Note: some confusion with radiation oncology where radiogenomics is whole-genome analysis of effect of radiation exposure

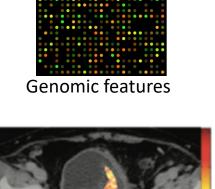
Radiogenomics Data Sources

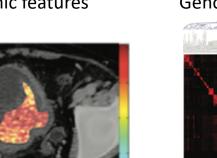


Tissue sample

CT Scanner

EHR

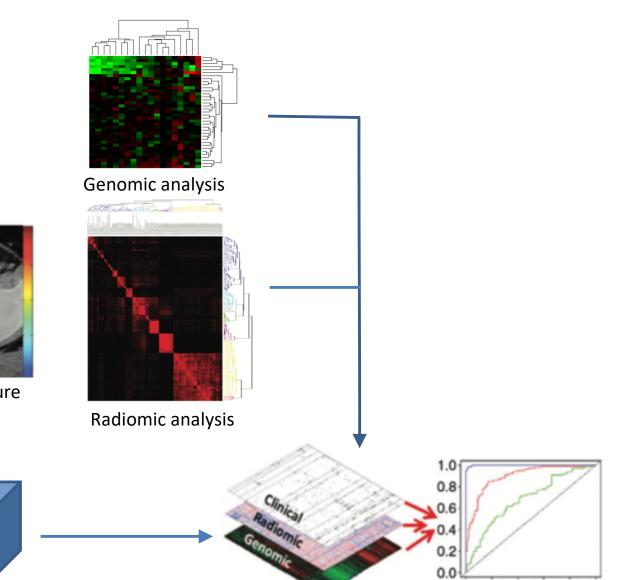




Bladder texture feature

Data

Mining



0.0 0.2 0.4 0.6 0.8 1.0

Radiogenomics Uses

- 1) Suggest gene expression or mutation status that warrants further testing
- 2) Radiomic features that are not correlated with genomic features could provide independent information

Process of Radiogenomics

- Image Acquisition
 - Lack of standardized acquisition protocols; nonbiological pattern of changes in data
- Identifying Volumes of Interest
- Segmentation
- Feature Extraction
- Populate Database
- Mine Data to Develop Classifier/Prediction

Radiomics Steps

Score 3

1

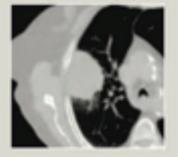
1

Statistical

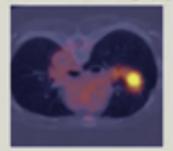
determinants

Tumor detection and segmentation

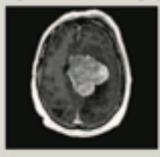
Computed tomography



Positron emission tomography



Magnetic resonance imaging



MANUAL

Manual detection and segmentation

Radiologist identifies tumor location, borders, and size by visual assessment.

Tumor phenotype quantification

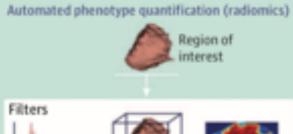
Manual semi-quantitative semantic annotation

	Tumor characteristic
AUN	Spiculation
Q4-	Pleural attachment
	Enhancement heterogeneity

Radiologist describes tumor using a standardized semantic lexicon.

A U T O M A T E D Automated detection and segmentation

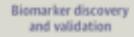
Computer-aided detection systems detect tumor location and perform volumetric segmentation.

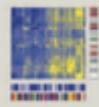


Shape-based 1 features

Texture

Data characterization algorithms provide comprehensive quantification of the tumor phenotype. Data integration and application





Investigation of associations between tumor image phenotype data and genomic, proteomic, and clinical data

Clinical application

Pat	ient	rep	¢П

Diagnosis

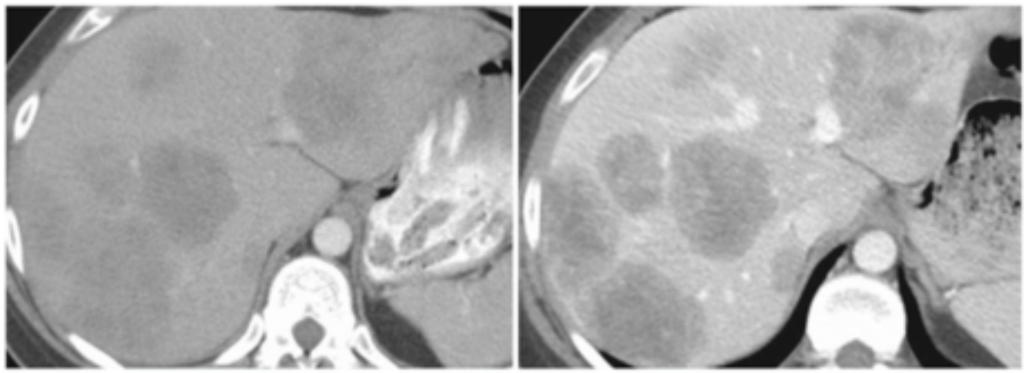
Staging

Treatment planning

Prediction of treatment response

Quantitative Imaging

Quantitative Imaging Non-reproducible and Redundant Features



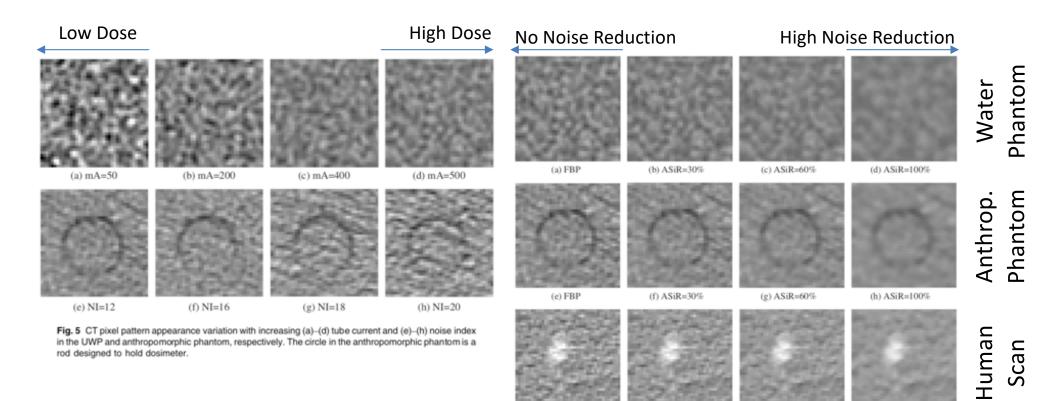
Outside Scan

MSK Scan

Fig. 1 Comparison of imaging protocol differences: portal venous phase CT acquired of the same patient 10 days apart.

Image Acquisition Protocols Not Standardized Across Institutions (and sometimes not even within institutions)

Quantitative Imaging Non-reproducible and Redundant Features



(i) FBP

Fig. 7 CT pixel pattern appearance variation with increasing ASiR levels in (a)-(d) UWP, (e)-(h) anthropomorphic phantom, and (i)-(i) human scan, respectively.

(k) ASiR=60%

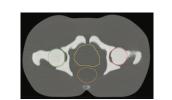
(j) ASiR=30%

Effect of Acquisition Parameters

Effect of Reconstruction Algorithm

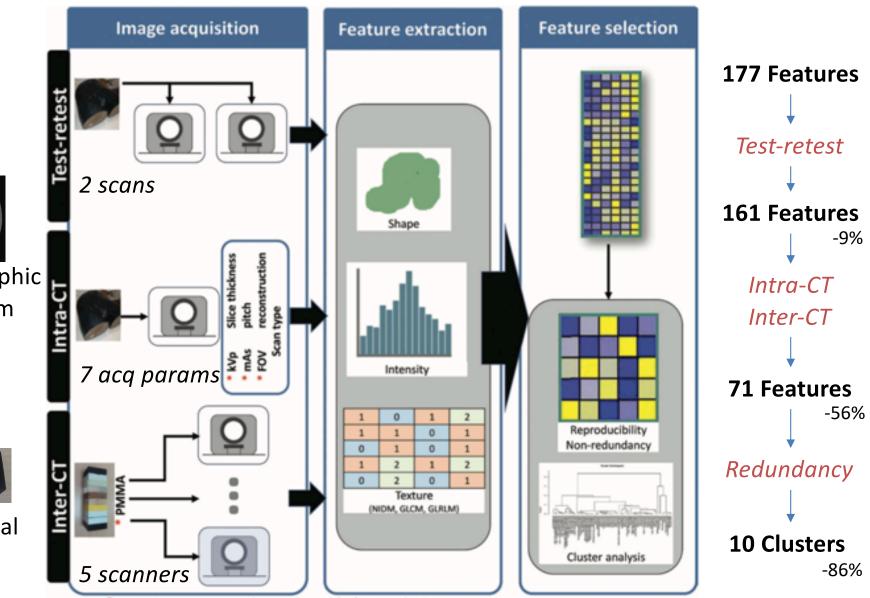
(1) ASiR=100%

Quantitative Imaging Non-reproducible and Redundant Features



Anthropomorphic Pelvis Phantom

Multi-material Phantom



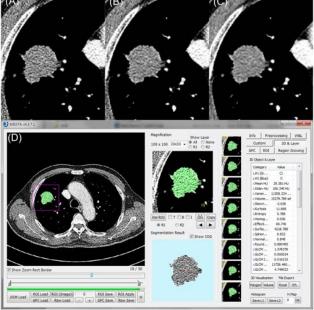
acquisition parameters and materials used for feature selection

Berenguer et al, Radiology 2018

Quantitative Imaging Impact of Reconstruction Algorithms

- 42 patients
 - 42 lesions across various organ sites
- Contrast-enhanced CT scans
 - Consistent acquisition parameters
 - 3 reconstruction algorithms (FBP, iteratative w/low and high noise reduction)
- Segmentation by 2 different readers on FBP
 - 15 features: 6 intensity, 5 size/shape, 4 texture
- Variability
 - Intra-reader, inter-reader, inter-recon alg

Quantitative Imaging Impact of Reconstruction Algorithms



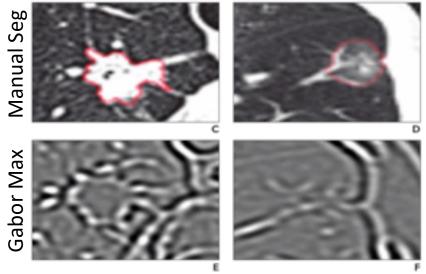
	Inter-recon alg p < 0.05	Intra-reader CV > 5%	Inter-reader CV > 5%
Intensity Features	5/6	4/6	4/6
Size/Shape Features	0/5	2/5	2/5
Texture Features	4/4	1/4	1/4

Kim et al, PLOS One 2016

Example Radiomics Applications

Predicting Brain Mets in Lung Adenocarcinoma

- 89 patients with T1 lung adenocarcinoma
 - 35 with brain mets, 54 without
- Semi-automated segmentation of target lesion
 - Level set with refinement by Markov random field
- 1160 quantitative features from unenhanced CT
 - Shape, size, boundary sharpness, texture
 - Hierarchical clustering and feature ranking
 - Random forest
- Three models with AUC for predicting brain metastases
 - Clinical (.759), radiomics (.847), hybrid (.871)



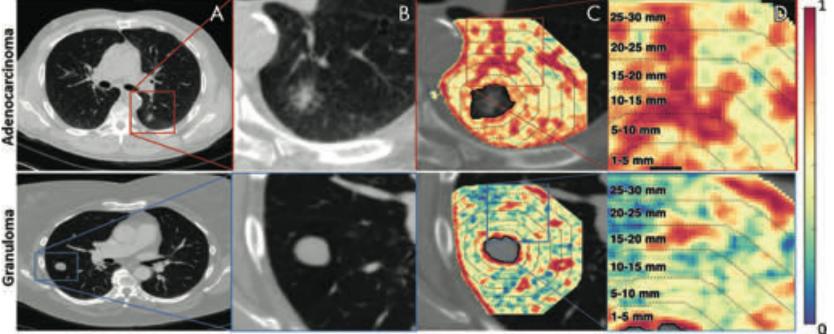
With brain mets

No brain mets

Parameter	Clinic al Model	Radiomics Model	Hybrid Model	
Variable	Age Gabor_Max			
	Sex	LoG_Z_Uniformity	Lo6_Z_Uniformity	
	Smoking status	LoG_Z_Entropy	LoG_Z_Entropy	
	Tumor diameter	Sigmoid_Offset_Std	Clinic al_Lymph Node	
	Tumor position			
	CT-reported N category			
Sensitivity	0.829	0.8	0.829	
Specificity	0.574	0.815	0.833	
AUC value (95% CI)	0.759 (0.643-0.867)	0.847 (0.739-0.915)	0.871 (0.767-0.933)	

Perinodular + Intranodular Lung CT Radiomics: Adenocarcinoma vs. Granuloma

- 290 patients from 2 institutions
 - Either adenocarcinoma (145) or granuloma (145)
 - Determined by histopathology
- Nodule segmentation
 - Manual nodule identification and segmentation in all 2D slices
 - 30mm dilated ring of parenchyma around nodule in 5mm increments



Beig et al, Radiology 2018

Perinodular + Intranodular Lung CT Radiomics: Adenocarcinoma vs. Granuloma

- 1776 Features
 - 252 intranodular
 - 1512 perinodular
 - 12 shape
 - 2D textures from slice with largest nodule area
 - Only 12 features used (with p < 0.05)
- Look closely at the Gabor features selected!

				Nodule Region of			
Feature No.	Feature Family	Descriptor	Statistic	Feature Extraction [†]	P Value ¹		
	Perinodular Radiomic Features						
1	Gabor	$f = 16, \theta = \pi/8$	Skewness	Perinodular	<.001		
2	Laws energy	R5S5 [†]	Median	Perinodular	<.001		
3	Gabor	$f = 8, \theta = \pi/2$	SD	Perinodular	<.001		
4	Gabor	$f = 8, \theta = 3\pi/4$	Kurtosis	Perinodular	.001		
5	Gabor	$f = 2, \theta = \pi/2$	Skewness	Perinodular	.001		
6	Gabor	$f = 2, \theta = 3\pi/4$	Kurtosis	Perinodular	<.001		
7	Gabor	$f = 4, \theta = \pi/4$	Median	Perinodular	<.001		
8	Gabor	$f = 4, \theta = \pi/8$	Kurtosis	Perinodular	<.001		
9	Gabor	$f = 4, \theta = \pi/8$	Median	Perinodular	<.001		
10	Gabor	$f = 2, \theta = 3\pi/4$	Skewness	Perinodular	<.001		
11	Gabor	$f = 4, \theta = \pi/8$	SD	Perinodular	<.001		
12	Gabor	$f = 2, \theta = 3\pi/4$	Skewness	Perinodular	<.001		
		Combine	d Radiomic I	Features			
1	Gabor	$f = 16, \theta = \pi/8$	Skewness	Perinodular	<.001		
2	Gabor	$f = 32, \theta = 3\pi/4$	Kurtosis	Intranodular	<.001		
3	Gabor	$f = 4, \theta = 3\pi/4$	Skewness	Intranodular	<.001		
4	Gabor	$f = 4, \theta = \pi/2$	Median	Intranodular	.001		
5	Laws energy	R5 W55	Median	Perinodular	<.001		
6	Laws energy	W5E55	Median	Intranodular	<.001		
7	Laws energy	S5E55	Median	Intranodular	<.001		
8	Gabor	$f = 32, \theta = 3\pi/4$	Median	Intranodular	<.001		
9	Gabor	$f = 8, \theta = \pi/2$	SD	Perinodular	<.001		
10	Gabor	$f = 32, \theta = \pi/2$	Median	Intranodular	<.001		
11	Gabor	$f = 32, \theta = 3\pi/8$	Skewness	Intranodular	.003		
12	Gabor	$f = 8, \theta = 3\pi/4$	Kurtosis	Intranodular	<.001		

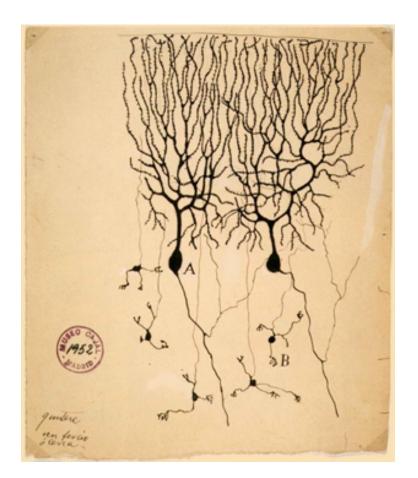
Beig et al, Radiology 2018

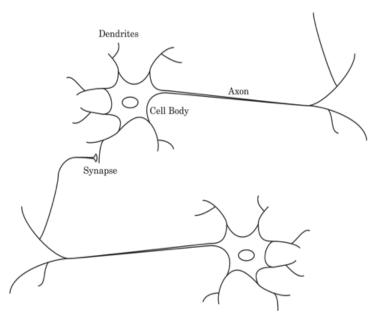
Perinodular + Intranodular Lung CT Radiomics: Adenocarcinoma vs. Granuloma

- Classified with LDA, QDA, SVM (linear+RBF), RF
 - Perinodular radiomics: SVM lin. AUC 0.74 (0.57,0.90)
 - Intra+Perinodular radiomics: SVM lin. AUC 0.80 (0.65,0.94)
- For comparison
 - LeNet CNN AUC 0.76 (0.60,0.92)
 - Readers AUC 0.60-0.61
- Scanner manufacturer comparison
 - Siemens: AUC 0.82 (0.64,0.99)
 - Philips: AUC 0.72 (0.43,0.99)
- By CT image type
 - Diagnostic (slice thickness ≤ 3mm): AUC 0.73 (0.53,0.93)
 - Screening (slice thickness > 3mm): AUC 0.66 (0.20,1.11)
- Takeaway: analyze lesions *and their surrounding context*

Prelude to Deep Learning: Biological Neural Networks

Bio-inspired Computing



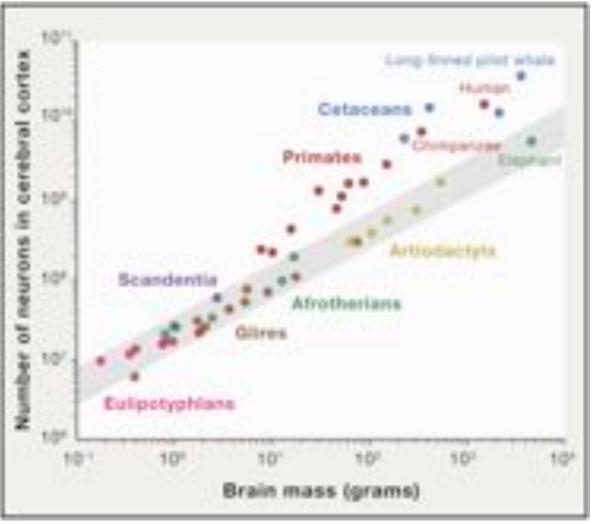


Hagan et al, Neural Network Design

Pigeon cerebellum (A: Purkinje cells, B: granule cells) Santiago Ramon y Cajal 1899 1906 Nobel Prize for discovery of discrete neurons

Human brain ~10¹¹ neurons ~7000 synapses per neuron

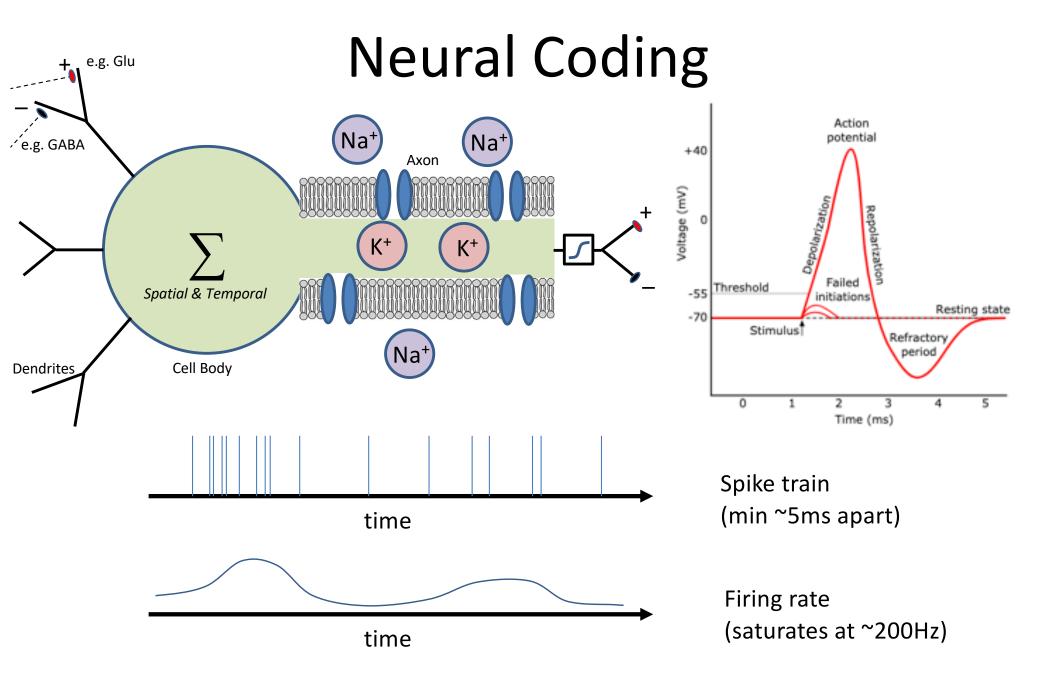
Neuronal Number



- 302: nematode
- 10K: ant
- 4M: mouse
- 300M: cat
- 100B: human

Sousa et al, Cell 2017

Highly suggested book: "Scale: The Universal Laws..." by Geoffrey West

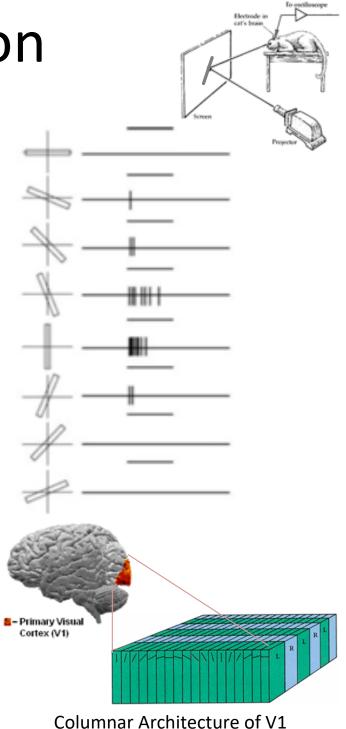


Can model spike trains as an inhomogeneous Poisson process

https://soundcloud.com/blake_porter_neuro/anterior-cingulate-principal-cells_

Biological Vision

- David Hubel and Torsten Wiesel, Single unit activity in striate cortex of unrestrained cats, J Physiol 1959.
 - Discovery of cells with oriented receptive fields in the primary visual cortex
 - Columnar Architecture of V1
 - Across cortical surface, orientation sensitivity rotates
 - From cortex to white matter, orientation stays the same
 - Nobel Prize in Physiology or Medicine



What does it mean for me?

- Medical Imaging Datasets
- Content Based Image Retrieval (CBIR)
- Imaging Biomarkers
- Radiomics and Radiogenomics
- Quantitative Imaging
- Radiomics Applications
- Prelude to Deep Learning: Biological Neural Networks

Next Lecture: Deep Learning