
Deep Learning for Identifying Metastatic Breast Cancer

Alex Martinez, Ronjon Nag, Alex Tamkin, Pol Rosello, Pranav Sriram

December 5, 2016

1 Introduction

Diagnosing diseases based on images taken with a mi-
croscope is a difficult, time-consuming, and error-prone
process currently performed almost exclusively by human
specialists. In recent years, there has been an increasing
interest in developing computational techniques that can
classify microscopic slides automatically, assisting in di-
agnosing diseases such as cancer faster, cheaper, and more
accurately.

In their paper, Wang et al. use a deep convolu-
tional neural network to automate detection of metastatic
breast cancer in whole slide images of sentinel lymph node
biopsies [1]. They focus on two tasks: (1) slide-based
classification – whether or not a slide contains metastatic
cells – and (2) tumor-localization – determining where
in the slide the tumor is located. Their approach uses
an initial pre-processing stage to identify the tissue in
the slide. They then train a deep convolutional neural
network to make patch-level predictions to discriminate
tumor-patches from normal-patches. Finally, they aggre-
gate the patch-level predictions to create tumor proba-
bility heatmaps and perform post-processing over these
heatmaps to make predictions for the slide-based classifi-
cation task and the tumor-localization task.

Their model won the International Symposium on
Biomedical Imaging’s Camelyon Grand Challenge in 2016
with a performance approaching human-level accuracy,
obtaining a whole slide image classification AUC of 0.966
and a tumor localization score of 0.733. The authors also
introduce a method for combining their model’s predic-
tions with a professional pathologist’s and show that the
resulting predictions are better than either agent’s pre-
dictions alone.

2 Dataset and Evaluation Metrics

The Camelyon16 dataset consists of a total of 400 whole
slide images (WSIs) split into 270 for training and 130
for testing. Both splits contain samples from two insti-
tutions: Radbound UMC and UMC Utrecht. Ground
truths consist of delineated regions of metastatic cancer
on the WSIs.

Submissions to the competition were evaluated on the
following two metrics:

• Slide-based Evaluation: Judges measured AUC score

derived from competitor submissions of predicted
likelihood of containing cancer for each WSI.

• Lesion-based Evaluation: Judges measured average
sensitivity for detecting all true cancer lesions in a
WSI across 6 given false positive rates. Submissions
consisted of probability and (x, y) location for each
predicted cancer lesion within a WSI.

3 Context and Related Work

The evaluation of breast sentinel lymph nodes for the
presence of metastatic breast cancer is an important com-
ponent of the American Joint Committee on Cancer’s
TNM breast cancer staging system, since the results of the
evaluation affect treatment courses. Several centers have
taken a biochemical approach, and implemented testing
of sentinel lymph nodes with immunohistochemistry for
proteins known as pancytokeratins. Limitations of this
approach include a high cost, time-intensive slide prepa-
ration process, an increased number of slides required for
pathological review, and low accuracy. While computer
vision based systems have also been developed, they are
so far not yet in clinical use. Thus, developing practical,
efficient, and cost-effective automated systems for detec-
tion of metastatic nodes is still an open research area.

4 Model

4.1 Image Pre-processing

Figure 1: Tissue region (highlighted green) detection dur-
ing image pre-processing.

To reduce computation time, Otsu’s thresholding
method is used to segment tissue data from the remaining
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Figure 2: The framework of cancer metastases detection.

background region of the WSI, effectively removing 82%
of the WSI. The detection results are visualized as green
curves in Fig. 1.

4.2 Cancer Metastasis Detection Frame-
work

The cancer metastasis detection framework consists of
a patch-based classification stage and a heatmap-
based postprocessing stage, as depicted in Fig. 2.

The patch-based classification stage takes as in-
put WSIs and ground truth WSIs annotated with can-
cer regions. From these, millions of positive and negative
256x256 patches are cropped from the WSIs are used to
train a GoogLeNet based discriminative model.

It’s worth noting the authors evaluated three other
deep learning architectures: AlexNet, VGG16, and
FaceNet. A 27 layer, 6 million parameter GoogLeNet
became part of the final model.

The authors found that a significant cause of false pos-
itives were histologic mimics of cancer, after which addi-
tional negative training examples featuring these mimics
are added to make a second training set they call the
enriched training set.

The heatmap-based postprocessing stage entails
manipulating the heatmap data for the competition’s two
metrics:

• Slide-based Evaluation: From a heatmap input, the
authors extract 28 geometrical and morphological
features (e.g. % of tumor region over the whole tissue
region, the area ratio between tumor region and the
minimum surrounding convex region, and the longest
axis of the tumor region, etc.). Features extracted
from the training heatmaps are used in building a

random forest classifier to discriminate positive from
negative WSIs.

• Lesion-based Evaluation: For this metric, the au-
thors train two deep GoogLeNet classification mod-
els, one (D-I) using the unmodified training set and
another (D-II) the enriched training set mentioned
earlier. Noting that D-I was more prone to false posi-
tives (but more sensitive), the authors next threshold
the heatmap output of D-I and identified connected
components within the resultant binary mask. Defin-
ing a centroid of the connect component as (x,y),
they return the average of the tumor probability pre-
dictions generated by D-I and D-II across each con-
nected component.

5 Results

The models presented in this paper achieve state of the art
performance on both slide-based and lesion-based evalu-
ation metrics.

The AUROC of their slide-based classification model
was 0.925, beating out the next best model by over a per-
centage point. This high score can be credited in large
part to the model’s high performance when the false-
positive rate is required to be low; in these cases, the
model does far better than its competitors. This is likely
due to the authors’ creation of the “enriched” dataset to
improve model performance in these conditions.

The performance of the lesion-based classification
model was even more striking. The authors use the free-
response receiver operating characteristic (FROC) curve
to evaluate the models, which plots sensitivity against
average number of false positives per image. The AUC
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Figure 3: Visualization of tumor region detection.

Figure 4: ROC Curve of Slide-based Classification

of the authors’ model was 0.705, compared to the next-
best model which achieved 0.576. A trained pathologist
achieved a sensitivity of 0.733 with zero false positives
(the red dot in Figure 5); when allowing two or more
false positives, the authors’ model achieves greater preci-
sion than the pathologist.

Finally, when the authors augmented the predictions of
the pathologist with those of their model, the error rate
dropped from 3.4 percent to 0.52 percent.

6 Discussion and Criticisms

This paper makes a significant contribution to the field
of computational medical image analysis, and provides
the best currently known automated system for detecting
metastatic breast cancer in whole slide images of sentinel
lymph node biopsies. Although their model does not out-
perform expert pathologists, combining it with patholo-
gists reduced the pathologist error rate from over three
percent to almost half a percent.

Their framework differs from end-to-end neural net-
work systems for computer vision in that their frame-
work incorporates considerable pre-processing, post-
processing, and domain knowledge. In particular, the

Figure 5: Average number of false positives

authors augment their training procedure to focus more
heavily on negative training patches that are hard to clas-
sify correctly. This drives down false positives, which is
particularly important in the domain of medicine, since
negative test cases are much more common than posi-
tive ones. The post-processing stage incorporates various
domain-specific metrics, thereby effectively combining the
power of general deep feature learning with biomedical
insights. The authors also test various hyperparameters,
including magnification level. However, we would like to
see a little bit more analysis of the false postives and false
negative characteristics, discussing precision, recall, and
F1 scores.

One shortcoming of this paper’s approach is that the
model used is built using the GoogLeNet deep neural
network, which was trained on ImageNet. The image
data in ImageNet, which comprises multiple classes of
animals, outdoor scenes, and man-made objects, is sig-
nificantly different structurally from tumor images. Al-
though transfer learning has proven successful in certain
settings, the qualitative difference in datasets makes it
unlikely that GoogLeNet would be the best possible fea-
ture extractor on tumor slide images, and the authors
could have experimented with training their own model.
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