Medical Imaging Applications of Al
Lecture 18
Spring 2019

What are the motivations for Al applications?

1) Flood of image data...
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Al Applications

* What are the motivations for Al applications?
* What are the key methods?

* What are the types of Al applications?

* What are challenges to progress?

Key motivations for Al applications

1. Flood of image data
* Impacts disease detection

2. Variation in clinical practice
* Impacts diagnosis

3. Variations in disease in people

* Impacts clinical prediction and clinical
decision making

2) Variation in practice

* There are large variations and disparities
in care
(Institute of Medicine, 2001)

 “Errors and variations in interpretation
now represent the weakest aspect of
clinical imaging* ”

*Robinson PJ. Radiology’ s Achilles’ heel: error and variation in the interpretation
of the Réentgen image. British Journal of Radiology. 1997 Jan 1;70(839):1085-98.
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Disease in different people varies

Proneural

Neural Classical Mesenchymal

* Molecular diversity

* Heterogeneous genomic
aberration landscape of
individual tumors*

* Phenotypic diversity

* Variable appearance of
lesions on images

* Clinical diversity
* Patients have different
response to treatment
* Ideally we will
“ . ” .
profile” disease for
personalized medicine

The TCGA Research Network. Cancer Cell. 2010

“Precision Health”

* A paradigm shift, focusing on
prediction and prevention, rather
than relying exclusively on diagnosis
and treatment of existing disease

* Prevents or forestalls the
development of disease

* Requires accurate methods of
prediction based on monitoring
people’s health status

* Opportunity: Like precision health,
leverage Big Data and Al methods to
build prediction models
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3) Variation in disease among people
People (and their diseases) differ...

Realizing “Precision Medicine”

Patient care often lacks specificity ty f'..i
(“One size fits all” does not usually t: °
apply in medicine) '
There are “subtypes” of disease ' : 3
(e.g., many types of “breast cancer” ”
needing specific therapy for each type)

Precise diagnoses based on “electronic
phenotyping” and molecular profiling

enables treatments that are individually
tailored to each patient

Opportunity: Leverage Big Data and Al
methods to build prediction models

N

\

What are the key approaches?




Approaches to Al in imaging

1. Pre-defined feature capture

2. Unsupervised feature learning

Capturing pre-defined image features
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Pre-defined feature capture

* Use domain knowledge to define features
extracted for learning a multivariate
model

* Basis for “radiomics”

* Supervised machine learning on these
features

[ ™ Lesion type cyst Metastasis Hemangioma Hepatoceliular
Carcinone
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Machine learning with pre-defined
image features

Radiomics: High-throughput extraction of quantitative
image features with the intent of creating mineable
databases from radiological images

-+ malignant, nonresponder
(malignant, responder
X benign

undefined

« pre-malignant

quant. feature #2

Feature extraction
and qualification

quant. feature #1

Unsupervised feature learning

* Raw image pixel data input into a model
* Image patch analysis }
Image data
* Deep learning
* Word embeddings } Text data

Radiomics: The process and the challenges, Magnetic Resonance Imaging, 30(9):1234-48, 2012.
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Image patch analysis: Feature vectors of visual words
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Word embedding provides vector-based
representation of text (learned using unsupervised
methods);

e.g., to permit learning a classifier for document x
being classified to label y

Which item(s) are used in connection with

"pre-defined image features?"

A

B

c

A. Radiomics D
B. Image patches A&B
C. Image texture A&C
0. Word embeddings B&D
AB,&C

A, B,&D
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Unsupervised feature learning with
images: Deep learning
* High-level abstractions of image features (hierarchical, non-linear
transformations)
* Inspired by hierarchical visual processing by the brain

* Higher-level features (layers) are defined from lower-level ones,
and represent higher levels of abstraction

Unsupervised
learned quantitative
features

Low level
representation
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Modified after slide by Jeff Dean, Google

Word embeddings learn feature
representation of medical texts
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Word emt;edding Jsing det;p Ieamir;g (4,442= words) :)rojected in two dimensions
Unsupervised deep learning algorithms can learn a
feature representation from texts without the
need of supplying specific domain knowledge

Which item(s) are used in connection with
"unsupervised feature learning?"

A
B

c

A. Radiomics D
B. Image patches A&B
C. Image texture A&C
0. Word embeddings B&D
AB,&C

A, B,&D




What are the types of Al applications?

Key clinical uses of unsupervised
feature learning

1. Disease detection
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Key clinical uses of unsupervised
feature learning

1. Disease detection B

2. Lesion segmentation | Current application
focus

3. Diagnosis

4. Treatment selection
5. Response assessment

6. Clinical prediction (of > Active research area
treatment response or

Detection and segmentation: General
fully connected networks

forward, inference

backward/karning

Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions I'(rr tasks like semantic segmen-

tation,

Detection/segmentation are pixel-based classification tasks

| Networks 2015 CVPR_paper.pdf

future disease)

1) Detection of image abnormalities

AKA “where’s Waldo?”

Detecting retinal hemorrhages
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Sliding window detection of small features
compared to physician manual detection

Predicted Physician

Single 224x224x3 input CNN sliding window:
Detecting any abnormal feature
Red =P~.99 Green=P "~ 0.5

Detection of breast masses with
* Digital Database for deep Iearnlng
Screening Probabilistic Visual
Mammography gisdnion
(DDSM) - —
+ 2420 mass ROIs putimage o Crrosri i
+ 80%/10%/10%
training/test evalu- Mass
ation sets —p I~
* 256x256 patches,
labeled as “mass” or
“non-mass”
* Data augmentation: No Mass
cropping, translation,
rotation, flipping and Performance:
scaling of image tiles Nemberar | Sumter ot Vit
* Probability T e e
classification map of P - - -
location (fully —r o L
connected CNN) L= |

Examples

Rescaled Localization
Mammogram Mammogram Image

Key clinical uses of unsupervised
feature learning

2. Lesion segmentation

2) Segmentation of image regions

* Division of image into non-overlapping,
homogeneous regions

* Segmented regions often input to other processing
(e.g., feature extraction, image classification)

Image segmentation in pathology,
different image scales

Cellinuclear regions

Tissue regions
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Segmentation of brain tumors using Example case from test set
deep learning

* Modified GooglLe Net: Final layer is fully convolutional
transpose layer for segmentation Yellow Outline = Expert Segmentation

* 2.5D model: 7 consecutive slices (center slice + 3 below
and above) and 4 different modalities in the channel
space

* Network output: Probability map of whether each voxel is
a metastasis

14 44444 AA
Al )

Probability value

Output
probability
map

Key clinical uses of unsupervised

feature learning 3) Diagnosis: Classification of images

AKA “is it Waldo?”

3. Diagnosis E

Waldo Waldo

Infiltrating Cancer

Benign Lymph Node

Diagnosis: Different approaches Approaches to Al in classification

Pre-defined features:

* Pre-defined image feature extraction Lesi Lesi
* Domain knowledge available as to key informative Lesion seeg?,‘l,‘:r:‘ Feeastll?l%
features Detection tation Extraction

* Limited training data available
Al Methods for

* Generally slow development AU DALS U
* Explainability by looking at model weights Classification/Prediction

* Unsupervised feature learning (deep learning) Deep Learning: >

* Key informative features are not known Input Clinical Data

* Lots if training data available (thousands of cases) * Images
* Generally fast development Deep learning model for
* "Black box” difficult explainability Classification (and prediction)




Pathology Images in Brain Cancer

Which Al method might be best?

Pseudopalisading Necrosis

- Key image features

distinguish GBM from
A B LGG are known
Pre-defined Deep learning - Vascular
image features Proliferation
= 1 « "Pseudopalisading
Necrosis”

- Limited data available

Deep learning: Diagnosis of masses
on mammography

* Classify breast Om (| Em§&|

masses as AT JASS EPRNSION | sn:umuvmwrv
benign vs.
malignant

* Branching
structure of

CNN to
account for D

i
two views of % 7 ol

CC AW IMADE
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breast

* Predictive
accuracy ~ 0.8
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Bladder pathology

Normal Low Grade High Grade CIs Inflammation
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Pathology classification usmF _
guantitative image feature analysis

For each pathology side
2.2.1 Image Tiling and 7,7 Faature Redue tan 2.2.3 Tile Selection and
Anugh Faatura nrmrnn and Clugtering Deep Feature Extraction

2.3 Elastic Net Modeling and Weighted Voting

Goal: Automated Weighted voting

classification of
high- and low- C 3. Tumor Type Prediction ) ‘

grade glioma Actual * Correct classification

in 44 of the total 45 I Cluster 5| +-

GBMLGG| tissue slices Result = ++++ GBM
| + Accuracy of 97.78%
1 with 85% CI

Barker, J, Hoogi, A,
88.23%-99.94% Depeursinge, A, Rubin, D,

« NIR of 51.11% gives  Medical Image Analysis
p-value = 0:60-71,,.2016

Predicted|

3.366x10%-12

Real-time in vivo
microscopic images

Used in Gl and pulmonary
applications

Opportunity for “optical
biopsy”

High resolution, dynamic,
sub-surface imaging
recorded as movies

Diagnosis on movies

IR




Image frame classification for real-
time diagnosis of bladder cancer

Computerized interpretation during confocal
endomicroscopy examination of the bladder permits
localization of tumors in heterogeneous bladder lesions

Normal region=

Cancer region*
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Key clinical uses of unsupervised
feature learning

4. Treatment selection

Key clinical uses of unsupervised
feature learning

5. Response assessment
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NB: How much image data train
deep learning models is needed?

* Image detection/segmentation
* This is a pixel-based classification task

* Generally 100s of images/cases (which provides
thousands of training examples!)

* Image classification
* This is a whole image-based classification task

* Thousands (preferably 10s or 100s of thousands)
images/cases

4) Treatment selection
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Goal: Identify which GBM patients will respond to
Q anti-angiogenic drugs

Magne:cﬂi?wrﬁéﬂswonance perfusion image features
uncover a subgroup of GBM patients with poor
survival and better response to drug treatment

5) Response assessment

* Is the disease responding to treatment
(disease getting better)

* Task: Evaluate images and determine if
disease is:
* Stable disease (SD)
* Progressive disease (PD)
* Partially responding to treatment (PR)

* Completely responded to treatment (back to
normal) (CR)




Treatment response assessment

Sum of Maximum Lesion Diameters Over Time

7/19/00 | 92000  3/4/01 1/31/02  4/3/02 7/31/02 1/31/03 6/22/03 9/25/03

Study Date

“Is the patient’s cancer responding to treatment?”
(A task for computer reasoning, discussed in next lecture)

5) Clinical Prediction
* Don’t confuse with classification:'m

* Classification ~ T \"._::,
study, single time point P\\ 1
* Input usually only images o WL SJ,M
* Goal: Reporting, diagnosis, decision support
* Prediction if < ,-;r
studies, multiple timepoints l I !
* Input may include clinical data E
treatment, adverse events, survival)
* Pre-defined features or deep learning (NB: deep

* Input: Usually single image/

* Input: Usually multiple images/

* Goal: Forecast future clinical outcomes (response to
learning can model multiple timepoints)

Pre-defined image features (lesion texture):
Predicting lung cancer recurrence

Riesz
wavelets
for texture

Lung nodule
with solid
and ground
glass
components

NB: Images from
single time point

1 Cow LASSD {enrie esiens|
O o LA { ol RS

B Survhonl SVM [ensre besion)
B Survhont 5V {soika RO
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Key clinical uses of unsupervised
feature learning

6. Clinical prediction (of
treatment response or
future disease)

Prediction is key to Precision Health
and Precision Medicine

* Precision Medicine # o)

= Will a patient’s will disease progress? N

* Will a patient have particular
good/bad outcomes?

* Precision Health

* Which healthy people will develop o ,'
disease? o 92

+ Can we develop custom screening for =% ‘
early detection or prevent disease? o

Probability of Survival

Pre-defined image features: Predicting survival

*OME

Image tiling

b v
Whole-slide histopathology images Select the 10 densest tiles/images
Divided into training and test sets
Image features predict prognosis ?fm, il Tumor
of TCGA stage | patients CellProfiler cell/nucleus
Pre

segmentation

Image feature 4
extraction
9879 features: size,

shape, intensity

distribution, texture

100 150
_Months
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Unsupervised feature learning:
Predicting patient survival
* Goal: Predict patient survival in metastatic
cancer from medical records data

* Rationale:
* Overutilization of aggressive medical treatment in
patients close to the end of life
* Physicians cannot currently accurately estimate
patient life expectancy; thwarts shared
patient/physician decision making
* Approach: Model incorporating longitudinal
medical records clinical notes using word
embeddings to represent the text

Banerjee I, Gensheimer MF, Wood DJ, Henry S, Chang D, Rubin DL. Probabilistic Prognostic Estimates of Survival
in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. AMIA Informatics 2018, arXiv

Results: Quantitative Evaluation

Tested on 1818 patients with multiple visits

ROC curve: AUC=0.89

True Positive Rate

L - — >3 months survival
— <3 montns sunvival
- - Random Prediction

g (52 e To

[ o5
False Pasitive Rate

Overall ROC AUC for predicting 3 month ROC for each primary cancer site

survival = 0.89 CI [0.884 - 0.897]

NB: State of the art prediction (based on clinician judgment) AUC approx. 0.7
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Use of word embeddings for
prediction

* LSTM model; input = sequence of free-text clinical visit narratives
ordered by the date of visits.

* Output = probability of short-term life expectancy (> 3 months) for
each visit, considering the current and all the historic time points.

Survival | Survival Survival Survival
prediction| | prediction| | prediction prediction
y 'y i
. | >,
stn ey ustm sl ustm | vl Lsta
(25) (25) (25)
Stacked RNN \—5—- Many-2-many RNN model
" I
s menl istm eyl LsTM 2
‘ (s0) ‘

(50)

Embedding of 4 s Unsupervi
frea-texts | ‘ we | IWE of free-text notes
¥ ¥

Unsupervised feature learning:
Disease progression
* Age related macular degeneration (AMD)
changes over time
* AMD progresses in approx. 5% of patients
* The time to AMD progression is unpredictable

o 8

§ 6

o 4

(]

E 2 AMD

- o g o Progression
‘ 72 73 74 75 76

Patient age

Prognosis of AMD Disease using
longitudinal image biomarkers

Prediction results: Short term

Random Forest: 0.64+/-0.06 AUC LSTM: 0.96+/-0.02

Rangom Forest: 3 months LSTM: 3 manths AMD progression

True Pasitive Rate.

“True Positive Rate

~-- Randam predictio

--= Random pre n
—— Mean ROC (AUC = 0.96 + 0.02)

— Mean ROC
=1 st gev.

=15t dev.

Faise Positive Rate Foise Positive Rate

10-fold cross validation ROC curves
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Amount of longitudinal data helps
LSTM models

AUC-ROC

ssssssssssssssssssssssssssssssssssssssssssssssssss

* More patient visits=> Better LSTM performance, especially shorter
term prediction

* Negligible effect on performance of random forest model

Which kind of Al application points out a

suspicous region in an image that a
physician should biopsy?

Detection
Segmentation
Diagnosis

Treatment selection
Response assessment
Clinical prediction

Challenges to progress
1. Data quantity and quality

2. Integrating domain knowledge into Al
models

3. Leveraging data from multiple
institutions

4. Evaluation of Al applications in practice
and impact on clinician performance
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Which kind of Al application analyzes a CT

scans and tells a physician whether to use
Treatment A or Treatment B?

Detection
Segmentation
Diagnosis

Treatment selection
Response assessment
Clinical prediction

What are the challenges to progress?

1) Data quantity/quality issues

* You generally need a lot of data
* Ideally 100,000+ training examples
. (I;IB, for segmentation you can get away with less
ata
* You generally need many high quality labels
* Costly to obtain
* Most historical data in PACS/EMR is not
annotated
* Thus, difficult to leverage historical data
* Generally hand-curation effort for each project

* Many institutions spending $$ creating curated
datasets (but not sharing...)

12
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B'ﬁ%r!rﬁé?iﬂfﬁgﬂg?rﬁgﬁk‘ Effect of data quantity and quality

."
Lung Mass

Sy

EX: Expert Label

n

- Pneumonia

2 (high quality)
£
E CL: Clinical Label
é 0.4 |" /," —— 2K, EX(AUC = 0.86) (noisy)
P T,
¢ P : :

=== 20K, CL (AUC = 0.87)
—— 200K, EX (AUC = 0.96)
--- 200K, CL (AUC = 0.89)

s
“00 0.2 0.4 06 0.8 1.0
False Positive Rate

Normal

Larger training set > Better CNN performance
Better quality labels > Better CNN performance

. . Value of training with more data, even labels
Approaches to data quantity/quality g noisy
* Data augmentation =— 200k cases, ained with ::?:;:ﬁ::ﬂs
* Perform reasonable image transformations
(rotations, flips, etc.) ) EX: Expert Label
* Transfer learning “ (high quality)
* Train a model on related task and use model éw A e e v CL: Clinical Label
weights to initialize new model to be trained s D (noisy)
l‘. ”; — 20K, EX (AUC = 0.94)
* ImageNet very commonly used, but may not be i e e oo
relevant to medical imaging use cases ol — XA Auc-0m)
0.0 02 04 0.6 0.8 1.0
* Train with more data, even if labels have False Posiive Rate
noise Training with many cases (200k) having noisy
" - labels approaches maximum performance (realized
° “Weak learning with fewer (20k) cases with quality labels)
[
2) Integrating domain knowledge Al challenges and potential solutions
- Pre-defined features capture expert Feature extraction from images as pre-processing
. . step for deep learning models enhances signal and
knowledge about relevant image signals also provides data augmentation
* Approach: Generate images based on
extraction of pre-defined features
(feature maps) ' .‘\\ﬁ
* Benefit: Incorporates knowledge and D
also provides data augmentation DL Model with raw image
data as input
DL Model with extract;; featur:;:s inputs
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Deep learning for predicting future 3) Leveraging data from multiple
cancer risk institutions
TSR - @"‘g * Most Al models built with data from only
- one institution

* Data among institutions varies
* Geographic variations in patient populations
* Differences in imaging parameters
* Differences in vendor equipment
* Variations in medical practices

* Thus, Al methods may not generalize

Multl-channel

Lattce based Texture Analyls i * Acquiring/sharing data from multiple

Image texture feature maps preserve discriminative spatially-dependent

features and auiment data in multi-channel CNN

institutions is challenging!

Centralized approach to Al model ; . .
development Overcoming barriers to data sharing

) * Bring the model to the data instead of
o5 bring the data (centralized) to the model

* Distributed computation of training
o deep learning models

_/Kg) x: ’r. ']

InteI‘Jal
tralizc - Prop
Database

Privacy

Alternative approaches for training Cyclical weight transfer has similar_
distributed deep learning models performance to centrally-hosted training
Centrally hosted Ensemble single institution
A Institution 1 B
N Institution 1 Institution 2
Institution 2
Institution 3 A B Centrally hosted data
Institution 4 i " N = 6000 patients
Institution 4 Instiiution 3 2 N e o e 5 S )
Final Model & Eum
i fon
Single weight transfer Cyclical weight transfer km / Random classification
Institution 1 Institution 2 Institution 1 Institution 2 B A
Institution 4 Institution 3 Institution 4 ~———— Insfitution 3 mza{ﬂt“sogzsed on having 4 @&?:l;g?gtiigarﬁ]as?i?jﬁ\ggg number of
Finai Moel Finai Mosel
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5) Evaluating Al systems in practice

* Everything an Al system “knows” is based on
the data upon which it is trained

* Al algorithms may not generalize to new
data (wasn’t seen before)
* Data used to create algorithms can contain bias
* Differences in patient populations (e.g., foreign
vs. domestic
« Differences in equipment/parameters for
imaging
* Rare disorders/abnormalities may be under-
represented

Al algorithm performance: ROC Curve

Distribations of 1he Boserved signal strength

ralaVs

7~

Good Poorly
performing Al performing Al

Al algorithm output is based on a particular
operating pointon ROC~ =======

What is the clinical impact of Al . 4
that picks up all positive cases (C)?

1 Soweiriciy

Need for clinician expertise...

Physicians need to maintain their expertise to
guard against becoming overly dependent on
Al algorithms that may lead them astray

TESLA'S AUTOPILOT WAS
INVOLVED IN ANOTHER
DEADLY CAR CRASI

ng on

any
stopllat feature was turned an whes a Mo
divid

TENL wow wan another fatality

constant human sapervision.
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Deep learning models may not generalize
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Zech JR et al., Confounding variables can degrade ger izati of radiological deep learning
models, arXiv:1807.00431

Toolkit for collecting Al performance
metrics in the clinical workflow

Summary
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Motivation for Al applications is to help
clinicians deal with flood of image data,
reduce variation in practice, and
address variations in disease for
precision medicine/health

Challenges to progress are data quantity
and quality, integrating domain
knowledge into Al models, leveraging
data from multiple institutions, and
evaluation of Al applications in practice

Thank you!
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Types of Al applications include disease
detection, lesion segmentation, diagnosis
(classification), treatment selection,
response assessment, and clinical
prediction

What does it mean for me?

* Awareness of clinical needs

* Think carefully about amount of data and
best method

* |deas for potentially useful medical
applications

Next time:

Leveraging semantic data for image query and
computerized inference
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